Heaters are used in a wide variety of applications to provide heat or warmth to an adjacent area. Heaters are commonly used to apply radiant heat to underlying food on a buffet table. Such heater assemblies typically comprise a housing an a heater unit. The heater unit typically includes a heating element and a reflector. Although such heaters have been used to heat food for years, such heaters have several disadvantages. For example, such known heaters have heating elements that are difficult to replace and have “hot spots” in their middle regions and cooler zone (project less heat) at the ends. Also, known heat elements are designed to have a heat pattern that is centered below the heating unit and are not easily adjustable. Further, such known heaters are not space efficient, are difficult to assemble/disassemble.
Accordingly, it would be advantageous to provide a heater assembly that has an adjustable heating unit and evenly dispenses a wide pattern of heat across its length. It would also be advantageous to provide a heater assembly that provides for easy replacement of the heating element and reduces or eliminates “hot spots”. It would be desirable to provide for a heater assembly having one or more of these or other advantageous features. To provide an inexpensive, reliable, and widely adaptable heater assembly that avoids the above-referenced and other problems would represent a significant advance in the art.
The present invention relates to a heater comprising a housing; a reflector; and a pair of opposite connectors supported by the reflector and configured to support opposite ends of a heating element. The reflector is movable between a plurality of positions relative to the housing.
The present invention also relates to a heater comprising a first housing; a reflector; and a first connector supported by the reflector and configured to removably receive a first end portion of a heater element while electrically connecting the end portion to both a power source and to ground.
The present invention further relates to a heater comprising: a housing; a reflector movable between a plurality of discrete positions relative to the housing; a heating element having a first portion configured to provide a first heat energy level and at least one second portion configured to provide a second heat energy level less than the first portion; and a first connector supported by the reflector and configured to removably receive a first end portion of the heater element while electrically connecting the end portion to both a power source and to ground.
The present invention further relates to various features and combinations of features shown and described in the disclosed embodiments. Other ways in which the objects and features of the disclosed embodiments are accomplished will be described in the following specification or will become apparent to those skilled in the art after they have read this specification. Such other ways are deemed to fall within the scope of the disclosed embodiments if they fall within the scope of the claims which follow.
Housing 12 comprises one or more structures configured to support heating unit 14 in at least one position relative to the adjacent area to be heated. In the particular embodiment illustrated, housing 12 is configured to support heating unit 14 in a plurality of different positions so as direct heat to different areas. In the example of housing 12 that is shown, housing 12 includes main body 16, and ends 20, 22.
Main body 16 serves as a main support for heating unit 14 and generally receives heating unit 14. Main body 16 further provides an electrical raceway for enclosing wiring between heating unit 14 and main body 16. In one embodiment, main body 16 is an elongate extruded structure having a uniform cross-sectional shape along its axial length. As a result, main body 16 is easy and inexpensive to manufacture. In one embodiment, main body 16 is formed from aluminum. In other embodiments, main body 16 may be formed using other manufacturing techniques and one or more other materials.
Ends 20, 22 comprise structures (e.g., plates, panels, members etc.) configured to cap axial openings of main body 16. Ends 20 and 22 are configured to be releasably connected to main body 16 by fasteners 24 which pass through openings 26 and into axially extending bores 28 of main body 16. In other embodiments, ends 20, 22 may alternatively be configured to be releasably coupled to main body 16 by other fasteners, by snap mechanisms such as a resilient hook extending from one of ends 20, 22 and main body 16 which engages the corresponding detent provided on the other of ends 20, 22 and main body 16, or by other removable attachment techniques. For purposes of this disclosure, the term “coupled” shall mean the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate member being attached to one another. Such joining may be permanent in nature or alternatively may be removable or releasable in nature.
As further shown by
In the particular embodiment illustrated, each of retainers 32 extends through an associated end 20, 22 into engagement with one of axial bores 34, 36 of heating unit 14. In the particular embodiment illustrated, retainers 32 comprise grooves which self thread into bores 34 and 36. In an alternative embodiment, bores 34 and 36 may be pre-threaded before engagement with retainers 32. Because retainers 32 retain heating unit 14 in place by engagement with axial bores 34 and 36, holes or apertures do not need to be formed through portions of heating unit 14 which reflect heat or which are visible upon a final assembly of heater 10. Moreover, this further enables portions of heating unit 14 to have a uniform cross-sectional shape along its entire axial length, enabling portions of heating unit 14 to be extruded. Assembly is further simplified in that additional openings or bores do not need to be formed by removing material from portions of heating unit 14.
