1. Field of the Invention
The invention is related to the field of actuators, and in particular, to an actuator with a heated sealing strip.
2. Description of the Prior Art
Actuators come in many styles and shapes. One type of activator is a rodless cylinder, for example a Lintra® Rodless cylinder M/46000 from Norgren. Rodless cylinders differ from basic cylinders in that no piston rod extends outside the cylinder body. Instead, an internal piston is connected to an external carriage, by means of a magnetic or mechanical coupling system. Rodless cylinders are ideal for long stroke applications because they are unaffected by rod overhang, bending, piston binding, and uneven seal wear, and for use in confined areas where space is a premium. Unfortunately, the rodless design may necessitate a long sealing strip running the length of the rodless cylinder. The sealing strip is typically used to seal the pneumatic chamber of the rodless cylinder. Some sealing strips may stiffen when exposed to low temperatures, causing a loss of pressure and efficiency in the actuator. It would be desirable to have an actuator that did not lose efficiency at low temperature.
Therefore there is a need for a sealing strip that functions over a wider temperature range.
A system and method for a heated sealing strip is disclosed. The system and method comprise embedding at least one wire into a sealing strip. A power supply is connected to the wire. An electrical current is run from the power supply through the wire, heating the sealing strip.
a is a diagram of two wires embedded inside a sealing strip connected to a power supply in one example embodiment of the invention.
b is a diagram of two wires embedded inside a sealing strip connected to a power supply in another example embodiment of the invention.
c is a diagram of a wire embedded inside a sealing strip connected to a power supply in another example embodiment of the invention.
In operation, carriage 308 is moved from one endcap to the other endcap as air is forced into the air port in endcap 302 or air port 314, driving internal piston inside pneumatic chamber 322. As the carriage moves towards one endcap, the leading end of the carriage forces sealing strip 316 down and away from the top channel and forces the cove strip 310 up and away from the top channel. As the carriage passes by, the trailing end of the carriage forces the sealing strip 316 back up into top channel and forces cover strip 310 back down and onto the retaining feature on sealing strip 316. As the operating temperature gets colder, sealing strip tends to get stiffer. As the sealing strip gets stiffer, the carriage may have difficulty re-seating sealing strip into the top channel as the carriage passes by. When the sealing strip is not properly seated into the top channel, air leaks may occur, reducing the efficiency of the rodless cylinder.
Some sealing strips already contain wires embedded into the sealing strip to add stiffness to the sealing strip. Typically the wires are called internal reinforcement wires and may be made from steel or some other metal. By connecting the wires to a power supply, an electrical current can be run through the wires, thereby heating the wires and the sealing strip.
In one example embodiment of the invention, the power supply may be 24 volts. The current through the wires may be controlled to provide a given amount of heating, for example 12 Watts. A temperature sensor may be used to switch the power supply on when the temperature falls below a threshold. In another example embodiment of the invention, the sealing strip may be heated for a predetermined length of time at system power-up. Heating wires may be added to sealing strips that do not require internal stiffeners.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/06298 | 6/13/2005 | WO | 00 | 12/10/2007 |