This invention relates to heaters, in particular to heaters for heating the coolant of vehicles and to burner head assemblies and control modules therefor.
Fuel-powered vehicle heaters are used for two main purposes. The first purpose is to heat the coolant of the vehicle so the vehicle is easier to start in cold climates. This is particularly important for diesel-powered vehicles which are often difficult to start due to low volatility of the fuel. However these heaters have a second important function, particularly for transit vehicles such as buses. Heaters relying solely on the engine coolant as heated by the engine may be insufficient to provide a comfortable interior temperature. Accordingly, fuel-powered heaters may be used to supplement the heat by providing additional heat to the coolant.
Fuel-powered vehicle heaters conventionally include a combustion chamber surrounded by a coolant jacket where the coolant is heated by combustion of fuel in the combustion chamber. There is a burner head assembly connected to the combustion chamber which includes such components as a combustion fan, an electric motor for the fan, a burner, a compressor for supplying compressed air to the burner and a control module. In some prior art heaters the control module is mounted as an exterior unit on the burner head assembly. In such units there are wiring harnesses which connect the control module to the components within the burner head assembly. At least one aperture in the burner head assembly is required to connect the control module to components inside or outside of the burner head assembly.
Prior art vehicle heaters conventionally have a fixed location for connecting wiring harnesses to the heater. This may provide difficulties with some installations since in different vehicles wiring may be coming from different directions towards the location of the heater.
Conventional vehicle heaters are usually provided with air filters for filtering air for the compressor of the heater. These air filters should be in a location where they can be conveniently changed when required. This sometimes requires an exterior housing for the air filter and/or hoses connecting the air filter to the compressor. These features can complicate the design and make the overall package less efficient.
Accordingly it is an object of the invention to provide an improved vehicle heater, and burner head assembly and control module for such a heater, where exterior and interior wiring can be connected to a control module without requiring wiring harnesses passing through the wall of the burner head assembly itself.
It is also an object of the invention to provide an improved vehicle heater, and burner head assembly and control module for such a heater, where the control module forms part of the body of the heater such that no irregular shapes or additional grommets or seals are required.
It is a further object of the invention to provide an improved vehicle heater, and burner head assembly and control module for such a heater, where sealing between the control module and the burner head assembly can be accomplished without the need for separate O-rings or seals.
It is a still further object of the invention to provide an improved vehicle heater, and burner head assembly and control module for such a heater, where the housing for the burner head assembly includes mounts for an air filter as well as an air conduit extending to the compressor, without the need for additional fittings, hoses or clamps.
It is a still further object of the invention to provide an improved vehicle heater, and burner head assembly and control module for such a heater, where the control module can be moved relative to the housing for the burner head assembly, thereby moving exterior electrical connectors to alternative locations on the heater.
There is provided, according to one aspect of the invention, a burner head assembly for a heater which includes a housing having a hollow interior and an exterior. There is a control module within the hollow interior. The module has internal connectors within the hollow interior and external connectors on the exterior of the housing, whereby electrical connections to the module can be made internally and externally with respect to the housing without requiring apertures in the housing and wiring extending through the apertures. For example, the control module may include a circuit board, the circuit board having a portion within the hollow interior and which extends to the exterior. The exterior and interior connectors are connected to the circuit board. The housing may have two portions, the control module being fitted between the two portions of the housing. Preferably the control module is sealingly received between the two portions of the housing.
The control module may be rotatably adjustable relative to the two portions of the housing, whereby the exterior connectors can be rotated to different positions about the housing.
The control module may include a mount for an air filter. The housing may have an air conduit extending to the air compressor, the control module having an air conduit which mates with the air conduit of the housing and extends to the mount for the air filter.
The first portion of the housing may include an air conduit which extends to an air compressor mount on the one portion of the housing. The control module may have two air filter mounts and an air conduit extending through the mount adjacent to each air filter mount. An air filter can be mounted on one of the air filter mounts and can communicate with the air compressor when the control module is rotated to two different positions relative to the housing.
The first portion of the housing may have a member which extends into one of the air filter mounts which is not aligned with the air conduit in the first portion of the housing and prevents an air filter from being mounted thereon. The member may be a rod. A second portion of the housing may have a first member which contacts an air filter mounted in one of the air filter mounts which is aligned with the air conduit in the first portion of the housing. The first member retains the air filter in said one mount.