Although both of ends 20, 22 are illustrated as including openings 30a, 30b and 30c, housing 12 may alternatively be configured such that only one of ends 20, 22 includes openings 30a, 30b and 30c. In still other embodiments, one of ends 20, 22 may include a portion of openings 30a, 30b and 30c while the other of ends 20, 22 includes the remaining portion of openings 30a, 30b and 30c. Although ends 20 and 22 are illustrated as including three distinct openings corresponding to three distinct potential positions of heating unit 14, ends 20, 22 may alternatively have a fewer or greater number of such openings. According to exemplary embodiments, other and/or additional openings with a variety of spacing/distribution may be provided to provided other desired adjustability. In lieu of comprising distinct apertures, openings 30a, 30b and 30c may alternatively comprise elongate slots, enabling heating unit 14 to be selectively positioned at one of a continuum of different positions along each slot by repositioning retainer 32 within each slot. For example, in one embodiment, openings 30b and 30c may alternatively each comprise a slot or may be both replaced with a single slot. In still other embodiments, other retainers and other retaining mechanisms may be employed to selectively secure heating unit 14 in one of a plurality of positions relative to housing 12. In still other embodiments, ends 20, 22 may alternatively be configured to retain heating unit 14 in only a single position relative to main body 16 and housing 12.
As shown by
In the particular embodiment illustrated, main body 16 is integrally formed as a single unitary body. In other embodiments, main body 16 may be formed from multiple structures which are welded, bonded or adhered to one another. In the particular embodiment illustrated, main body 16 is extruded. In other embodiments, main body 16 may be formed from deformed sheet metal, may be molded, may be cast or may be formed by other manufacturing techniques or other materials.
As shown by
Reflector 40 is positioned and designed to widen the heat pattern radiated (projected, dispensed, etc.) from heating unit 14. Reflector 40 comprises an elongate member configured to extend opposite to heating element 44 so as to reflect heat emitted by heating element 44. Reflector 40 generally includes spine 46, wings 48, 49 and wingtips 50, 51. Spine 46 generally functions as a backbone of reflector 40 and extends parallel to heating element 44. Wings 48 and 49 obliquely extend from spine 46 and cooperate with spine 46 to provide a majority of a reflecting surface 60 about heating element 44. Wingtips 50, 51 extend from wings 48 and 49, respectively, and are configured to cooperate with flanges 23 of main body 16 and housing 12 to cover and conceal the volume between reflector 40 and main body 16. Elongate bores 34 and 36 are formed along a junction of wing 48 and wingtip 50 and along a junction of wing 48 and wingtip 50, respectively. One of bores 34 or 36 are configured to align with holes 30a, 30b, and 30c depending on the orientation of ends 20 and 22 coupled to main body 16.
In the particular embodiment shown, spine 46, wings 48, 49 and wingtips 50, 51 are integrally formed as a single unitary body out of a metal such as aluminum. In the embodiment shown, reflector 40 has a uniform cross-section (but for openings 54 which are cut) along its entire axial length, enabling reflector 40 to be formed using an extrusion process. In alternative embodiments, reflector 40 may be formed from other materials, may be formed from individual structures which are welded, bonded, fastened or otherwise connected to one another, or may be formed from one or more different manufacturing techniques. According to an exemplary embodiment, reflector has a shiny or glossy surface that reflects heat energy. According to a particularly preferred embodiment, the reflector is bright-anodized to inhibit or prevent it from darkening or tarnishing or otherwise degrade over time.
Hooks or brackets 76 are coupled (e.g., riveted as shown or otherwise) to spine 46 of reflector 40. Hooks 76 are configured to help support heating element 44 and suspend heating element between the wings 48 and 49 of reflector 40. According to an exemplary embodiment, hooks 76 are generally thin-bodied J-shaped elements that partially surround heating element 44. Heating element 44 is inserted from the top and rests upon hooks 76. According to other exemplary embodiments, hooks 76 may have a rounded cross-section or may be configured to surround heating element completely. According to such an embodiment, heating element would be inserted from the side and slid into apertures formed by hooks 76.
