The present disclosure relates to a heater adaptable for use as various heaters, including a heater used for ignition or flame detection purposes in a combustion-type vehicle-mounted heating unit, a heater used for ignition purposes in various combustors such as an oil fan heater, a heater for use in a glow-plug of a diesel engine, a heater for use in various sensors such as an oxygen sensor, and a heater used for heating purposes in measuring equipment, and also relates to a glow-plug provided therewith.
As a heater for use in a glow-plug of a diesel engine, there is a heretofore known heater including: a rod-like ceramic body; a heat-generating resistor embedded in the ceramic body, one end of which is exposed at a surface of the ceramic body; and a metallic member which is electrically connected via a joining member containing an active metal to the one end of the heat-generating resistor (for example, refer to Japanese Unexamined Patent Publication JP-A 2003-148731 (Patent Literature 1)).
The development of ever-more-downsized heaters have been pursued in recent years. In a downsized heater, a junction between a heat-generating resistor and a metallic member is located close to a region of the heat-generating resistor which liberates especially more heat, that is; a heat-generating region. In this case, following a long-term use of the heater, a microcrack may appear in the joining member containing the active metal due to stress resulting from a difference in thermal expansion between the ceramic body and the metallic member, thus causing decreased electrical-connection reliability in the heater. This problem has created a demand for a highly durable and reliable heater which is less prone to the occurrence of a microcrack in the joining member even after an extended period of use.
A heater according to an embodiment of the disclosure includes:
a ceramic body having a rod-like shape;
a heat-generating resistor including an embedded portion embedded in the ceramic body and an exposed portion drawn out to an outer periphery face of the ceramic body;
a metallic member electrically connected to the heat-generating resistor; and
a conductive joining member including titanium, the conductive joining member being configured to join the exposed portion and the metallic member together and including
A glow-plug according to an embodiment of the disclosure includes:
the heater as described above, wherein the metallic member is a tubular body configured to cover part of the outer periphery face of the ceramic body, and the heat-generating resistor is a linear member including
an electrode member electrically connected to the one end of the linear member.
Other and further objects, features, and advantages of the disclosure will be more explicit from the following detailed description taken with reference to the drawings wherein:
Embodiments of the heater according to the disclosure will now be described in detail with reference to the drawings.
A heater 10 includes a ceramic body 1, a heat-generating resistor 2, a metallic member 3, and a joining member 4.
The ceramic body 1 is a rod-like member made of a ceramic material. The ceramic body 1 includes a front end and a rear end, which are one end and the other end, respectively, of the ceramic body 1 in a longitudinal direction (vertical direction as viewed in
The ceramic body 1 may be set 20 to 50 mm in length in the longitudinal direction thereof. In the case where the ceramic body 1 has the form of a round bar, its cross-section taken in a direction perpendicular to the longitudinal direction may be set to 2 to 5 mm in diameter.
The heat-generating resistor 2 is a member which liberates heat upon application of electric current thereto. The heat-generating resistor 2 includes an embedded portion 2a embedded in the ceramic body 1 and an exposed portion 2b drawn out to an outer periphery face 1a of the ceramic body 1. For example, as shown in
For example, the heat-generating resistor 2 can contain a carbide, nitride, or silicide of tungsten (W), molybdenum (Mo), or titanium, as a main component. The heat-generating resistor 2 may contain the material for forming the ceramic body 1.
The heat-generating resistor 2 may include a heat-generating region which liberates especially more heat. For example, the bend portion 2d may serve as the heat-generating region. In this case, for example, as shown in
The paralleled portions 2c of the heat-generating resistor 2, being greater in sectional area than the bend portion 2d or smaller in content of the material for forming the ceramic body 1 than the bend portion 2d, are lower in electrical resistance per unit length than the bend portion 2d. The paralleled portions 2c may contain, as a primary component, tungsten carbide (WC) which is an inorganic conductor, and silicon nitride (Si3N4) as a secondary component. The paralleled portions 2c may contain silicon nitride in an amount of 15% by mass or more. As the content of silicon nitride in the paralleled portions 2c increases, a thermal expansion of the paralleled portions 2c can be close to a thermal expansion of silicon nitride constituting the ceramic body 1. Moreover, in the case where the content of silicon nitride is 40% by mass or less, the resistance of the paralleled portions 2c becomes low and stable. The paralleled portions 2c may contain silicon nitride in an amount of 15 to 40% by mass accordingly.
The metallic member 3 is electrically connected to the heat-generating resistor 2. For example, the metallic member 3 is made of metal such as iron (Fe), chromium (Cr), or nickel (Ni), for example. In this embodiment, the metallic member 3 is an elongated member, and one end thereof is electrically connected via the joining member 4 to the exposed portion 2b of the heat-generating resistor 2. For example, the other end of the metallic member 3 is electrically connected to an external connection electrode.
