The following relates to an apparatus and method for providing heating in shoe insoles.
In cold environmental conditions, the extremities, such as toes, are particularly susceptible to losing body temperature and becoming uncomfortably cold. To provide insulation from cold temperatures, shoe uppers typically are made of leather or cloth, shoe soles are made of leather or rubber materials, and shoe insoles and liners include padding and other materials. The insulating properties of these materials helps to retain heat from blood circulation through the foot. For example, hunting boots or snow boots are designed with thick rubber soles and a significant amount of padding to help retain body heat while shoveling, hiking, or performing other activities during freezing weather conditions.
In some circumstances, it is beneficial or necessary to supplement the human body's natural capabilities of temperature regulation by providing a heat source within a shoe or boot. For example, while snow boots or hiking boots may be effective for keeping a person comfortable outside in sub-freezing conditions for several minutes, a person's body temperature may begin to fall after several hours outdoors and the insulation in the boot may no longer be adequate. Once a person's feet become cold, there is a risk of numbness, frostbite, or even hypothermia. For persons with poor blood circulation, it may be beneficial to include heating mechanisms within shoes or boots even if the person does not intend to remain in a cold environment for a long period of time.
Known mechanisms exist for applying heat within a shoe or boot. As one example, chemical hot packs can be inserted into socks or shoes to help retain heat and adequate body temperature within the shoe or boot. These packs create heat through a chemical reaction that can last up to several hours in some applications. The chemical heat pack must be replaced with a new one for each usage. Other known heating mechanisms use electrical wiring within a sock or shoe or boot to apply resistive heat through the wiring. These conventional electrical heating mechanisms are somewhat vulnerable to failure, however, because a puncture or disconnect at a single point within the wiring can completely disable the electrical circuit that generates the heat. Further, such electrical heaters commonly are powered by nickel cadmium batteries, which are toxic.
A shoe insole apparatus is disclosed that includes a flexible semiconductive heater element adapted for insertion within a shoe to be in proximate contact with at least a portion of a foot when the shoe is worn. The apparatus also includes a battery in electrical communication with the heater element. The heater element provides warm to a portion of a wearer's food upon receiving current from the battery.
The shoe insole may also include a sole. The shoe's space for receiving a foot is above the sole.
The apparatus may be a warming slipper that includes a footpad with a heater element. The slipper also includes a toe cup that curls over the footpad to cover less than half of the footpad. A battery provides electricity to the heater element for the slipper.
Additional embodiments will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
The invention provides for a battery powered heated shoe insole. The insole may be an integral part of a shoe, slipper, or boot or may be a removable insert. The insole can be sized to fit various styles and sizes of shoes or boots. In some embodiments, the heater portion of the insole includes a cup over the wearer's toes, providing more heat to the toe area by enclosing it more.
In accordance with the following, a heater assembly is provided in the insole or footpad of a shoe, boot, or slipper that provides electrical heating. Preferably, the heating is done by using one or more flexible, semiconductive, electrically resistive heating elements powered by a rechargeable battery pack. This heater assembly is preferred because it withstands the stresses that can break and disconnect an electrical wire-based heater and efficiently provides long-lasting heating capability with reduced power requirements. Further, the rechargeable battery enables frequent use and re-use without having to replace the heating assembly.
Although the embodiment depicted in
As a further alternative, the insole 20 and integrated covering 22, depicted in
The insole of
The heater may be configured as a circuitous serpentine configuration of a flexible graphite heating element with two electrical contacts. It is noted that, according to various embodiments, the use of a configuration in which the ends of the heating element are in close proximity to each other may be desired, e.g., to facilitate connection to the positive and negative terminals of the power source being used. According to the invention, the particular dimensions and configuration of the heating element being used may be chosen such that specific desired heater resistance requirements are met.
In series with the heater 50 and the battery 54, an power switch 52 may optionally be provided for disabling the heating and associated power drain without requiring removal of the battery. The power switch may be provided on or near the battery pack, or may be anywhere on the insole or shoe. As opposed to a chemical heat pack, for which the chemical reaction that creates the heat cannot be easily discontinued and restarted, a battery-operated heated insole can be easily turned on and off depending upon the user's comfort level or change in temperature. This allows a user to temporarily go indoors while continuing to wear the shoe or boot with the heater, without experiencing overheating. Optionally, sensors can also be included (not shown in
An optional controller 56 may be placed in parallel with the heater for providing features such as high and low adjustability or other temperature regulation capabilities. Controller 56 can receive input from temperature sensors or motion sensors. The output of controller 56 feeds to a power setting switch 58 to adjust the current supplied to the heater 50. A user may manipulate a control setting (e.g., a switch, knob, dial, or the like) that controls a field effect transistor (FET) or another suitable type of circuit device, which in turn controls the amount of time that the heating element is being heated versus the amount of time that it is not. The battery 54, controller 56, and heater 50 are connected to a common ground 59.
To prevent possible burning, a fuse circuit also may be included. A fuse circuit may be any suitable type of fuse circuit that is capable of providing over current protection. For example, the fuse circuit may be designed to melt and open the circuit under abnormally high electric loads.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
This application claims priority to and incorporates by reference in its entirety U.S. Provisional Application No. 60,696,527 filed Jul. 6, 2005, titled “HEATED SHOE INSOLE”.
Number | Date | Country | |
---|---|---|---|
60696527 | Jul 2005 | US |