Heater control apparatus for a gas concentration sensor

Information

  • Patent Grant
  • 6651639
  • Patent Number
    6,651,639
  • Date Filed
    Thursday, December 27, 2001
    22 years ago
  • Date Issued
    Tuesday, November 25, 2003
    20 years ago
Abstract
An air-fuel ratio sensor is equipped with a sensing element including a solid electrolytic substrate. When the sending element is warmed up and activated by a heater, a microcomputer controls electric power supplied to the heater based on a control base value being set according to a duty ratio=100%. A power profile P1 is determined beforehand to set a target heater power. Through the warm-up heater power control, an actual heater power supplied to the heater is equalized to the target heater power determined according to the power profile P1.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a heater control apparatus for a gas concentration sensor.




In an automotive engine, an air-fuel ratio is controlled based on a detection value of a gas concentration sensor. In general, a gas concentration sensor is equipped with a sensing element including a zirconia solid electrolytic substrate. To assure accurate detection of air-fuel ratio (i.e., oxygen concentration) based on the sensing element, it is necessary to maintain the temperature of this sensing element in a predetermined active temperature zone. To this end, a heater is installed in the sensor body. The electric power supplied to this heater is controlled based on a duty ratio.




According to this type of gas concentration sensor, speedily warming up the sensing element is very important to assure accurate operation of the sensor especially when the engine is in a cold start-up condition. However, increasing the temperature so quickly may cause the cracking of sensing element or heater body and also cause the peeling of substrates constituting the sensor.




SUMMARY OF THE INVENTION




In view of the above-described problems, the present invention has an object to provide a heater control apparatus for a gas concentration sensor which is capable of assuring adequate warm-up performance free from the cracking of sensor element or heater body and related problems.




In order to accomplish the above and other related objects, the present invention provides a heater control apparatus for a gas concentration sensor, comprising a sensing element including a solid electrolytic substrate and a heater for heating and activating the sensing element. The heater control apparatus of this invention comprises a warm-up heater control means for controlling electric power supplied to the heater based on a control base value being set according to a predetermined duty ratio, when the sensing element is warmed up to an active temperature. A power profile is determined beforehand to set a target heater power. The warm-up heater control means controls the electric power supplied to the heater so as to equalize an actual heater power to the target heater power determined according to the power profile.




More specifically, to quickly activate the sensing element, the control base value is set to a predetermined value (e.g., duty ratio=100%) to promptly supply electric power to the heater. However, to suppress excessive electric power supply to the heater and adopts, the present invention adopts a power profile defining or expressing an ideal transitional change of target heater power, thereby surely eliminating the cracking of sensor element and heater body.




According to a preferred embodiment of the present invention, the warm-up heater control means performs a correction applied to the control base value based on a relationship between a momentary heater power and the target heater power, and controls the electric power supplied to the heater based on a corrected duty ratio.




It is also preferable that the warm-up heater control means performs a feedback control operation based on a deviation of momentary heater power from the target heater power.




It is also preferable that the power profile is converted into map data, and the warm-up heater control means controls the electric power supplied to the heater based on an elapse of time or a cumulative power with reference to map data during a heater control operation.




It is also preferable that the warm-up heater control means corrects the target heater power so as to eliminate a deviation in a relationship between an elapse of time and a cumulative power or eliminate a deviation in a relationship between the target heater power and a momentary heater power.




It is also preferable that the warm-up heater control means limits the electric power supplied to the heater so as to prevent the actual heater power from exceeding the target heater power.




It is also preferable that the power profile is determined under a condition that the duty ratio of the control base value is set to 100%.




It is also preferable that the power profile is determined under a condition that a stationary reference voltage is applied to the heater.




It is also preferable that the power profile is determined under a condition that a stationary reference voltage is applied to the heater, and the warm-up heater control means performs a correction applied to the control base value based on a relationship between a momentary heater voltage and the stationary reference voltage, and controls the electric power supplied to the heater based on a corrected duty ratio. For example, the correction of the warm-up heater control means is performed according to a ratio of the stationary reference voltage to the momentary heater voltage.




The present invention brings the same effects even if the power profile is replaced by an equivalent or comparable profile.




For example, instead of using the power profile, a current profile is adopted beforehand to set a target heater current. The warm-up heater control means controls the electric power supplied to the heater so as to equalize an actual heater current to the target heater current determined according to the current profile. The warm-up performance is adequately maintained. The cracking of sensing element or heater body can be surely prevented.




It is also preferable that the gas concentration sensor is for detecting the concentration of an exhaust gas component emitted from an engine installed in an automotive vehicle. The heater control apparatus receives electric power supplied from a battery mounted on the automotive vehicle. The warm-up heater control means sets a guard value corresponding to a voltage change of the battery to limit the duty ratio of the control base value. This effectively suppresses the excessive power supply to the heater.