The joining member 4 is a member for providing connection between the exposed portion 2b of the heat-generating resistor 2 and the metallic member 3. The joining member 4 contains titanium and is electrically conductive. The joining member 4 may cover part of the surface of the exposed portion 2b, or may cover the whole surface of the exposed portion 2b as shown in
Under repeated cycles of a temperature rise and cooling in the operation to drive the heater 10, a portion of the joining member 4 in which Ti exists in segregation condition, being called Ti-segregation portion, is gradually oxidized from its area exposed to air. The oxidized Ti-segregation portion is prone to the concentration of stress resulting from the difference in thermal expansion between the ceramic body 1 and the metallic member 3. In this embodiment, the joining member 4 is not disposed between the ceramic body 1 and the metallic member 3 but is disposed between the heat-generating resistor 2 and the metallic member 3. Since the heat-generating resistor 2 is disposed within the ceramic body 1, the thermal stress developed in the oxidized Ti-segregation portion is substantially attributable to the difference in thermal expansion between the ceramic body 1 and the metallic member 3.
If the first portion 4a is the only one that constitutes the Ti-segregation portion of the joining member 4, the joining member 4 will be prone to the occurrence of a microcrack originating from the boundary between the first portion 4a and an area contiguous to the first portion 4a. In this regard, the heater 10 according to this embodiment includes, in addition to the first portion 4a, the second portion 4b located away from the first portion 4a. Thus, in the heater 10 according to this embodiment, the stress resulting from the difference in thermal expansion between the ceramic body 1 and the metallic member 3 is distributed between the first portion 4a and the second portion 4b. This makes it possible to reduce the occurrence of a microcrack and eventually reduce variations in the electrical resistance of the heater 10. In consequence, durability and reliability of the heater 10 according to this embodiment can be improved.
For example, as shown in
For example, as shown in
Moreover, with the joining member 4 configured to include both of the first portion 4a lying along the interface 4d with the exposed portion 2b and the third portion 4c lying along the interface 4e with the metallic member 3, the balance can be achieved between the stress exerted on the first portion 4a and the stress exerted on the third portion 4c. Thus, since stress can be uniformly distributed to the first portion 4a and the third portion 4c, it is possible to reduce the occurrence of a microcrack effectively and eventually reduce variations in the electrical resistance of the heater 10 effectively. As a result, durability and reliability of the heater 10 can be improved.
The joining member 4 may contain copper, and the second portion 4b may contain segregated copper. A Cu—Ti alloy is more susceptible to oxidation than a Ag—Cu brazing material, and is also more susceptible to oxidation than Ti in itself. Hence, in the case where the second portion 4b contains segregated Ti and segregated Cu, the second portion 4b becomes more susceptible to oxidation than the first portion 4a and the third portion 4c. This makes it possible to further enhance the stress relaxation effect provided by the second portion 4b. Thereby, durability and reliability of the heater 10 can be improved.
The first portion 4a may cover the whole surface of the exposed portion 2b. This makes it possible to protect the heat-generating resistor 2 from oxidation caused by exposure to air, as well as to strengthen the connection between the heat-generating resistor 2 and the joining member 4. As a result, durability and reliability of the heater 10 can be improved.
For example, as shown in
The following describes a method for manufacturing the heater 10 according to this embodiment.
For example, the heater 10 according to this embodiment is produced by means of injection molding or otherwise using molds made to conform to the shapes of the ceramic body 1 and the heat-generating resistor 2.
First, a ceramic paste containing insulating ceramic powder, a resin binder, etc. for forming the ceramic body 1 is prepared. In addition, an electrically conductive paste containing conductive ceramic powder, a resin binder, etc. for forming the heat-generating resistor 2 is prepared. Next, the resulting conductive paste is subjected to a molding process such as an injection molding process to produce a molded conductive-paste product of predetermined pattern for forming the heat-generating resistor 2. With the molded conductive-paste product retained within a set of the molds, some of the molds are replaced with those for the molding of the ceramic body 1. After that, the ceramic body 1-forming ceramic paste is charged into the molds. Thus, there is obtained a molded product in the form of a molded heat-generating-resistor 2 product covered with a molded ceramic-body 1 product. For example, the resulting molded product is fired at a temperature of 1650 to 1800° C. under a pressure of 30 to 50 MPa. Thus, a ceramic body 1 including a heat-generating resistor 2 therein is obtained. After that, the ceramic body 1 including the heat-generating resistor 2 therein is joined via a joining material 4 to a metallic member 3 made for example of Fe, Cr, or Ni. In this way, the heater 10 according to this embodiment is obtained.
