The present invention generally relates to thermally-controlled steering wheels for vehicles, and more specifically to a heated and cooled steering wheel including a plurality of thermoelectric elements.
Thermal comfort of vehicle occupants is an important aspect of the driving experience. Vehicle touch surfaces can get hot after being exposed to the sun. Existing steering wheels may reach temperatures that are well above the ambient temperature. Because the steering wheel may be exposed to more direct sun than other controls necessary for driving (e.g. ignition switch, shifter, brake, accelerator, seat cushions etc.), the steering wheel may be too hot to touch, thus preventing the driver from driving the vehicle until it has cooled. Traditional methods of cooling a vehicle interior space by air circulation involve opening a door or opening one or more windows. These known cooling methods require a user to be present for security reasons while waiting for the steering wheel to cool. Although it may be possible to remotely actuate a vehicle's air conditioning system in some instances, this is typically a very inefficient way to cool the steering wheel, and the steering wheel may still be too hot to touch for some time even if the cabin air temperature is comfortable. In view of the above, a need exists for an improved way to cool vehicle steering wheels.
Also, if a user begins to use a steering wheel after it has been exposed to cold temperatures, the user may experience discomfort upon contact with the cold wheel. Although heated steering wheels have been developed, known heated steering wheels may suffer from various drawbacks due to limits in the amount of heat available to heat the steering wheel.
One aspect of the present invention is a steering wheel assembly for motor vehicles of the type having a steering column. The steering wheel includes a central portion connected to the steering column for rotation about an axis, and a rim extending around the central portion. The steering wheel includes a passageway extending through at least a portion of the rim, the central portion of the steering wheel. The passageway may also extend through the steering column. The rim defines an outer side portion facing away from the axis. The steering wheel further includes a plurality of spaced apart rings of material disposed on the rim. A plurality of N-type thermoelectric (“TE”) elements having inner and outer surfaces are disposed on at least one of the rings with the inner surface of the N-type TE element facing the rim. The steering wheel assembly further includes a plurality of P-type TE elements disposed on at least one of the rings with the inner surface of the TE element facing the rim. The N-type and P-type TE elements may be electrically connected to the rings upon which each of the thermoelectric elements is disposed. The N-type and P-type thermoelectric elements may comprise Peltier devices in the form of relatively thin plate-like units having generally planar opposite surfaces, and rectangular perimeters. An electrical conductor interconnects the P-type and N-type TE elements in series. The steering wheel assembly further includes a first thermal conductor thermally connected to the inner surfaces of the N-type and P-type TE elements, and a second thermal conductor that is thermally connected to the outer surfaces of the N-type and P-type TE elements, whereby the P and N type TE elements are thermally connected in parallel between the first and second thermal conductors. A powered air circulation device moves air through the passageway from the rim to the steering column to thereby cool the rim upon application of electrical power to the P-type and N-type elements.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
With reference to
As shown in
The N-type and P-type TE elements 28 and 30, respectively, may comprise Peltier elements wherein the N and P-type thermoelectric materials are stacked electrically in series, and thermally in parallel. The basic construction of Peltier elements is known, and the details of the materials and methods utilized to fabricate the N and P-type elements 28 and 30 will not therefore be described herein. In a preferred embodiment, the TE elements 28 and 30 comprise thin plate-like members having a quadrilateral or square perimeter and generally parallel, flat opposite side surfaces 38, 40, 42, and 44. The thickness divided by the cross-sectional area is generally in the range of 0.125, but it may be in the range of about 0.08 to about 0.20. It will be understood that the TE elements could have circular perimeters, oval perimeters, or other suitable shape. In a preferred embodiment, the TE elements 28 and 30 are about 2 mm×3 mm×0.5 mm thick. Although the inner surfaces 42 and 44 of the TE elements 28 and 30, respectively, are planar, the curvature of outer surface 26 of tube 24 is sufficiently large relative to the size of the TE elements 28 and 30 so as to permit the use of solder to bridge both electrically and physically between the TE elements 28 and 30 and the tube 24.
With further reference to
With further reference to
The total resistance of the network of TE elements 28 and 30 preferably has a resistance in the range of about 0.5 to 2.0 ohms. Thus, the rings 60 and TE elements 28 and 30 are attached in a parallel-series configuration. This is accomplished by using a “cut” (not shown) in each ring 60 with a dielectric separator (e.g. a piece of polymer material). Each ring 60 has at least one positive locator pin (not shown) to provide correct orientation of the ring and to enable electrical conduction from one ring 60 to one or more adjacent rings 60. Each ring 60 is electrically isolated from tube 24 by a thermally conductive layer such as an electrodeposited metal oxide, a thin organic varnish, a powder coated paint, or other suitable material.
With further reference to
The steering wheel assembly 10 also includes one or more spokes 15A-15D that extend from the central portion 13 to the rim 12 (see also
With further reference to
In use, the controller 90 determines if the steering wheel rim needs to be heated or cooled. If the steering wheel rim 12 needs to be heated, the controller 90 supplies electrical power to resistance heater 80. If, however, the rim 12 needs to be cooled, the controller 90 supplies electrical power to the TE elements 28 and 30, causing heat to transfer from the outer surface of the steering wheel to the inner surface 25 of tube 24. Circulation of air through the internal passageway 26 of rim 12 due to fan 19 thereby transfers the heat out of the rim 12 and into the passageways 18A and 18B in steering column 11. Incoming air 99 is drawn into passageway 18B in column 11, and heated air 98 exits through internal passageway 18A. As discussed above, the passageways 18A and 18B may open into the vehicle interior space 2, or the passageways 18A and 18B may be connected to one or more passageways 20 of a vehicle heating and air conditioning system 20.
Controller 90 may be operably connected to a wireless communication device such as a cell phone (not shown) to provide for remote actuation/control of the system. Controller 90 may also be operably connected to a remote start fob or to a conventional remote keyless entry or remote start fob to provide for actuation/control of the system prior to vehicle entry by a user. Also, controller 90 may be operably connected to a “door open” switch whereby the system is actuated upon opening of the vehicle door. Still further, the system may be configured to periodically monitor the vehicle cabin temperature and sun load (applied heat) utilizing sensors. Cooling (or heating) of the steering wheel may be controlled based on predefined criteria based or measured temperature or other parameters.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
4640340 | Noda et al. | Feb 1987 | A |
5850741 | Feher | Dec 1998 | A |
6298750 | Kerner et al. | Oct 2001 | B1 |
6533184 | Kim | Mar 2003 | B1 |
20050006369 | Kreuzer | Jan 2005 | A1 |
20070210050 | Choi | Sep 2007 | A1 |
20090000310 | Bell et al. | Jan 2009 | A1 |
20090007721 | Cortina et al. | Jan 2009 | A1 |
20110084055 | Park et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
2682071 | Apr 1993 | FR |
2006176037 | Jul 2006 | JP |
2007153026 | Jun 2007 | JP |
20100041288 | Apr 2010 | KR |
03047942 | Jun 2003 | WO |
2009009029 | Jan 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20130180354 A1 | Jul 2013 | US |