Connectors 142 are coupled to opposite axial ends of spine 46 of reflector 40. Connectors 142 comprise structures configured to at least partially support heating element 44 such that heating element 44 is partially surrounded by reflective surface 60 provided by spine 46 and wings 48, 49. In the embodiment shown, connectors 142 are supported solely by reflector 40 such that connectors 142 are part of heating unit 14 which may be separated by housing 12 and such that, in embodiments wherein heating unit 14 moves between different positions relative to housing 12, connectors 142 also move with heating unit 14. As will be described in greater detail hereafter with regard to
As shown in
Referring to
An electrical coupling may be provided comprising a structure configured to secure electrical wiring relative to housing 12. In the particular example shown, the electrical coupling is configured to clamp about such electrical wiring and may be mounted to housing 12 at various locations provided by openings 25 formed in either main body 16 or ends 20, 22. When not in use openings 25 are closed.
As shown in
Heating unit 14 is retained in the first angular position shown in
When in the second angular position shown in
In the particular embodiment shown, body 216 and housing 212 are substantially identical to housing 12 and body 16 of heater 10. Bodies 16 and 216 additionally include channels 221 and projections 223 on opposite sidewalls 225 and 227, respectively. As a result, additional heaters 10 or device 210 may further be connected, enabling any desired length or width of heaters 10 or extension devices 210 to be formed. In other embodiments, body 216 may be different from body 16 and/or only one pair of opposing sidewalls may be provided with channels 221 and projections 223.
According to one embodiment, device 210 is substantially identical to heater 10 such that the combination of heater 10 and device 210 emit heat over a larger area. In another embodiment, device 210 is different from heater 10 but is configured to emit heat. In still another embodiment, device 210 is configured to emit no or a de minimis amount of heat, but emits light. For example, device 210 may comprise a halogen light tube. In still another embodiment, device 210 may emit neither heat nor light and housing 212 serves as an extending hood or shield from heater 10.
Joiner 213 releasably connects heater 10 and device 210 in either or both of side-by-side fashion (as shown by
In the particular embodiment, joiner 213 is an elongate planar band or strip having a uniform or consistent cross section. As a result, joiner 213 may be extruded. In addition, joiner 213 may be easily slid along one or more of channels 221, enabling joiner 213 to be easily repositioned relative to body 16 or body 216 for end-to-end connections or for side-by-side connections. Because joiner 213 is generally planar, joiner 213 also occupies minimal space, allowing body 16 and body 216 to be joined and abutted to one another such that joiner 213 is hidden and such that multi-device system 202 is more compact. In other embodiments, joiner 213 may have non-uniform cross sectional shapes or may be configured to be relatively immovable in an axial direction relative to body 16 or body 216 when coupled to body 16 or body 216.
Although not shown, the ends of housing 312 are substantially identical to ends 20, 22 of housing 12 except that the ends of housing 312 omit openings 30a, 30b and 30c.
Heating unit 314 is substantially similar to heating unit 14 except that heating unit 314 includes reflector 340 in lieu of reflector 40. Reflector 340 is, itself, similar to reflector 40 except that reflector 340 includes tongues 332. Tongues 332 extend from tips 50 and are configured to be slidably received within one pair of grooves 330a, 330b and 330c to retain and orient reflector 340 and heating unit 314 relative to plane 70. In the particular embodiment shown, tongues 332 extend along an entire axial length of reflector 340 such that reflector 340 has a uniform cross section and may be extruded. In alternative embodiments, tongues 332, as well as grooves 330a, 330b and 330c may only extend partially along the axial length of reflector 340 and body 316 or may include a plurality of spaced segments along the axial length of reflector 340 and body 316.
