This application is also based upon and claims the benefit of priority from Japanese Patent Application No, 2016-121403, filed on Jun. 20, 2016 and Japanese Patent Application No, 2017-097322, filed on May 16, 2017; the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to circuit configurations of a heater.
A fixing device in which a heater is pressed against a pressure roller via a belt has been known in the art. The belt and the pressure roller rotate together to send a sheet downstream. The heater heats the sheet via the belt. In this device, the heater includes a plurality of resistive members arranged in a direction perpendicular to a sheet conveyance direction. Electrodes are individually connected to the resistive members. The device selects resistive members to be energized according to the size of a sheet to be heated.
Since the electrodes are individually connected to the resistive members in such a device, the heater disadvantageously has a complicated configuration.
A heater according to an embodiment generally includes resistive members and a first pole-side electrode. The plurality of resistive members are arranged in a first direction. The first pole-side electrode is connected to one ends of the resistive members in a second direction perpendicular to the first direction and configured to divide the plurality of resistive members into a plurality of blocks and to cause the plurality of resistive members to generate heat by the block. The first pole-side electrode includes a first pole-side first electrode provided in a first block including the resistive members arranged successively in the first direction, extending across the one ends of the resistive members in the first block, and connected to the one ends.
A heating device according to an embodiment generally includes a pressure member, a belt, and a heater. The belt is configured to interpose and convey a sheet together with the pressure member and to heat the sheet and thereby fix an image on the sheet onto the sheet. The heater faces the pressure member via the belt and heats the belt. The heater includes: a plurality of resistive members arranged in a first direction; and a first pole-side electrode connected to one ends of the resistive members in a second direction perpendicular to the first direction and configured to divide the plurality of resistive members into a plurality of blocks and to cause the plurality of resistive members to generate heat by the block. The first pole-side electrode includes a first pole-side first electrode provided in a first block including the resistive members arranged successively in the first direction, extending across the one ends of the resistive members in the first block, and connected to the one ends.
An image forming apparatus and a fixing device according to an embodiment will now be described below with reference to the drawings.
The image forming unit P includes a laser scanning section 200 and photoconductor drums 201Y, 201M, 201C, and 201K. The laser scanning section 200 includes a polygon mirror 208 and an optical system 241. On the basis of image signals for colors of yellow (Y), magenta (M), cyan (C), and black (K), the laser scanning section 200 irradiates the photoconductor drums 201Y to 201K to provide an image to be formed on the sheet.
The photoconductor drums 201Y to 201K retain respective color toners supplied from a developing device (not shown) according to the above-described irradiated locations. The photoconductor drums 201Y to 201K sequentially transfer the retained toner images onto a transfer belt 207. The transfer belt 207 is an endless belt. The transfer belt 207 conveys the toner image to a transfer location T by the rotary driving of rollers 213.
A conveyance path 101 conveys a sheet stocked in the paper cassette unit C through the transfer location T, a fixing device 30, and an output tray 211 in this order. The sheet stocked in the paper cassette unit C is conveyed to the transfer location T while being guided by the conveyance path 101. The transfer belt 207 then transfers the toner image onto the sheet at the transfer location T.
The sheet having the toner image formed on a surface thereof is conveyed to the fixing device 30 while being guided by the conveyance path 101. The fixing device 30 causes the toner image to penetrate into the sheet and fix therein by the heating and fusion of the toner image. This can prevent the toner image on the sheet from being disturbed by an external force. The conveyance path 101 conveys the sheet having the fixed toner image to the output tray 211 and ejects the sheet from the image forming apparatus 1.
A controller 801 is a unit for controlling devices and mechanisms in the image forming apparatus 1 in a centralized manner. The controller 801 includes, for example, a central processor such as a central processing unit (CPU), and volatile and non-volatile memories. According to an embodiment, a central processor controls the devices and the mechanisms in the image forming apparatus 1 by executing programs stored in memories. Alternatively, the controller 801 may implement part of the functions as a circuit.