It is also preferable that the warm-up heater control means calculates an initial resistance value of the heater and sets a warm-up control time corresponding to the initial resistance value, for performing a warm-up heater control operation during a limited period of time defined by the warm-up control time. For example, when the heater resistance is small, there is a higher possibility that the sensing element may cause a crack. Thus, the warm-up control time is set to a relatively small value.




On the other hand, it is also preferable that the warm-up heater control means enlarges the warm-up control time when an actual voltage applied to the heater is lower than the reference voltage.




It is also preferable that the warm-up heater control means performs a warm-up operation during a limited period of time before starting an ordinary heater power control operation based on a sensing element resistance or a heater resistance.











BRIEF DESCRIPTION OF THE DRAWINGS




The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description which is to be read in conjunction with the accompanying drawings, in which:





FIG. 1

is a circuit diagram showing a schematic arrangement of an air-fuel ratio detecting apparatus in accordance with a preferred embodiment of the present invention;





FIG. 2

is a vertical cross-sectional view showing an overall arrangement of an air-fuel ratio sensor in accordance with the preferred embodiment of the present invention;





FIG. 3

is a cross-sectional view showing an essential arrangement of a sensing element in accordance with the preferred embodiment of the present invention;





FIG. 4

is a circuit diagram showing the details of a heater controller of the air-fuel ratio detecting apparatus in accordance with the preferred embodiment of the present invention;





FIG. 5

is a flowchart showing a main routine of the control operation performed in a microcomputer in accordance with the preferred embodiment of the present invention;





FIG. 6

is a flowchart showing an element impedance detecting routine used in the microcomputer in accordance with the preferred embodiment of the present invention;





FIG. 7

is a flowchart showing a heater power control routine used in the microcomputer in accordance with the preferred embodiment of the present invention;





FIG. 8

is a timing chart showing a sensor voltage change and a sensor current change during the detection of an element impedance;





FIG. 9

is a graph showing a relationship between the element impedance and the element temperature;





FIG. 10A

is a timing chart showing a heater power profile used in the heater power control in accordance with the preferred embodiment of the present invention;





FIG. 10B

is a time chart showing the change of heater current during the heater power control in accordance with the preferred embodiment of the present invention;





FIG. 10C

is a time chart showing the change of heater resistance during the heater power control in accordance with the preferred embodiment of the present invention;





FIG. 11A

is a graph explaining a setting of warm-up control time in accordance with the preferred embodiment of the present invention;





FIG. 11B

is a graph explaining another setting of warm-up control time in accordance with the preferred embodiment of the present invention;





FIG. 11C

is a graph explaining another setting of warm-up control time in accordance with the preferred embodiment of the present invention;





FIG. 12A

is a graph explaining a setting of duty correction value in accordance with the preferred embodiment of the present invention;





FIG. 12B

is a graph explaining another setting of duty correction value in accordance with the preferred embodiment of the present invention;





FIG. 13

is a time chart showing the change of duty, heater power, cumulative power, and heater resistance during the warm-up operation in accordance with the preferred embodiment of the present invention;





FIG. 14A

is a time chart showing the change of heater power during the warm-up operation in accordance with the preferred embodiment of the present invention; and





FIG. 14B

is a time chart showing the change of cumulative power during the warm-up operation in accordance with the preferred embodiment of the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENT




A preferred embodiment of the present invention will be explained hereinafter with reference to attached drawings. Identical parts are denoted by the same reference numerals throughout the drawings.




The preferred embodiment of this invention relates to an air-fuel ratio detecting apparatus incorporated in a fuel injection control system for an internal combustion engine (i.e., gasoline engine) installed in an automotive vehicle. The fuel injection control system adjusts the amount of fuel introduced or charged into a combustion chamber of the engine based on a sensing result obtained by the air-fuel ratio detecting apparatus so as to optimize the air-fuel ratio to a target value during the combustion of fuel. Furthermore, a limiting current type air-fuel ratio sensor (hereinafter, referred to as A/F sensor) is used to detect an oxygen concentration in the exhaust gas. To maintain the A/F sensor in an activated condition, an element impedance of the sensor is detected and the electric power supplied to a built-in heater of this sensor is controlled.





FIG. 1

is a circuit diagram showing a schematic arrangement of an air-fuel ratio detecting apparatus in accordance with a preferred embodiment of the present invention.




An air-fuel ratio detecting apparatus


15


comprises a microcomputer


20


. The microcomputer


20


is connected to an engine control unit (i.e., ECU)


16


to perform interactive data communications for a fuel injection control, an ignition control and the like.