Tongues 332 and grooves 330a, 330b and 330c enable the orientation of heating unit 314 to be quickly and easily adjusted. In particular, an individual simply needs to remove one of the ends of body 316. Thereafter, the individual simply needs to axially pull heating unit 314 to remove tongues 332 from grooves 330a, 330b and 330c and then reposition tongues 332 in another of grooves 330a, 330b, 330c at the desired orientation. Lastly, the user replaces the removed end. As a result, the orientation of reflector 340 and of heating unit 314 may be changed without requiring disassembly of heating unit 314. Moreover, because tongues 332 comprise edges of reflector 340 which are received within one of grooves 330a, 330b, 330c, reflector 340 is retained in place without the need for fasteners extending into reflector 340 and without the need for fasteners extending through wings 48, 49 or through the reflecting surfaces 60 of wings 48, 49.
In other embodiments, grooves 330a, 330b, 330c may only be formed along one end of flanges 323, enabling tongues 332 to be removed from such grooves with much less required axial movement of heating unit 314. In particular embodiments, this may be beneficial in that it may allow tongues 332 to be separated from grooves 330a, 330b, 330c without disconnecting wires connected to heating unit 314. In still other embodiments, flanges 323 may omit grooves 330a, 330b and 330c, wherein such grooves 330a, 330b and 330c are alternatively formed upon one or both of the interior opposite axial faces of the ends of housing 312. In such an alternative embodiment, the axial edges of flange 323 or of wings 48, 49 are received within these alternative grooves 330a, 330b, 330c to retain heating unit 314 in a desired orientation relative to housing 312. Although heater 312 is illustrated as including three sets of grooves providing three potential orientations, heater 312 may alternatively include a greater or fewer number of such grooves or otherwise configured detents to provide greater or fewer potential orientations of heating unit 314. In alternative embodiments, grooves 330a, 330b, 330c may alternatively be replaced with projections while tongues 332 may be replaced with grooves or detents, wherein the detents receive one of the selected projections to retain heating unit 314 in a desired orientation.
Connector 42 removably receives an end portion of heating element 44 while electrically connecting heating element 44 to both a power source and ground. Connector 42 generally includes body 84 and electrical contacts 86, 88. Body 84 comprises a structure configured to be removably connected to an end portion of heating element 44. Body 84 is configured so as to be highly thermally insulative. In one embodiment, body 84 is formed from a ceramic material. Because connector 42 is formed from ceramic material, connector 42 is extremely compact, reducing the axial length of heater 10 on opposite ends of heating element 44. As result, a greater percentage of the axial length of heater 10 may be used for heating. In addition, because body 84 is formed from a ceramic material, body 84 is also dielectric, enabling active electrical lead 88 and the electrically active portions of heating element 44 to be placed in contact with body 84 without the need for additional insulating structures. In other embodiments, however, body 84 may be formed from other insulative and dielectric materials or may be formed from electrically conductive materials or more thermally conductive materials, wherein additional thermally and electrically insulating materials are utilized.
Body 84 receives and supports an end portion of heating element 44 and includes front face 90, rear face 91, side faces 92, 93, opening or slot 94 and wire openings 95, 96. Slot 94 is formed by body 84 and is configured to removably receive an end portion of heating element 44. Slot 94 extends in one or more directions non-parallel to axis of heating element 44. As result, slot 94 enables an end portion of heating element 44 to be slid into slot 94 from a side, top or bottom of connector 42.
In the particular embodiment illustrated, slot 94 provides a generally sideways L-shaped passage having an entrance portion 98 and a retaining portion 100. Entrance portion 98 extends in a non-vertical direction from a side of body 84, enabling an end portion of heating element 44 to be inserted from a side of body 84. Retaining portion 100 communicates with entrance portion 98 and extends in a non-horizontal direction from entrance portion 98. Retaining portion 100 includes a floor 102 upon which portions of heating element 44 rest. Because retaining portion 100 extends in a non-horizontal direction, retaining portion 100 utilizes gravity to assist in retaining heating element 44 in position against floor 102. Floor 102 is configured to locate an end portion of heating element 44 and to prevent horizontal movement of heating element 44. In the particular embodiment illustrated, floor 102 has a generally semi-cylindrical shape.