There may be a second member on the second portion of the housing which contacts an air filter mounted in another of the air filter mounts which is not aligned with the air conduit in the first portion of the housing. The second member of the second portion of the housing prevents the second portion of the housing from being properly fitted onto the control module when an air filter is mounted in said another of the air filter mounts which is not aligned with the air conduit.
The invention offers significant advantages compared with prior art vehicle heaters. It provides a clean overall design which does not require wiring harnesses extending through the burner head housing of the heater. In fact the control module forms part of the body of the heater itself, ensuring that no irregular shapes or grommets or seals are required. Complete sealing can be accomplished by tightening the control module between two portions of the housing without the need for separate seals.
Moreover, the invention removes the need for separate air filter canisters as well as associated hoses, clamps and the like. The air filter may be mounted in the control module itself which includes an integral air conduit.
The control module can be rotated between two different positions, thereby altering the location of exterior wiring connectors to fit the needs of different heater installations. Alternative mounts for the air filter are provided according to the rotational position of the control module. However a lock out mechanism is provided to prevent the air filter from being mounted on the wrong mount.
In drawings which illustrate embodiment so the invention:
a is a phantom view of the control module assembly of
Referring to the drawings, and first to
The burner head assembly is shown in better detail in
Referring again to
Control module assembly 80, shown in
There is a first cylindrical socket or mount 86 for receiving air filter 88 as seen in
Referring to
As shown in
There is a similar pin 196 inside the housing on the side opposite pin 190. It may be observed however that pin 196 is longer than pin 190. As shown in
Referring to
Details of the temperature sensor 34, and a fragment of the heat exchanger are shown in
In a conventional heater a sensor, such as sensor 34, would function as either a temperature sensor for cycling the heater on and off or as an overheat sensor. With reference to
However, heaters conventionally also have an overheat sensor which senses, for example, the absence of coolant. If there is no coolant in the jacket, then the inner wall 112 overheats and the heater is shut down. An overheat sensor is therefore in contact with the inner wall of the jacket. Sensor 34, however, serves both functions, to sense temperature of the coolant, as well as sensing overheating of the heater. This is done utilizing the structure of the sensor shown as well as appropriate programming of the control module.
With reference to
The heater is also adaptable to changing ambient conditions. A normal on/off temperature control, as shown in
The invention overcomes this problem by monitoring the time T1 or T2 which it takes for the heater to heat the coolant to the higher temperature. When this time increases, the control module increases the temperature where the heater cycles on (also referred to as the second temperature value herein). For example, in
The algorithm can only modify the temperature within the standard range of 65° C. to 85° C. The cycle-off temperature is never adjusted. This ensures that in the worst-case scenario the heater would just revert back to the standard control method. The algorithm updates the cycle-on temperature once every cooling curve. This ensures that the heater will rapidly adapt to any changes in the parameters of the heating system. By using the heat time to calculate the new cycle-on temperature, every parameter of the heating system is taken into consideration.
Details of the algorithm follow:
Adjusting Cycle-On Temperature
Timed Cycle-On
Short Cycle
Initial Conditions
As described above, the heater can operate with a single temperature sensor 34 as shown in
A temperature within the range between the Current Cycle On Threshold and the Cycle Off Threshold is considered to be within the Normal range. Temperatures below the Current Cycle On Threshold and the Open Threshold are considered in the Low temperature range. Temperatures below the Open Threshold indicate a Faulted condition.
Temperatures above the Maximum Cycle On Threshold and below the Short Threshold are considered within the Warm range. However temperatures above the Cycle Off Threshold and below the Short Threshold are considered in the High range. Temperatures above the Overheat Threshold, but below the Short Threshold are in the Overheat range. Finally temperatures above the Short Threshold show a Faulted condition.
The heater may be configured to expect one or two temperature sensors. The temperature sensor may be connected to either sensor connection on the control module. When the system is configured to expect two temperature sensors, the coolant flow through the heat exchanger may be non-specific. This object is achieved by combining the values of the two sensors into a single overall status according to the following table:
In the above table the temperature ranges in the upper row are those sensed by sensor 1. The temperature ranges in the left-hand column are those sensed by sensor 2. F indicates a temperature in the Faulted range, OH a temperature in the Overheat range, H a temperature in the High range, W a temperature in the Warm range, N a temperature in the Normal range and L a temperature in the Low range.