An A/F sensor


30


is installed in an exhaust pipe


12


extending from an engine body


11


of an engine


10


. The A/F sensor


30


is responsive to a command voltage supplied from the microcomputer


20


and generates an air-fuel ratio sensing signal (i.e., sensor current signal) which is linear and proportional to the oxygen concentration in the exhaust gas.




The microcomputer


20


, consisting of well-known components such as CPU, ROM, RAM for performing various computational processing, controls a bias controller


24


and a heater controller


26


according to a predetermined control program. The microcomputer


20


is connected to a battery +B and receives electric power for operation.





FIG. 2

is a vertical cross-sectional view showing an overall arrangement of A/F sensor


30


. As shown in

FIG. 2

, A/F sensor


30


comprises a cylindrical metal housing


31


with a threaded outer portion securely fixed to a wall of exhaust pipe


12


. The lower part of the housing


31


protrudes from the wall of exhaust pipe


12


and is exposed to the exhaust gas flowing in the exhaust pipe


12


. A double element cover


32


, consisting of inner and outer cup-shaped covers, is attached to a lower opening end of the housing


31


. A multilayered sensing element


50


, configured into an elongated plate shape, extends in the axial direction of housing


31


so that the lower end of the sensing element


50


is placed in the inside space of the element cover


32


. The element cover


32


is provided with a plurality of holes


32




a


which introduce the exhaust gas into the inside space of the element cover


32


for forming an exhaust gas atmosphere surrounding the lower end of the sensing element


50


.




An insulating member


33


, intervening between the sensing element


50


and the inside wall of the housing


31


, supports the sensing element


50


. A glass sealing member


41


, located in a bore formed at an upper portion of the insulating member


33


, airtightly seals the clearance between the sensing element


50


and the insulating member


33


. Another insulating member


34


, provided on the insulating member


33


, has an inside space in which the sensing element


50


is connected to four leads


35


. Two of leads


35


are connected to electrodes of the sensing element


50


to output a sensing signal, while the remaining two leads


35


are used for supplying electric power to a heater of the sensing element


50


. These leads


35


are connected to external signal lines


37


via connectors


36


.




A body cover


38


is welded to the upper end of the housing


31


. A dust cover


39


is attached to the upper end of body cover


38


. These covers


37


and


38


cooperatively protect the upper portion of the sensor. A water repellent filter


40


is interposed between these covers


37


and


38


at an overlapped portion thereof. The covers


37


and


38


are provided with a plurality of holes


38




a


and


39




a


which introduce the air into the inside space of the covers


37


and


38


.




As shown in

FIG. 3

, the sensing element


50


comprises a solid electrolytic substrate


51


which is a partially-stabilized zirconia member having oxygen ion conductivity and configured into a platelike shape. An exhaust gas side electrode


52


is provided on one surface of the solid electrolytic substrate


51


. A reference gas side electrode


53


is provided on the opposite surface of the solid electrolytic substrate


51


so as to be exposed to a reference gas stored in a reference gas chamber


65


. A porous diffusion resistive layer


54


, made of an alumina ceramic member having a porosity of approximately 10%, is stacked or laminated on the upper surface of the solid electrolytic substrate


51


so as to entirely cover the exhaust gas side electrode


52


. A gas shielding layer


55


, made of an alumina ceramic member having gas-shielding properties, is stacked or laminated on the porous diffusion resistive layer


54


.




A spacer


64


, made of an alumina ceramic having electric insulating and gas-impermeable alumina ceramic, is stacked on the opposite (lower) surface of the solid electrolytic substrate


51


. The spacer


64


has a groove


64




a


defining the reference gas chamber


65


. A heater substrate


66


is stacked or laminated beneath the spacer


64


so as to embed a heater (i.e., heat generating element)


67


therebetween. The heater


67


generates heat in response to supplied electric power to warm up the substrates and electrodes of the sensing element


50


.




Returning to

FIG. 1

, the microcomputer


20


produces a bias command signal Vr for applying a voltage to A/F sensor


30


(i.e., to sensing element


50


). A digital-to-analog (D/A) converter


21


receives the bias command signal Vr produced as a digital signal from the microcomputer


20


, and converts it into an analog signal Vb. A low-pass filter (LPF)


22


receives the analog signal Vb produced from D/A converter


21


, and removes high-frequency components from the analog signal Vb to produce an LPF output Vc sent to the bias controller


24


. The bias controller


24


produces a voltage corresponding to a momentary air-fuel ratio with reference to predetermined application voltage characteristics, and applies the produced voltage to A/F sensor


30


during an A/F detecting operation. Furthermore, the bias controller


24


produces a voltage as a predetermined frequency signal applied to A/F sensor


30


in a one-shot manner with a predetermined time constant during an element impedance detecting operation.