Although entrance portion 98 is illustrated as being horizontal while retaining portion 100 is illustrated as being vertical, portion 98 may alternatively extend at other angles between horizontal and vertical and retaining portion 100 may extend at other angles between horizontal and vertical. Although slot 94 is illustrated as having a sideways L-shape, slot 94 may alternatively be substantially linear while extending from a side or top of body 84. In other embodiments, slot 94 may have other configurations. For example, although slot 94 is illustrated as having a single bend, slot 94 may include a fewer or greater number of such bends.
Slot 94 includes a wide portion 106 and a narrow portion 108 separated by a shoulder 110. Wide portion 106, narrow portion 108 and shoulder 110 extend along substantially the entirety of slot 94 in both entrance portion 98 and retaining portion 100. Wide portion 106 is proximate to an axial front face of body 84 and opens from front face 90 toward rear face 90. Wide portion 106 is configured to receive outer portion 68 of heating element 44 such that shoulder 71 of heating element 44 is proximate to and nominally abuts shoulder 110 of slot 94.
Narrow portion 108 extends from wide portion 106 toward rear face 91 of body 84. Narrow portion 108 is configured to receive rod 66 of heating element 44. Wide portion 106, narrow portion 108 and shoulder 110 cooperate to guide the insertion and positioning of end portion 62 (or alternatively end portion 64) of heating element 44 in body 84 and into connection with electrical contacts 86 and 88.
Openings 95 and 96 extend through front face 90 of body 84 and are configured to permit the passage of electrical wiring through front face 90 of body 84. Opening 95 is configured to permit electrical wiring and power source to pass through face 90 of body 84 so as to be electrically coupled to electrical contact 88. Opening 96 enables electrical wiring to further pass through face 90 of body 84 and to extend between housing 12 and reflector 40 to electrical contact 88 of the opposite axial connector 42. Although both of connectors 42 include openings 95 and 96 for ease of manufacture, in other embodiments, only one of connectors 42 may be provided with openings 95 and 96. In still other embodiments, openings 95 and 96 may be omitted where alternative routing of wiring or power is provided.
Electrical contacts 86 and 88 comprise electrically conductive structures coupled to body 84 and configured to be in electrically conductive contact with distinct portions of heater element 44 within slot 94. In particular, electrically conductive contact 86 extends along retaining portion 100 and wide portion 106 of slot 94 so as to contact outer portion 68 of element 44 when end portion 62 (or end portion 64 for the other connector 42) is resting against floor 102. Electrical contact 86 is electrically coupled to ground so as to ground heater element 44.
Electrical contact 88 extends along retaining portion 100 and along narrow portion 108 of slot 94. Contact 88 is configured to electrically contact a circumferential portion of rod 66 when end portion 62 (over end portion 64) is located within retaining portion 100 and resting along floor 102. Contact 88 is electrically coupled to a power source and to rod 66 of heater element 44.
In the particular embodiment illustrated, electrical contacts 86 and 88 each comprise electrically conductive and resilient springs configured to assist in retaining end portion 62 (or end portion 64) in retaining portion 100 against floor 102. Contact portions 86 and 88 have fixed portions, resiliently flexible portions, upper engagement surfaces 114, 116 and lower engagement surfaces 118, 120, respectively. Fixed portions are fixed to body 84 and coupled contacts 86 and 88 to body 84. Resiliently flexible portions comprise spring like portions configured to resiliently flex which extend between fixed portions and engagement surfaces 114, 116, 118 and 120, respectively. Upper engagement surface 114 and lower engagement surface 118 of contact 86 project into wide portion 106 adjacent retaining portion 100. Upper engagement surface 116 and lower engagement surface 120 project into narrow portion 108 of retaining portion 100. Engagement surfaces 114, 116, 118 and 120 are resiliently held within slot 94 by resilient portions. During insertion of end portion 62 or end portion 64 of heater element 44, rod 66 exerts a force against engagement surface 116 and outer portion 68 extends a force against engagement surface 114 to bias resiliently flexible portions to move engagement surfaces 114 and 116 away from the center of slot 94, enabling rod 66 and outer portion 68 of heater element 44 to pass contacts 86 and 88 as they are further moved towards floor 102. Once rod 66 and outer portion 68 have moved past surfaces 116 and 114 towards floor 102, engagement surfaces 118 and 120 are biased back towards a center of slot 94. The sloped surfaces of the sloped nature of surfaces 118 and 120 resiliently urge rod 66 and outer portion 68 against floor 102 of retaining portion 100 to resiliently retain end portion 62 or end portion 64 in position and in electrical contact with both of contacts 86 and 88. At the same time, the resilient nature of contacts 86 and 88 enables ends 62 and 64 of heater element 44 to be easily withdrawn from slots 94 without tools for repair or replacement of heater element 44. In addition to retaining end portions 62 and 64 of heater element 44 in place, the resiliently supported engagement surfaces 114, 116, 118 and 120 provide a person with a clear indication of when end portions 62 and 64 of heater element 44 have been fully inserted and positioned into slot 94 within retaining portion 100.