Alternatively there may be conditions when only one sensor is required, but actually two are present. In this case the control module does not attempt to determine which one is present. The table below defines the overall condition assuming that the absent sensor appears Faulted/open. When there is only one sensor present or required, and if it is faulted, then the control module does not know which sensor is faulted, so faults on both sensors are generated even though there is only one.
For prior art utilizing an NTC thermistor, it is possible the small amount of moisture or corrosion across the sensor leads can simulate a cold temperature reading. This may cause the heater to fire with a false low reading, and may allow the heater to operate indefinitely if the reading does not change.
An algorithm is used to detect a temperature sensor that is not considered open or shorted, but stuck at some level. It is considered a Delta-T fault if at least one temperature level does not increase by a minimum Delta-T (3° C. in this example) from the time the heater enters the Ignition state until it has been in the Run/Reignition states for a Delta-T check time (60 seconds in this example). If either temperature increases by the minimum Delta-T or more, then there is no Delta-T fault. Otherwise a Delta-T fault is indicated for each sensor (which is not faulted open/short) whose value was less than a maximum initial temperature (25° C. in this example) at cycle-on time.
A further application of this algorithm is to operate it at all times that the burner is firing, and evaluate the temperature reading against typically anticipated values.
While the controls and methods described above are particularly adapted for transit vehicle heaters and other vehicle heaters, they may also be useful, with some alterations, for use with other heaters or other heat transfer devices such as furnaces or air conditioners. Air conditioners typically cycle on and off between fixed higher, cycle-on temperatures and fixed, cycle-off temperatures. The invention can be utilized for example to vary the cycle-on temperature to maintain a desirable average temperature.
Referring back to
A programmable control module mounted on the circuit board 91 is operatively connected to the Hall effect sensor and includes a closed loop feedback control for the motor as shown in
The use of speed control provides significant advantages over earlier vehicle heaters where speed control has not been used. Accordingly, motor speed varied as much as 50 percent depending upon the voltage supplied to the heater. The addition of speed control means that the speed of the motor is independent of voltage and the output of the heater can be regulated by selecting a particular motor speed which will give the heater the required amount of fuel and air for the designated output. Furthermore, the heater can be a single speed heater or a variable speed heater which accordingly can change the output. For example, the output could be increased initially to heat up a vehicle and then decreased to maintain a steady temperature.
The heater 30 has a backup speed control system in case of failure of the system described above including, for example, failure of the Hall effect sensor or physical dislocation of the magnet. The control module includes a lookup table. It looks up the voltage supplied to the heater in the lookup table and uses pulse width modulation to yield the desired rotational speed for the motor. For example, Table 3 below shows that for desired rotational speed of 3600 rpm, the required PWM at a supply voltage of 12 volts is 85 percent.
Pulse width modulation is used to reduce the speed to the required amount even if the voltage is higher. During operation of the Hall effect sensor, the table is constantly updated to indicate the amount of pulse width modulation required to yield the correct rotational speed for a particular voltage applied to the heater. If the Hall effect sensor fails, then speed control is maintained utilizing this table. Effectively the control module strips off voltages above 9 volts in the above example.
The use of the speed control system utilizing pulse width modulation allows the heater to be used for electrical systems having different voltages. In this example the heater 30 runs at 9 V, but can be utilized on 12 V or 24 V systems. The speed controller strips off the voltages above 9 V as mentioned above. Also the output of the heater can be increased or decreased by increasing or decreasing rotational speed of the motor. A few other modifications are necessary including changing the nozzle 134. Different motors are not required for different heater outputs, but rather a single motor can be used for different heating capacities unlike the prior art. This reduces the number of components which must be ordered and stored. A personal computer utilizing appropriate software can be connected to a port on the heater and used to change the speed of the motor has desired.
Before the control module commences the combustion process, it exercises selective heater components to allow a service technician to directly observe and verify operation of these loads. This facilitates troubleshooting and eliminates the requirement for special test tools.