The bias controller


24


includes a current detecting circuit


25


which detects a current value flowing across the A/F sensor


30


in response to the applied voltage. An analog-to-digital (A/D) converter


23


receives an analog signal representing the current value detected by the current detecting circuit


25


, and converts it into a digital signal. The digital output signal of A/D converter


23


is sent to the microcomputer


20


. The heater controller


26


controls the operation of heater


67


provided in the sensing element


50


. More specifically, the heater controller


26


performs a duty control operation of electric power supplied to the heater


67


based on the element impedance of A/F sensor


30


.





FIG. 4

shows a circuit arrangement of the heater controller


26


. The heater


67


has one end connected to the battery +B and the other end connected to a collector of transistor


26




a


. An emitter of transistor


26




a


is grounded via a heater current detecting resistor


26




b


. The heater controller


26


detects a heater voltage Vh as a potential (voltage) difference between terminals of the heater


67


. The detected heater voltage Vh is sent to the microcomputer


20


via an operational amplifier


26




c


and an A/D converter


27


. The heater controller


26


detects a heater current Ih based on a potential (voltage) difference between terminals of the heater current detecting resistor


26




b


. The detected heater current Ih is sent to the microcomputer


20


via an operational amplifier


26




d


and an A/D converter


28


.




The air-fuel ratio detecting apparatus


15


operates in the following manner.





FIG. 5

is a flowchart showing a main routine of the control operation performed in the microcomputer


20


. The main routine is activated in response to the supply of electric power to the microcomputer


20


.




In step


100


, it is checked whether or not a predetermined time Ta has elapsed since the previous A/F detecting operation. The predetermined time Ta corresponds to a cycle (i.e., period of time) of the A/F detecting operation. For example, a practical value of Ta is 4 msec.




When the time Ta has already elapsed (i.e., YES in step


100


), the control flow proceeds to step


110


to execute the A/F detecting operation. In the A/F detecting operation, an application voltage is determined in accordance with the momentary sensor current and applied to the sensing element


50


of A/F sensor


30


. The current detecting circuit


25


detects the sensor current flowing across the sensing element


50


in response to the applied voltage. The detected sensor current is converted into an A/F value.




Next, in step


120


, it is checked whether or not a predetermined time Th has elapsed since the previous element impedance detecting operation. The predetermined time Th corresponds to a cycle (i.e., period of time) of the element impedance detecting operation. For example, a practical value of Th is variable from 128 msec to 2 sec in accordance with engine operating conditions.




When the time Th has already elapsed (i.e., YES in step


120


), the control flow proceeds to step


130


to execute the element impedance detecting operation and then proceeds to step


140


to execute the heater power control operation. Details of the element impedance detecting operation and the heater power control operation will be explained later.





FIG. 6

is a flowchart showing the details of the element impedance (ZAC) detecting operation performed in step


130


. According to this embodiment, the element impedance ZAC is detected as “alternating current impedance” based on a sweep method.




In step


131


of

FIG. 6

, the voltage applied for the A/F detection is changed to a positive side for a short period of several 10 to 100 μsec by adjusting the bias command signal Vr.




Then, in step


132


, the current detecting circuit


25


measures a current change (ΔI) responsive to a voltage change (ΔV).




In the next step


133


, the element impedance ZAC (=ΔV/ΔI) is calculated based on the measured current change (ΔI) and the voltage change (ΔV).




After completing step


133


, the control flow returns to step


140


of FIG.


5


.




According to the above-described processing, a one-shot voltage having a predetermined time constant is applied to the A/F sensor


30


through LPF


22


and the bias control circuit


24


shown in FIG.


1


. As a result, as shown in

FIG. 8

, the sensor current changes in response to the applied voltage and a peak current ΔI appears after elapse of a predetermined time ‘t’. The element impedance ZAC is obtained as a ratio of the voltage change (ΔV) to the current change (ΔI) measured in this transient state.




Interposing LPF


22


for applying the one-shot voltage to the A/F sensor


30


is effective to prevent the peak current from excessively increasing or overshooting. This realizes reliable detection for the element impedance ZAC. As shown in

FIG. 9

, the element impedance ZAC greatly increases with reducing element temperature.




The present invention improves the warm-up performance of the sensing element


50


and prevents the cracking of sensing element


50


. To this end, this embodiment controls the heater power supply (i.e., electric power supplied to heater


67


) according to a predetermined power profile in the following manner.




The voltage applied to the heater


67


is fixed to a predetermined reference voltage (e.g., 13 V). The heater power is controlled based on a control base value being set according to a predetermined duty ratio.

FIG. 10A

is a time chart showing a heater power profile used in the heater power control of this embodiment.

FIG. 10B

is a time chart showing the change of heater current during the heater power control.

FIG. 10C

is a time chart showing the change of heater resistance during the heater power control.




The heater temperature and the heater resistance increase with elapsing time. Accordingly, the heater current and the heater power gradually decrease.