In other embodiments, electrical contacts 86 and 88 may have other configurations. For example, in other embodiments, only one of contacts 86 and 88 may have resiliently supported engagement surfaces to resiliently retain an end portion 62 or 64 of heater element 44 in place. The other of the electrical contacts 86 or 88 not resiliently supported may alternatively comprise any electrically conductive surface extending along slot 94 so as to contact its corresponding portion of heater element 44 (rod 66 or outer portion 68). In still other embodiments, both electrical contacts 86 and 88 may have non-resiliently supported surfaces that contact rod 66 and outer portion 68 of heater element 44. In such applications, a separate resiliently flexible member coupled to body 84 may be provided and configured to resiliently retain end portions 62, 64 within slot 94. Such additional resilient spring like members may be attached or bonded to body 84 or may be integrally formed as part of a single body with body 84. In still other embodiments, such resilient heater element engaging surfaces may be omitted.
To insert heating element 44 into connector 42, rod 66 is aligned with narrow portion 106, shoulder 71 is aligned with shoulder 110 and outer portion 68 is aligned with wide portion 106 along entrance portion 98 of slot 94. End portions 62 and 64 are then moved into entrance portion 98 of slot 94 until end portions 62 and 64 reach the intersection of entrance portion 98 and retaining portion 100. Thereafter, end portions 62 and 64 of heater element 44 are moved and forced in a direction towards floor 102 until passing engagement surfaces 114, 116, 118 and 120. Shoulder 110 faces shoulder 71 of end portions 62 and 64 of heater element 44 to limit axial insertion of end portions 62 and 64 and to prevent contact between electrical contact 88 and outer portion 68. As described above, lower engagement surfaces 118 and 120 resiliently bear against outer portion 68 and rod 66, respectively, to resiliently urge and retain end portions 62 and 64 against floor 102.
Overall, heaters 10 and 310 provide several beneficial features. Heaters 10 and 310 enable heating units 14 and 314 to be reoriented relative to housings 12 and 312 without the need for fasteners extending through those portions of the heater units 12 and 312 that reflect heat. Each heating unit 14, 314 comprises a distinct unit that may be preassembled and separately inventoried. Moreover, connectors 42 are easily mounted to reflectors 40, 340 without the need for tools. At the same time, connectors 42 enable heating elements 44 to be quickly and easily replaced or removed. In the particular embodiment shown, heaters 10 and 310 are formed from components that are extruded, reducing the overall manufacturing cost. In addition, heaters 10 and 310 may be easily joined to extending devices in an end-to-end fashion or in a side-by-side fashion using joiners 213 to form a multi-device system. In the particular embodiments shown, joiner 213 is configured to connect to heaters or devices while remaining substantially hidden and without increasing the overall size of the system. In sum, multi-device system 202 as well as heaters 10 and 310 offer several advantages over existing heaters. Such advantages are illustrated in the example embodiments as being used in conjunction with one another. In other embodiments, a fewer of such features may be employed together. Examples of various combinations of features illustrated in the above example embodiments are provided in the following definitions.
It is also important to note that the construction and arrangement of the elements of the heater assembly as shown in the preferred and other exemplary embodiments are illustrative only. Although only a few embodiments of the present invention have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the appended claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and/or omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the present invention as expressed in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5167003 | Montanari et al. | Nov 1992 | A |
Number | Date | Country | |
---|---|---|---|
20080083727 A1 | Apr 2008 | US |