In the heater 30, the status of the flame sensor 149, shown in
The coolant pump may have a current limit which is less than the inrush current encountered when the coolant pump motor is started. For example, the current limit for the motor may be 10 amps, but the inrush current may be 20 amps. A soft start may be employed so as to reduce the current supplied to the motor when the motor starts. In the case where a large pump is utilized, it must be indirectly driven through the use of a relay. However, soft starts may cause chatter in the relay. This causes the relay to eventually fail. Accordingly, the software for the control module uses a special procedure to turn on the coolant pump output. This is shown in detail in the flowchart of
The software initially turns on the coolant pump output. If the load current exceeds a preset maximum, the hardware turns off the output and asserts its shut-off line. One millisecond after turning on the output, the software checks the shut-off line. If the coolant pump is still shutting off after two seconds, then the Control module declares a coolant pump fault. At any of the shut-off checks on one millisecond intervals, if the shut-off line is not asserted, then the Control module sets up a one second timer. If there are no further shut-offs by the time that the timer expires, then the Control module declares the pump successfully started and any subsequent shut-offs are declared coolant pump faults. However if a shut-off does occur before the one second timer expires, then the Control module resumes its one millisecond check sequence (it is still within two seconds of the start of the software procedure). This procedure essentially results in a 1 kHz variable duty cycle pulse width modulation (PWM) that lasts no longer than two seconds, with successful starts known to have been running for at least one second without faltering.
Using this approach large loads with an inrush current exceeding the preset maximum will be soft-started, thus protecting the control module from low-voltage transients, and protecting the load from demagnetization (only if it is a motor). Loads with inrush currents below the preset maximum will be hard-started. When using a relay to drive a large coolant pump, this prevents relay chatter and prolongs relay life.
Essentially this means that a soft start is selectively used if the current is above a certain level and hard start is used if the current is below this level to extend relay life. The soft start turns on and off rapidly like a pulse width modulation.
During starting of the vehicle engine, the voltage supply to the heater drops as the engine is cranked by the starter motor. The voltage then jumps when the alternator becomes operational. This voltage jump may show a false high current fault and consequently problems for the operator. The invention addresses this problem by looking for rapid voltage changes when an overcurrent condition occurs.
The shown in
The means of overcoming this problem is shown in the flowchart of
When a coolant pump or motor (peak or average) overcurrent fault occurs, the Control module checks to see if any rise events occurred in the last 2 seconds, or any fall events occurred in the last 30 seconds. If so, then the apparent coolant pump or motor current fault is declared a dV fault and essentially ignored. The fault is logged using a new code indicating rising and/or falling supply voltage. The Finite State Machine logic which runs the control module proceeds to a Purge Error state. The Error Count does not increment and the indicator light does not blink. It will be readily understood that the values given above are by way of example and would be altered in different embodiments.
With reference to the flowchart of
A flame-out timer keeps track of how long the flame has been out. After being out for 10 seconds, a flame-out fault is declared. If the flame reignites, the unit returns to the Run state. The Flame-out timer is not cleared when the unit returns to the Run state rather the Flame-out timer is frozen in case the flame goes out again right away, and the system returns to the Reignition state again.
The 10 seconds for the Flame-out timer and 15 seconds for the Flame-on timer are significant. The system tolerates 10 seconds/25 seconds with the flame out. In other words, the flame may be out 40 percent of the time and the heater continues to run. Any more, then the heater will stop since this usually indicates a fault such as a leaking fitting.
The heater described above and shown in the drawings is an auxiliary heater for buses and trucks. Engine coolant is pumped through the heat exchanger which surrounds the combustion chamber. The heater burns vehicle fuel. There are two manually operated switch inputs: a main toggle/rocker switch; and a pre-heat momentary push-button switch. The unit also has two inputs that come from the engine or an electronic engine controller. There is a coolant pump input which allows the engine controller to turn the unit's coolant pump on when the unit is otherwise off. There is also a supplemental input which directs the Control module to produce supplemental heat for the passenger compartment.
The unit has control over four primary devices. The first is the blower motor which blows air through the combustion chamber and provide suction for the fuel. The air movement provides oxygen for combustion, removes exhaust gases and cools the chamber after the flame is put out. The second is the coolant pump that helps move liquid engine coolant between the input and output ports of the heat exchanger. The third is a solenoid that controls a fuel valve. The fourth is the spark ignitor used to start the fuel burning. The ignitor is turned off after the fuel starts to burn. Normally the flame continues until the supply of fuel is switched off.