In

FIG. 10A

, a line P


1


represents a power profile corresponding to the duty ratio of 100% (i.e., full power supply mode). In other words, when the full power supply (duty ratio=100%) is required in the heater power control, the electric power is supplied to heater


67


according to the power profile P


1


. This effectively prevents the electric power from being excessively supplied to the heater


67


and eliminates the cracking of sensing element or heater body. Another line P


2


represents an additional power profile corresponding to the duty ratio of 80%. In other words, when the power supply of duty ratio=80% is required in the heater power control, the electric power is supplied to heater


67


according to the power profile P


2


.





FIG. 7

is a flowchart showing details of the heater power control of step


140


shown in FIG.


5


.




In step


141


, it is checked whether the conditions for implementing the warm-up heater control are satisfied.




For example, the conditions for implementing the warm-up heater control are as follow:




the element impedance ZAC is equal to or larger than a predetermined threshold (e.g., 50Ω); and




a later-described warm-up control time Tz has not elapsed yet.




In practice, immediately after the engine startup operation or during the engine warm-up operation, the element impedance ZAC is large and accordingly the warm-up heater control is necessary. Thus, the judgement result of step


141


becomes YES.




When the judgement result is YES in step


141


, the control flow proceeds to step


142


and succeeding steps


143


to


145


to perform the warm-up heater control. This embodiment performs the warm-up heater control based on the full power supply mode (duty ratio=100%). In this case, the duty ratio ‘Duty’ is appropriately adjusted in such a manner that actual heater power changes according to the power profile P


1


(i.e., target heater power) shown in FIG.


10


A.




More specifically, in step


142


, it is checked whether or not the warm-up heater control is performed for the first time. When the judgement is YES in step


142


, the control flow proceeds to step


143


to read the heater voltage Vh and the heater current Ih and then calculate an initial heater resistance Rhi (=Vh/Ih). Next, in step


144


, a warm-up control time Tz is calculated according to a characteristic line shown in FIG.


11


A. The warm-up control time Tz designate a period of time required for continuing the warn-up heater control. According to the characteristic line shown in

FIG. 11A

, the warm-up control time Tz becomes short with decreasing initial heater resistance Rhi (i.e., becomes short with decreasing temperature of heater


67


or sensing element


50


). In other words, the warm-up control time Tz becomes long with increasing initial heater resistance Rhi (i.e., becomes long with decreasing temperature of heater


67


or sensing element


50


).




Instead of using the characteristic line shown in

FIG. 11A

, it is possible to calculate the warm-up control time Tz according to a characteristic line shown in

FIG. 11B

or FIG.


11


C. When the characteristic line shown in

FIG. 11B

is used, the step


143


is modified in such a manner that an initial power of heater


67


is calculated based on the heater voltage Vh and the heater current Ih. And, the warm-up control time Tz corresponding to the calculated initial power is obtained with reference to the characteristic line shown in FIG.


11


B. Meanwhile, when the characteristic line shown in

FIG. 11C

is used, the step


143


is modified in such a manner that the warm-up control time Tz corresponding to the heater voltage Vh is obtained with reference to the characteristic line shown in FIG.


11


C.




Although the heater power control routine shown in

FIG. 7

performs the setting of warm-up control time Tz only when the warm-up heater control is performed for the first time. It is also possible to repetitively perform the setting of warm-up control time Tz according to any one of characteristic lines shown in

FIGS. 11A

to


11


C.




Furthermore, an abscissa of

FIG. 11C

can be replaced by the battery voltage.




Next, in step


145


, a warm-up duty is calculated. The warm-up duty is a control duty ratio being set for the heater power control. In this case, as a control base value, the duty ratio is set to 100%. A momentary heater power is calculated based on the heater voltage Vh and the heater current Ih and is compared with a target heater power being set according to the power profile P


1


. Through a correction based on a ratio of the target heater power to the momentary heater power, the warm-up duty is calculated.




More specifically, a duty correction value is set with reference to the characteristic line shown in

FIG. 12A

so as to eliminate a deviation of actual heater power from the target value. Then, the obtained duty correction value is multiplied with the control base value (duty=100%) to finally determine the warm-up duty. According to this correction, the duty ratio becomes smaller when the momentary heater power exceeds the target heater power. After finishing the calculation of the warm-up duty, the control flow returns to the main routine shown in FIG.


5


. The heater controller


26


supplies the electric power to the heater


67


based on the warm-up duty determined through the above-described heater power control routine shown in FIG.


7


.




According to the step


145


of

FIG. 7

, the deviation of heater power from the target value is momentarily obtained and the control base value (duty=100%) is corrected so as to eliminate the deviation of heater power from the target value. Thus, the electric power supplied to the heater


67


is always equalized to the target value on the power profile P


1


.