A configuration including the sections used for conveying an image (toner image) to be formed to the transfer location T and transferring the image onto the sheet is referred to as a transfer unit 40.
In the heater 32, a heat generating resistive layer (a heat generating resistive member 60 to be described later) is stacked on a ceramic substrate, and a protective layer made of a heat-resistant material is further stacked thereon. The protective layer is provided in order to prevent the ceramic substrate and the heat generating resistive layer from being in contact with the endless belt 34. This can reduce the abrasion of the endless belt 34.
In this embodiment, the ceramic substrate of the heater 32 has a thickness of 1 to 2 mm. The protective layer is made of SiO2 and has a thickness of 60 to 80 μm. The endless belt 34 includes a base layer (Ni/SUS/PI: a thickness of 60 to 100 μm), an elastic layer (Si rubber: a thickness of 100 to 300 μm), and a release layer (PFA: a thickness of 15 to 50 μm) sequentially provided from the side in contact with the heater 32. The thicknesses and materials of such layers are provided by way of example only.
The endless belt 34 may utilize the rotation of the pressure roller 31 as its source of motive power.
Hereinafter, a direction corresponding to a sheet conveyance direction as well as a shorter-side direction of (the ceramic substrate of) the heater 32 is defined as a Z-axis direction (second direction). A direction corresponding to a sheet width direction as well as a longer-side direction of the heater 32 is defined as a Y-axis direction (first direction). The Y-axis direction is perpendicular to the Z-axis direction. A direction corresponding to a direction toward the pressure roller 31 as well as a vertical direction of the heater 32 is defined as an X-axis direction. The X-axis direction is perpendicular to the Z-axis direction and the Y-axis direction.
The heater 32 includes the heat generating mechanism 50 for causing the heat generation of the heater 32. The heat generating mechanism 50 includes resistive members 61 and 62, a plurality of electrodes 601 to 607, and an electrode 610. The heat generating mechanism 50 also includes a plurality of switching elements 701 to 707, a power source 65, and wiring 66. The plurality of switching elements 701 to 707 are referred to as a switch unit 700.
The resistive members 61 and 62 face a surface of the sheet 105 being conveyed. The plurality of resistive members 61 and 62 are arranged in the Y-axis direction. The Y-axis direction is perpendicular to the sheet conveyance direction. Each of the resistive members 61 and 62 is connected to the electrode 610 (second pole-side electrode) at one end thereof and connected to any one of the electrodes 601 to 607 (first pole-side electrode) at the other end thereof.
The electrode 610 and the electrodes 601 to 607 are each made of an aluminum layer. While the electrode 610, which is one of the electrodes, is integrally formed, the other one of the electrodes is divided into the electrodes 601 to 607 as shown in the figure. Such divisions of the electrodes 601 to 607 are herein referred to as blocks (blocks 71 to 77). In this embodiment, the resistive members 61 are disposed at both ends of each of the blocks 71 to 77, and the resistive members 62 are disposed on the inner side of such a block. A length (width) of the resistive member 61 in the Y-axis direction is set larger than a length (width) of the resistive member 62 in the Y-axis direction. An area of the resistive member 61 is thus larger than an area of the resistive member 62. The reason for this will be described later.
The electrodes 601 to 607 are connected to the switching elements 701 to 707, respectively. By the ON and OFF operations of the switching elements 701 to 707, the resistive members 61 and 62 in the block are energized by the power source 65 to generate heat for each of the blocks 71 to 77.