The unit has additional inputs to sense the presence of a flame, measure coolant temperature, and detect over/under voltage and other faults, and has additional outputs for an indicator lamp and to power auxiliary/accessory devices. Non-volatile memory is used to record hours meters and keep an event/fault log. The unit has a serial diagnostic port which allows a remote PC to access/control unit operation.
There is a heating cycle which is defined as a sequence of automatic operations by the Control module beginning with detecting temperature below the cycle on threshold and starting combustion, and ending with detecting temperature above the cycle off threshold and extinguish in combustion.
Once a heating cycle starts, there may be fuel and/or hot exhaust gases in the combustion chamber. When the heating cycle ends, whether or not it terminates successfully, the Control module continues to run the blower motor for a period of time in order to clear out in cool down the combustion chamber. This process is known as purging.
The Control module of the preferred embodiment has an RS232 communication port over which it can interact with a diagnostic program running on the standard PC.
Many aspects of the Control module operation are governed by parameters accessible and modifiable via the datalink.
The behavior of the heater is specified by a finite state machine with 16 defined states in the preferred embodiment. However the unit is considered to be operating in one of four modes discussed below.
The Normal Mode is the primary mode for the unit. Operation during this mode depends on the state of the main switch. When the main switch is on, the coolant pump runs continuously, and the burners turned on/off according to temperature set points (i.e. similar to a thermostat for a house furnace). When the main switch is off, the burners stays off, but the coolant pump runs whenever requested by the engine controller.
Supplemental mode is similar to Normal mode (with the Main switch on), except that the coolant pump does not run continuously. In Supplemental mode, the coolant pump only runs while the burner is on or when requested by the engine controller. This mode is selected by turning on the Supplemental input (while keeping the Main switch off). Supplemental mode is canceled when the Main switch is turned on.
Preheat mode is similar to the Normal mode (with the main switch on), except that it automatically shuts off after 90 minutes. Preheat mode is entered when the operator presses the Preheat pushbutton switch momentarily. The switch is only honored when both main and supplemental inputs are off. Preheat mode is canceled when either of these other switches is turned on.
There are three levels of severity of failure conditions which may occur. The first level is noncritical. Some aspect of the unit has failed, but it still can perform its basic heater function and the current heating cycle is allowed to continue.
The second level is critical. Here the unit cannot continue the current heating cycle any longer. The cycle is terminated, but another (automatic) heating cycle is permitted regardless of how many different critical faults have occurred within the cycle.
If two consecutive heating cycles are terminated in this manner, it is considered catastrophic. Here the unit cannot automatically initiate any more heating cycles. Operator intervention is required. For example, and overheat fault is considered catastrophic.
Once a fault has been recognized, and acted upon, the control module must consider the fault condition to be cleared before acting on it again. This prevents a single event from triggering repeated log entries. The control module remembers which faults are currently active and resets this memory under the following conditions:
For critical and catastrophic faults, all such faults are reset upon a transition from a class B state to a class A state. Purge, purge error, purge shutdown, purge off, shutdown and shutdown override, all discussed below, are class B states. All others are class A states.
For noncritical faults, all such faults are reset as above for critical faults and also on entry to the off state and on exit from the purge state. Again these states are discussed below.
The operation of the heater will now be explained with reference to the various operational states thereof. The operation of the heater is specified by a finite state machine (FSM) with the following states. In general all of the states monitor switch inputs for mode changes, exit Preheat mode when time expires and check for faults on given outputs and inputs of interest.
Powered Off—This represents the state of the electronic control module when it is powered off. When the power is turned on, the heater normally enters the (heater) Off state.
Off—The heater is off in this state. The electronic control module however only stops running when the power supply to the control module is disconnected. All operator switches are off and the unit is considered to be in Normal mode awaiting operator or engine control module input.
The unit is intended to be powered, normally by the vehicle battery, at all times. Therefore the heater has a low-power sleep mode while in this state. Any manual switch operation, request from the engine controller or diagnostic port connection will wake it up.
While in the Off state, the indicator light is used to show the presence or absence of the flame as detected by the flame sensor. This is to permit a service technician to verify the functionality of the flame sensor.