For example, in the step


145


of

FIG. 7

, the warm-up duty can be calculated according to the following equation.






warm-up duty={target heater power/momentary heater power (i.e., calculated value)}×100%






In this case, the deviation of heater power from the target value is momentarily obtained and the control base value (duty=100%) is corrected so as to eliminate the deviation of heater power from the target value. Thus, the electric power supplied to the heater


67


is always equalized to the target value on the power profile P


1


.




As apparent from the foregoing explanation, the correction is performed to equalize the momentary (i.e., actual) heater power to the target value. However, the correction of this embodiment can be modified in such a manner that the momentary heater voltage Vh is equalized to a reference heater voltage. More specifically, the warm-up duty correction value is set with reference to the characteristic line shown in

FIG. 12B

so as to eliminate a deviation of momentary heater voltage Vh from the reference heater voltage. Then, the obtained duty correction value is multiplied with the control base value (duty=100%) to determine the warm-up duty.




Alternatively, it is possible to determine the warm-up duty according to the following equation.






warm-up duty={reference heater voltage/momentary heater voltage (i.e., detected value)}×100%






In these cases, the deviation of heater power from the target value can be reduced. Thus, the electric power supplied to the heater


67


is always equalized to the target value on the power profile P


1


. An abscissa of

FIG. 12B

can be replaced by the battery voltage.




On the other hand, when the judgement is NO in step


141


, the control flow proceeds to steps


146


to


149


to perform an ordinary heater control operation based on a sensing element resistance or based on a heater resistance.




More specifically, in step


146


, an element impedance ZAC in the previous processing is set as a previous value ZAC


0


. Then, the control flow proceeds to step


147


to read the momentary element impedance ZAC (i.e., a detection value in the routine shown in FIG.


6


).




Then, the control flow proceeds to step


148


to calculate a proportional term Gp, an integral term Gi, and a derivative term Gd according to the following equations.








Gp=Kp·


(ZAC−ZACref)










Gi=Gi+Ki·(ZAC−ZACref)












Gd=Kd·


(ZAC−ZAC


0


)






wherein Kp represents a proportional constant, Ki represents an integral constant, Kd represents a derivative constant, and ZACref represents a reference impedance.




Finally, the control flow proceeds to step


149


to calculate the control duty ratio by summing the proportional term Gp, the integral term Gi, and the derivative term Gd (i.e., Duty=Gp+Gi+Gd). After finishing the calculation of control duty ratio, the control flow returns to the main routine shown in FIG.


5


.





FIG. 13

is a time chart explaining the heater power control operation of this embodiment.




At timing t


1


, the warm-up control time Tz is set according to the initial heater resistance Rhi. The warm-up heater control is performed during a limited period of time Tz from time t


1


to t


2


(i.e., t


2


−t


1


=Tz) according to the full power supply mode (duty ratio=100%). In this case, if the momentary heater power deviates from the target heater power on the power profile P


1


, the control duty is corrected to eliminate this deviation.

FIG. 13

shows the change of cumulative power as well as the change of heater resistance. After the time has passed ‘t


2


’, the feedback control of element impedance ZAC begins.




The above-described embodiment brings the following effects.




The warm-up heater control (e.g., full power control) is performed based on the power profile determined under the condition that the control base value is set to the duty ratio=100% while the reference voltage is applied to the heater


67


. This heater control prevents electric power from being excessively supplied to the heater


67


. Thus, it becomes possible to prevent the sensing element or the heater body from being cracked due to excessive power supply to the heater. Accordingly, this embodiment provides adequate warm-up characteristics for the A/F sensor


30


and eliminates the cracking of sensing element or heater body.




In this case, it is preferable that the reference heater voltage (e.g., 13V) is smaller than an ordinary value (e.g., 14V). The reference heater voltage serves as a criteria for setting the power profile. Setting such a lower heater voltage can secure a large margin of time in case of the sensing element or heater body reaching the cracking.




Especially, when the A/F sensor


30


has a multilayered structure, the solid electrolytic element


51


is positioned close to the heater


67


. In this respect, the multilayered sensor is sensitive to the problem of element cracking or heater cracking. The above-described embodiment of this invention can solve this problem.




The present invention is not limited to the above-described embodiment and therefore can be modified in the following manner.




The step


145


of

FIG. 7

can be modified so as to perform a feedback control of heater power. First, a proportional term, an integral term, and a derivative term are obtained in addition to a deviation ΔQ of momentary heater power (calculated value) from the target heater power on the power profile P


1


. Then, the warm-up duty is calculated according to the following equation.






warm-up duty=


Kp·ΔQ+ΣKi·ΔQ+Kd


(present Δ


Q


−previous Δ


Q


)






The power profile P


1


shown in

FIG. 10A

can be converted into map data and stored in a memory of microcomputer


20


. The warm-up heater control operation can be performed based on the elapse of time from the start of control with reference to the map data. The cumulative power increases monotonously during the heater power control. Thus, the elapse of time can be replaced by the cumulative power.