The positions of the blocks 71 to 77 and the lengths thereof in the Y-axis direction are determined on the basis of the standard sizes of sheets. When the sheet 105 being conveyed has a small size, heat generation in a region where no sheet passes through is essentially unneeded. Therefore, in this embodiment, ON and OFF control is performed for each of the blocks 71 to 77 according to the size of a sheet being conveyed. When an A5-size small sheet is heated, for example, the block 74 is turned ON and the other blocks are turned OFF. In the case of an A4-size sheet, the blocks 73, 74, and 75 are turned ON and the other blocks 71, 72, 76, and 77 are turned OFF, for example. In the case of an A3-size sheet, all of the blocks are turned ON, for example. Such energization control is performed by the ON and OFF operations of the switching elements 701 to 707 in accordance with control made by the controller 801. In this manner, unnecessary heat generation can be prevented from occurring by controlling which block(s) (the resistive members therein) are energized according to the sheet size.
In this embodiment, while energization control for each of the blocks is performed independently, energization control for the resistive members 61 and 62 in each block is performed together.
As mentioned above, the electrodes 601 to 607 (first pole-side electrode) are connected to one of the poles in the power source 65. The electrodes 601 to 607 are connected to one ends 611 and 621 of the resistive members 61 and 62 in the Z-axis direction. The electrodes 601 to 607 divide the plurality of resistive members 61 and 62 into the plurality of blocks 71 to 77. The electrodes 601 to 607 cause the plurality of resistive members 61 and 62 to generate heat by the block.
In this embodiment, the electrodes 601 to 607 are first pole-side first electrodes provided in the blocks 71 to 77 (first blocks) each including the plurality of resistive members 61 and 62 arranged successively in the Y-axis direction. The electrodes 601 to 607, which are the first pole-side first electrodes, extend across the one ends 611 and 621 of the resistive members 61 and 62 in the blocks 71 to 77 (first blocks). The electrodes 601 to 607 connect to the one ends 611 and 621.
The electrode 610, on the other hand, is the second pole-side electrode extending across the other ends 612 and 622 of the resistive members 61 and 62 in the plurality of blocks 71 to 77 (all blocks) arranged successively in the Y-axis direction. The electrode 610, which is the second pole-side electrode, connects to the other ends 612 and 622 as well as to the other one of the poles in the power source 65.
Among the plurality of blocks 71 to 77, a length L10 of the block 74 in the Y-axis direction, which is disposed in a central region in the Y-axis direction, is greater than lengths L20 and L30 of the other blocks 71 to 73 and 75 to 77 in the Y-axis direction. The lengths L20 of the blocks 73 and 75 in the Y-axis direction, which are disposed on the both sides of the block 74, are equal to each other. The lengths L30 of the blocks 72 and 76 in the Y-axis direction, which are disposed on the outer sides of the blocks 73 and 75, are equal to each other and smaller than the lengths L20 of the blocks 73 and 75. The lengths L30 of the blocks 71 and 77 in the Y-axis direction, which are disposed on the outer sides of the blocks 72 and 76, are equal to each other and equal to the lengths L30 of the blocks 72 and 76.
The upper part of
As shown in the upper part of
In this embodiment, a gap L2 between adjacent ones of the blocks 71 to 77 (between the resistive members 61) is set longer than the gap L1 in the blocks 71 to 77. In other words, the gap L2 between adjacent ones of the blocks 71 to 77 is larger than the gap L1 between the resistive members 61 and 62 in the blocks 71 to 77. This is because a certain distance or more needs to be provided between adjacent ones of the blocks 71 to 77 in order to prevent leakage therebetween. In this embodiment, the length of the gap L2 is set to about 1.5 mm (in the case of 100 V). The length of the gap L2 may also be changed according to the size or material of the resistive member, or the voltage value.
Since the gap L2 has a longer length as described above, a temperature corresponding to the position of the inter-block gap L2 (gap length=L2) is even lower than a temperature corresponding to the position of the in-block gap L1 (gap length=L1) as shown in the lower part of
While the amount of heat generation in the resistive member 61 is increased as mentioned above, the heat generated in the resistive member 61 transfers from the high-temperature side to the low-temperature side due to heat conduction. In other words, the heat transfers to the position of the inter-block gap L2 (gap length=L2) adjacent to the resistive members 61. Consequently, the temperature in the resistive member 61 is decreased, whereas the temperature in the inter-block gap L2 is increased. The temperature distribution graph shown in the lower part of
As shown in
While each of the above-described blocks 71 to 77 includes the plurality of resistive members 61 and 62, each block may include only a single resistive member 61 or 62. In other words, the heat generating resistive member 60 is divided in blocks only, and each of the blocks 71 to 77 has a single body.