Ignition Check—This state occurs just after the heater has been switched on while in the Off state using the Main switch. The unit turns the ignitor on for five seconds (Ignition Check timeout parameter), allowing the service technician to verify ignitor functionality. Ignitor faults are not checked during this period. The state will terminate prematurely, and the unit returns to the Off state if the Main switch is turned off, otherwise the next state is Standby.
Standby—The unit in this state has been switched on by one of the operator switches, but the burner is not on. The unit monitors coolant temperature and initiates the process to turn on the burner when the temperature drops below a lower threshold. The coolant pump is running continuously in this state. The state may occur in any of the three operating modes. However the only way it can occur in Supplemental mode is if the engine controller requests that the coolant pump run.
Standby Supp—This state is only for Supplemental mode. It is similar to the Standby state except that the coolant pump is off. The engine controller does not request the coolant pump to run. If the engine controller does request the coolant pump, then the unit changes to Standby stage. If the burner needs to be turned on, the unit goes to the Prerun state.
Prerun—This state occurs only for the Supplemental mode. The purpose of this state is to run the coolant pump for thirty seconds. It then checks if the temperature sensed still requires the burner to be turned on. This is because the coolant pump has been off and the unit may not be reading the true coolant temperature. The heat from the engine itself may be sufficient and there may be no need to turn on the burner.
Precheck—This is the first of a sequence of states the unit goes through to turn on the burner. Power is applied to the ignition module, but sparking is not enabled. The state lasts about 0.5 seconds, giving the unit time to check for a few types of fault conditions. The checks performed include:
Preignition—This is the second of a sequence of states that the unit goes through to turn on the burner. The blower motor is turned on and ignition module sparking is enabled at this point. The fuel valve is kept closed. The state lasts for about five seconds, giving the unit time to verify motor startup and detect ignition module faults.
Ignition—This is a third of a sequence of states that the unit goes through to turn on the burner. The fuel valve is opened at this point. The objective is to ignite the fuel. The state lasts about thirty seconds. During this interval, in addition to the usual array of fault conditions, the unit monitors whether the flame is out. At the end of this interval, if the flame had not been on sufficiently long enough (see Start Criteria parameter), then the sequence is aborted because the burner failed to start.
Run—This is the final state in the sequence the unit goes through to turn on the burner. Ignition module sparking is turned off at this point. Fuel should continue to burn. The unit remains in the state until coolant temperature reaches the upper threshold, the Main or Supplemental switch is turned off, or some critical fault is detected. Should the flame go out, the unit attempts reignition by going to the Reignition state. When it is time to terminate the current heating cycle, the unit goes into one of the Purge states to clear the combustion chamber of exhaust gases and cool it down.
Reignition—When the flame goes out during the Run state, the unit attempts to reignite it in this state. Ignition module sparking is re-enabled. The state lasts for up to ten seconds or until a flame is sensed again. A flame-out timeout timer keeps track of how long the flame has been out. After being out for ten seconds, a flame-out fault is registered. If the flame reignites, the unit returns to the Run state with sparking off. The Reignition flame-out timeout timer is not cleared when the unit returns to the Run state. Rather the Reignition flame-out timeout timer is frozen in case the flame goes out again right away, and the heater returns to the Reignition state again. The second timer known as the Reignition flame timeout timer runs only in Run state (and is frozen while in Reignition state). The reignition flame timeout timer is reset when the Reignition flame timeout timer times out (after being in the Run state 15 seconds), the Reignition flame timeout timer also restarts.
Purge/Purge Off/Purge Error/Purge Shut down—After the burner is turned off at the end of the heating cycle, the combustion chamber is cleared of exhaust gases and cooled by running the blower motor for about 2 minutes. There are four variations of the Purge state, depending on how the cycle ended and what the state of the unit will be after the purging is completed.
When the blower motor is on during a purge state, it is important that the blower be kept running if possible to adequately cool the burner and vent exhaust gases and unburnt fuel. About one second after a blower motor fault, the motor output is retried. Blower motor PWM gradually ramps up to the target motor speed. This may take several seconds. There is one exception to this motor retry while in purge strategy, namely if the flame sensor detects a flame (see Purge flame timeout parameter), then the motor is turned off (and not retried) in an attempt to extinguish the flame.