The following describes a way to form the joining member 4. First, a brazing material for forming the joining member 4 is produced by dispersively adding an excessive amount of Ti to a Ag—Cu brazing material, and thereafter adjusting the content of Cu to more than 28% by mass corresponding to a Cu content based on the Ag—Cu eutectic composition. Next, the resulting joining member 4-forming brazing material is placed in a predetermined location between the ceramic body 1 including the heat-generating resistor 2 therein and the metallic member 3. After that, on the basis of the fact that Cu is higher in melting point than Ag, in a vacuum chamber set for a pressure of lower than a normal atmospheric pressure, the temperature is raised to 960° C. or higher, which is higher than the eutectic temperature of Ag—Cu: 780° C. This initiates the melting of Ag, and enables metallization to proceed only with Ag and Ti at the interface 4d with the exposed portion 2b, as well as at the interface 4e with the metallic member 3. In this process, although Cu is caused to undergo oxidation under conditions where the degree of vacuum in the vacuum chamber is low, an increase of the degree of vacuum to above 10−5 Torr causes evaporation of Ag. Thus, argon (Ar) is introduced into the vacuum chamber to lower the degree of vacuum. At this time, it is advisable to introduce oxygen (O2) in conjunction with argon. Although oxygen introduction expedites Cu oxidation, considering that a Cu—Ti—O compound becomes more stable than copper oxide, the introduction is conducive to the formation of the joining member 4 including the first and third portions 4a and 4c containing Ti in segregation condition, and the second portion 4b containing Ti and Cu in segregation condition. The reason why the second portion 4b is located away from the ceramic body 1 and the metallic member 3 is because Ag in a molten state is diffused between the second portion 4b and the ceramic body 1, as well as between the second portion 4b and the metallic member 3.
The types of segregated elements and their distributions in the joining member 4 can be identified and determined by performing elemental mapping on the cut surface of the sectioned joining member 4. To carry out elemental mapping, for example, after cutting the joining member 4 along the longitudinal direction of the heater 10, the cut surface is mirror-finished, and the mirror-finished cut surface is subjected to quantitative analysis using Wavelength-dispersive electron probe microanalyzer (e.g. the JXA-8530F manufactured by JEOL Ltd.) or Auger electron spectroscopy analyzer (e.g. the JAMP-9500F manufactured by JEOL Ltd.).
A glow-plug according to an embodiment of the disclosure will now be described.
A glow-plug 20 according to this embodiment includes a heater 10A and an electrode member 5.
The heater 10A incorporated in the glow-plug 20 according to this embodiment differs from the heater 10 according to the preceding embodiment in the configurations of the heat-generating resistor 2, the metallic member 3, and the joining member 4. The heater 10A also differs from the heater 10 in that the heater includes the electrode member 5. Otherwise, the heater 10A is structurally similar to the heater 10, and thus detailed explanation of structural features common to these heaters will be omitted.
In this embodiment, the heat-generating resistor 2 includes one end drawn out to the bottom face of the ceramic body 1 (the rear end face of the ceramic body 1), and the electrode member 5 is electrically connected to the one end of the heat-generating resistor 2. In the heater 10A according to this embodiment, as in the heater 10 according to the preceding embodiment, the heat-generating resistor 2 is a linear member including at least a bend portion 2d. The exposed portion 2b of the heat-generating resistor 2 is located at the other end of the heat-generating resistor 2.
In this embodiment, the metallic member 3 is a tubular body, and covers part of the outer periphery face 1a of the ceramic body 1. In this embodiment, for example, as shown in
In this embodiment, the joining member 4 is provided so as to cover the exposed portion 2b, as well as to surround the ceramic body 1 circumferentially. This design strengthens the connection between the ceramic body 1 and the metallic member 3. For example, the joining member 4 is set to 0.01 to 0.2 mm in thickness in a direction perpendicular to the longitudinal direction of the ceramic body 1, and 10 to 40 mm in length in the longitudinal direction of the ceramic body 1.
The first portion 4a of the joining member 4 may be disposed in layer form along at least the interface 4d with the exposed portion 2b. The first portion 4a may be formed over the entire area of the interface with the ceramic body 1, or may be formed on part of the interface with the ceramic body 1. At least one second portion 4b may be located away from the first portion 4a. The plurality of second portions 4b may be disposed along the entire periphery or part of the periphery of the ceramic body 1. Moreover, the plurality of second portions 4b may be arranged in the longitudinal direction of the ceramic body 1. The third portion 4c may be formed over the entire area of the interface 4e with the metallic member 3, or may be formed on part of the interface 4e with the metallic member 3.
In this embodiment, the electrode member 5 is electrically connected to one end of the heat-generating resistor 2 drawn out to the bottom face 1b of the ceramic body 1. For example, as shown in
The glow-plug 20 according to this embodiment includes the heater 10A thus far described, and can be thus provided as a highly durable and reliable glow-plug.
Although specific embodiments of the disclosure have been detailed herein, it is to be understood that the disclosure is not limited to the above-described embodiments, and hence various changes, modifications, and improvements may be made therein without departing from the gist of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2018-185455 | Sep 2018 | JP | national |
This application is a national stage entry according to 35 U.S.C. 371 of International Application No. PCT/JP2019/038369 filed on Sep. 27, 2019, which claims priority to Japanese Patent Application No. 2018-185455 filed on Sep. 28, 2018, the contents of which are entirely incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/038369 | 9/27/2019 | WO | 00 |