When the heater voltage or the heater current decreases, the cumulative power increases slowly. In other words, the relationship between the cumulative power and the elapse of time may deviate from an expected relationship. In such a case, the target power is corrected so as to eliminate this deviation.




More specifically, in an ordinary case, the cumulative power increases according to a solid line shown in FIG.


14


B. The target power is determined according to the power profile P


1


. However, if the increase of cumulative power is delayed (refer to an alternate long and two short dashes line shown in FIG.


14


B), the timing of cumulative power reaching the point A


1


is delayed from time t


11


to time t


12


. In this case, to speedily warm up the sensing element, it is necessary to increase the heater power. Thus, the heater control is performed after time t


11


based on the map data (target power B


1


of power profile P


1


). More specifically, the target power at time t


12


is changed from B


2


to B


1


. According to this correction, it becomes possible to assure smooth and prompt warm-up performance of A/F sensor


30


.




Furthermore, when the heater voltage or the heater current decreases, it is also preferable to correct the target power so as to eliminate the deviation of heater power from the target power.




Furthermore, it is preferable that the duty ratio for the heater power supply is controlled so as to prevent the heater power from exceeding (i.e., so as to become equal to or smaller than) a value on the power profile P


1


. This is the substantial setting of a guard value according to the power profile P


1


applied to the heater power. In this case, it becomes possible to suppress the electric power from being excessively supplied to the heater.




Besides the usage of power profile P


1


(duty ratio=100%), additional power profile P


2


(duty ratio=80%) can be used to perform the warm-up heater control. In this case, the control base value is set to the duty ratio=80%. The electric power is supplied to the heater


67


according to the power profile P


2


.




Furthermore, it is possible to selectively change the duty ratio during the heater power control operation. For example, the duty ratio can be changed from 100% (i.e., power profile P


1


) to 80% (i.e., power profile P


2


) or vice versa during the warm-up heater control operation. Adopting such switching of duty ratio is effective to reduce the thermal shock applied to the sensing element when the element temperature is low.




Meanwhile, it is preferable that the voltage drop at a wire harness portion is taken into consideration in the setting of power profile. The wire harness is usually necessary to connect the A/F sensor and a control device (i.e., air-fuel detecting apparatus). More specifically, to compensate the voltage drop at the wire harness portion, the power profile shifts toward an increased side. Alternatively, correcting the warm-up duty is preferable to compensate the voltage drop at the wire harness portion.




It is also preferable to correct the guard value for the heater power so as to eliminate a deviation of momentary voltage from the reference voltage. It is also preferable to correct the guard value considering the voltage drop at the wire harness portion.




Furthermore, it is preferable to use a ‘current profile’ shown in

FIG. 10B

instead of using the power profile. The characteristic line shown in

FIG. 10B

defines or expresses an ideal transitional change of heater current during the heater power control operation performed under the condition that the duty ratio is set to 100% and the reference voltage is applied to the heater


67


. According to the current profile shown in

FIG. 10B

, the heater current gradually decreases with elapsing time. In the warm-up heater control, the electric power is supplied to the heater


67


according to this current profile. More specifically, when the control base value is set to a predetermined duty ratio (e.g., 100%), the correction is performed based on a ratio of the target heater current according to the current profile to the momentary heater current.




The warm-up duty is calculated according to the following equation.






warm-up duty={target heater current/momentary heater current (detected value)}×100%






In this case, the deviation of heater current from the target value is momentarily obtained and the control base value (duty=100%) is corrected so as to eliminate the deviation of heater current from the target value. Thus, the electric power supplied to the heater


67


is always equalized to the target value of the current profile shown in FIG.


10


B.




The current profile shown in

FIG. 10B

can be converted into map data and stored in a memory of microcomputer


20


. The map data can be read from this memory occasionally after the control has started.




Furthermore, during the warm-up heater control operation, it is preferable to perform a feedback control of heater power by adopting a PID technique so as to eliminate a deviation of momentary heater current from the target heater current. Furthermore, it is preferable to limit the heater power supply amount (or control duty) so as to prevent the heater current from exceeding (i.e., so as to become equal to or smaller than) a value on the current profile.




Furthermore, in determining the power profile or the current profile, it is not always necessary to apply a stationary reference voltage to the heater. If the voltage applied to the heater (i.e., reference heater voltage) fluctuates, the change of heater power or heater current will follow up the change of heater resistance. Accordingly, it is possible to determine the power profile or the current profile so as not to cause cracking of sensing element or heater body. The power profile or the current profile should be determined under the condition that the heater power supply amount (or control duty) is set to a predetermined control base value.