Shutdown—The unit in the state has automatically turned itself off due to a catastrophic failure. The unit remains in this (or C.P. Override) state until operator presence is indicated by switch operation. If Main and/or Supplemental switches were on at the time of failure, the operator must switch them both off. If the Preheat mode was active at the time of failure (Main and Supplemental switches must have been off), the operator must turn the Main or Supplemental switch on (This does not engage the heater in the corresponding mode, rather the unit stays in Shutdown state, but no longer considers itself in Reheat mode.) and off again. The unit then returns to Off state in Normal mode.
C.P. Override (Shutdown Override)—While the unit is in Shutdown state, the engine controller can still request that the coolant pump run. The state is essentially identical to Shutdown except the coolant pump is turned on. When the engine controller removes its request, the unit returns to Shutdown state. If there is a coolant pump failure, it is retried every 10 seconds.
C.P. Run (Off Override)—While the unit is in Off state, the engine controller can still request that the coolant pump run. The state is essentially identical to Off state, except the coolant pump is turned on. When the engine controller removes its request, the unit returns to Off state. If there is a coolant pump failure, it is retried every 10 seconds.
It will be understood by someone skilled in the art that many of the details provided above are by way of example only and can be altered or deleted without departing from the scope of the invention which is to be interpreted with reference to the following claims.
This is a continuation of U.S. patent application Ser. No. 10/195,143, filed Jul. 15, 2002 now U.S. Pat. No. 6,772,722.
Number | Name | Date | Kind |
---|---|---|---|
3362637 | Cornell | Jan 1968 | A |
3577877 | Warne | May 1971 | A |
3847537 | Velie | Nov 1974 | A |
3947218 | Landis | Mar 1976 | A |
4010895 | Kofink | Mar 1977 | A |
4149842 | Benjamin | Apr 1979 | A |
4208570 | Rynard | Jun 1980 | A |
4223692 | Perry | Sep 1980 | A |
4340362 | Chalupsky | Jul 1982 | A |
4431382 | Edman | Feb 1984 | A |
4443187 | Shaftner et al. | Apr 1984 | A |
4508264 | Takeda | Apr 1985 | A |
4519772 | Mittmann | May 1985 | A |
4532914 | Thomas et al. | Aug 1985 | A |
4682649 | Greer | Jul 1987 | A |
4700888 | Samulak | Oct 1987 | A |
4700889 | Lucius et al. | Oct 1987 | A |
4718600 | Adam | Jan 1988 | A |
4718602 | Beck | Jan 1988 | A |
4759498 | Levine et al. | Jul 1988 | A |
4852797 | Goerlich | Aug 1989 | A |
4858825 | Kawamura | Aug 1989 | A |
4905893 | Kiskis | Mar 1990 | A |
4927077 | Okada | May 1990 | A |
4934593 | Meyer | Jun 1990 | A |
4940041 | Riedmaier | Jul 1990 | A |
5012070 | Reed | Apr 1991 | A |
5014910 | Koch | May 1991 | A |
5025985 | Enander | Jun 1991 | A |
5046663 | Bittmann | Sep 1991 | A |
5080580 | Clapp | Jan 1992 | A |
5211193 | Young | May 1993 | A |
5211333 | Schmalenbach | May 1993 | A |
D344089 | Wilnechenko | Feb 1994 | S |
5408960 | Woytowich | Apr 1995 | A |
5413279 | Quaas | May 1995 | A |
5456408 | Appel | Oct 1995 | A |
5527180 | Robinson | Jun 1996 | A |
5632443 | Quarrie | May 1997 | A |
5692676 | Walker | Dec 1997 | A |
5722588 | Inoue | Mar 1998 | A |
5738506 | Mosig | Apr 1998 | A |
5848585 | Long et al. | Dec 1998 | A |
5878950 | Faccone | Mar 1999 | A |
5927961 | Robinson | Jul 1999 | A |
6082625 | Faccone | Jul 2000 | A |
6152128 | Willey et al. | Nov 2000 | A |
6213406 | Kenzi et al. | Apr 2001 | B1 |
6422190 | Goertler et al. | Jul 2002 | B1 |
6450801 | Wilnechenko | Sep 2002 | B1 |
Number | Date | Country |
---|---|---|
0 328 418 | Aug 1989 | EP |
Number | Date | Country | |
---|---|---|---|
20040244752 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10195143 | Jul 2002 | US |
Child | 10883734 | US |