An aluminum material may be used as a material of the electrodes.
The second embodiment describes an exemplary aspect in which the configuration of the fixing device in the first embodiment is modified.
A film guide 36 has a semi-cylindrical shape and accommodates a heater 32 in a recess 361 provided on an outer periphery thereof.
A fixing film 34A (belt) is an endless rotating belt. The fixing film 34A is fitted over the outer periphery of the film guide 36. The fixing film 34A is interposed between the film guide 36 and a pressure roller 31 and driven by the rotation of the pressure roller 31.
The above-described heater 32 is in contact with the fixing film 34A to heat the fixing film 34A.
A sheet 105 having a toner image formed thereon is conveyed to a place between the fixing film 34A and the pressure roller 31. The fixing film 34A heats the sheet and thereby fixes the toner image on the sheet onto the sheet.
The aspects of the heater 32 and the heat generating mechanism 50 shown in
In the first to third embodiments, it is only necessary that at least one of the blocks 71 to 77 is a block (first block) including the plurality of resistive members 61 and 62 arranged successively in the Y-axis direction.
In the third embodiment, the single block 74B includes only a single resistive member 63. Electrodes 601 to 603, 604B, and 605 to 607 connect to one of the poles in a power source 65 and function as a first pole-side electrode that causes a plurality of resistive members 61 to 63 to generate heat by the block. The electrode 604B is provided in the block 74B (second block) having the single resistive member 63. The electrode 604B is a first pole-side second electrode connected to one end 631 of the resistive member 63 in the Z-axis direction. A length of the block 74B (second block) in the Y-axis direction is larger than lengths of the other blocks 71 to 73 and 75 to 77 in the Y-axis direction. Other configurations of the third embodiment are similar to those of the first embodiment.
In the first to third embodiments, the block 74 or 74B that is turned ON when a sheet with the smallest size is heated is disposed in the central region of the blocks 71 to 77 in the Y-axis direction. However, the block 74 or 74B that is turned ON when a sheet with the smallest size is heated may be disposed at an end of the blocks 71 to 77 in the Y-axis direction. In this case, among the plurality of blocks 71 to 77, a length of the block 74 or 74B in the Y-axis direction, which is disposed at the end in the Y-axis direction, may be larger than lengths of the other blocks 71 to 73 and 75 to 77 in the Y-axis direction.
As described above, the embodiments can prevent unnecessary heat generation and can reduce heating unevenness. Moreover, the resistive members 61 and 62 divided into blocks by the electrodes 601 to 607 (first pole-side first electrodes) are energized simultaneously and all together by the block in the embodiments. Thus, the resistive members 61 and 62 in the same one of the blocks 71 to 77 similarly increase their temperatures. Consequently, a temperature difference among these resistive members 61 and 62 is less likely to occur in this embodiment as compared to a configuration in which the resistive members 61 and 62 are energized not by a block but on an individual basis, for example. Therefore, the occurrence of the temperature unevenness in the same one of the blocks 71 to 77 can be reduced.
In the above-described embodiments, the fixing devices 30 and 30A have been described as examples of the heating device. The heating device, however, may perform a decolorization treatment for decolorizing an image on a sheet by heating the sheet. In this case, the image is assumed to be formed with a decolorable colorant, which is decolorized when heated. Alternatively, the heating device may be employed for purposes other than the heat treatment of a sheet. The heating device may be employed for a treatment to uniformly heat and dry a panel, for example.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of invention. Indeed, the novel apparatus, methods and system described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the apparatus, methods and system described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2016-121403 | Jun 2016 | JP | national |
2017-097322 | May 2017 | JP | national |