The heater power control of this invention can be applied to various gas concentration sensors capable of detecting the concentration of any one of O2, NOx, HC, CO or other gas components contained in the exhaust gas or any other sample gas to be measured. The number of sensor cells is not limited to a specific value. Usage of the gas concentration detecting apparatus of this embodiment is not limited to an air-fuel ratio detection and therefore can be applied to various purposes.



Claims
  • 1. A heater control apparatus for a gas concentration sensor, comprising a sensing element including a solid electrolytic substrate and a heater for heating and activating said sensing element, said heater control apparatus comprising:a warm-up heater control means for controlling electric power supplied to said heater based on a control base value being set according to a predetermined duty ratio, when said sensing element is warmed up to an active temperature, wherein a power profile is determined beforehand to set a target heater power, and said warm-up heater control means controls the electric power supplied to said heater so as to equalize an actual heater power to said target heater power determined according to said power profile.
  • 2. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said warm-up heater control means performs a correction applied to said control base value based on a relationship between a momentary heater power and said target heater power, and controls the electric power supplied to said heater based on a corrected duty ratio.
  • 3. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said warm-up heater control means performs a feedback control operation based on a deviation of momentary heater power from said target heater power.
  • 4. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said power profile is converted into map data, and said warm-up heater control means controls the electric power supplied to said heater based on an elapse of time or a cumulative power with reference to said map data during a heater control operation.
  • 5. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said warm-up heater control means corrects said target heater power so as to eliminate a deviation in a relationship between an elapse of time and a cumulative power or eliminate a deviation in a relationship between said target heater power and a momentary heater power.
  • 6. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said warm-up heater control means limits the electric power supplied to said heater so as to prevent the actual heater power from exceeding said target heater power.
  • 7. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said power profile is determined under a condition that the duty ratio of said control base value is set to 100%.
  • 8. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said power profile is determined under a condition that a stationary reference voltage is applied to said heater.
  • 9. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said power profile is determined under a condition that a stationary reference voltage is applied to said heater, and said warm-up heater control means performs a correction applied to said control base value based on a relationship between a momentary heater voltage and said stationary reference voltage, and controls the electric power supplied to said heater based on a corrected duty ratio.
  • 10. The heater control apparatus for a gas concentration sensor in accordance with claim 9, wherein the correction of said warm-up heater control means is performed according to a ratio of said stationary reference voltage to said momentary heater voltage.
  • 11. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said gas concentration sensor is for detecting the concentration of an exhaust gas component emitted from an engine installed in an automotive vehicle, said heater control apparatus receives electric power supplied from a battery mounted on said automotive vehicle, and said warm-up heater control means sets a guard value corresponding to a voltage change of said battery to limit said duty ratio of said control base value.
  • 12. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said warm-up heater control means calculates an initial resistance value of said heater and sets a warm-up control time corresponding to said initial resistance value, for performing a warm-up heater control operation during a limited period of time defined by said warm-up control time.
  • 13. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said warm-up heater control means enlarges said warm-up control time when an actual voltage applied to said heater is lower than the reference voltage.
  • 14. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said warm-up heater control means performs a warm-up operation during a limited period of time before starting an ordinary heater power control operation based on a sensing element resistance or a heater resistance.
  • 15. The heater control apparatus for a gas concentration sensor in accordance with claim 1, wherein said heater and said solid electrolytic substrate are integrally multilayered.
  • 16. A heater control apparatus for a gas concentration sensor, comprising a sensing element including a solid electrolytic substrate and a heater for heating and activating said sensing element, said heater control apparatus comprising:a warm-up heater control means for controlling electric power supplied to said heater based on a control base value being set according to a predetermined duty ratio, when said sensing element is warmed up to an active temperature, wherein a current profile is determined beforehand to set a target heater current, and said warm-up heater control means controls the electric power supplied to said heater so as to equalize an actual heater current to said target heater current determined according to said current profile.
Priority Claims (2)
Number Date Country Kind
2000-397308 Dec 2000 JP
2001-338975 Nov 2001 JP
US Referenced Citations (9)
Number Name Date Kind
4538575 Chujo et al. Sep 1985 A
4561402 Nakano et al. Dec 1985 A
4694809 Nakano et al. Sep 1987 A
5852228 Yamashita et al. Dec 1998 A
5974857 Yamashita et al. Nov 1999 A
6009866 Sagisaka et al. Jan 2000 A
6258232 Hasegawa et al. Jul 2001 B1
6304813 Ikeda et al. Oct 2001 B1
6341599 Hada et al. Jan 2002 B1
Foreign Referenced Citations (5)
Number Date Country
59-190651 Oct 1984 JP
9-166575 Jun 1997 JP
10-300716 Nov 1998 JP
11-183431 Jul 1999 JP
11-183432 Jul 1999 JP