This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2016-125762, filed Jun. 24, 2016, the entire contents of which are incorporated herein by reference.
An embodiment described herein relates to a heater, an image forming apparatus, and a manufacturing method of a heater.
In an image forming apparatus such as a copying machine, a heater is used to fix a toner that is adhered to a medium such as a recording sheet. In such a heater, for example, a ceramic substrate is provided with a heating resistor. In a manufacturing process of a heater, groove lines (split line) are formed on a flat plate-shaped base material through groove processing using a laser scribing technique and the base material is split into a plurality of heaters along the groove lines thereby manufacturing heaters with desired external dimensions.
As one of methods of increasing the thermal efficiency of a heater, there is a method of decreasing the thickness of a substrate. Particularly, in a case of a ceramic substrate, as the thickness of the substrate decreases, micro cracking starting from a groove portion, which is split along a groove line, becomes more likely to occur while causing a decrease in mechanical strength and thermal shock strength of the substrate. Therefore, a technique of suppressing a decrease in mechanical strength of the substrate by forming a glass film on an end surface of the substrate is known.
However, the above-described manufacturing process of a heater has a problem that the productivity of a heater decreases since a processing process of forming a glass film on an end surface of a substrate after a base material is split into a plurality of heaters, is added.
Therefore, an object of an exemplary embodiment is to provide a heater, an image forming apparatus, and a manufacturing method of a heater with which it is possible to suppress a variation in external dimension of a substrate and to suppress a decrease in mechanical strength and thermal strength of the substrate without adding a processing process.
A heater 1 according to an embodiment described below includes a substrate 5, a heating resistor 6, a conductor 7, and a protection film 8 as a coating film. The substrate 5 is formed of a heat resistant insulating material. The heating resistor 6 is provided on the substrate 5. The conductor 7 is provided on the substrate 5. The conductor 7 is electrically connected to the heating resistor 6. The protection film 8 covers the heating resistor 6 and the conductor 7. A plurality of groove portions 11a are arranged on an end surface 5c of the substrate 5 along an outer periphery of the substrate 5. A coefficient A=100×D/(T×P) satisfies 0.4≤A≤0.9 where T [μm] is the thickness of the substrate 5, D [μm] is the depth of the groove portion 11a in a thickness direction of the substrate 5, and P [μm] is a pitch between the plurality of groove portions 11a.
In addition, a copying machine 100 as an image forming apparatus according to the embodiment described below includes the heater 1 and a pressure roller 203. The heater 1 heats a recording sheet M as a medium. The pressure roller 203 pressurizes the recording sheet M which is heated by the heater 1. The copying machine 100 fixes a toner that is adhered to the recording sheet M by using the heater 1 and the pressure roller 203.
A manufacturing method of the heater 1 according to the embodiment described below includes a forming process, a groove portion forming process, and a splitting process. In the forming process, the heating resistor 6 and the conductor 7, which is electrically connected to the heating resistor 6, are formed on the substrate 5, which is formed of a heat resistant insulating material, and the heating resistor 6 and the conductor 7 are covered with the protection film 8. In the groove portion forming process, a groove line 10, in which a plurality of circular groove portions 11 are arranged, is formed by irradiating the substrate 5 with laser light. In the splitting process, the substrate 5 is split along the groove line 10. In the groove portion forming process, the plurality of circular groove portions 11 in each of which a coefficient A=100×D/(T×P) satisfies 0.4≤A≤0.9 are formed where T [μm] is the thickness of the substrate 5, D [μm] is the depth of the circular groove portion 11 in the thickness direction of the substrate 5, and P [μm] is a pitch between the plurality of circular groove portions 11.
Hereinafter, the heater according to the embodiment will be described with reference to the drawings.
The substrate 5 is formed of a heat resistant insulating material such as a ceramic and is formed to have a long flat plate-like shape. The substrate 5 is formed of a ceramic such as alumina, aluminum nitride, or silicon nitride. However, the material of the substrate 5 is not limited to the ceramic. The substrate 5 is formed to have a thickness T of approximately 500 [μm] to 1000 [μm].
The heating resistor 6 is provided on one main surface 5a in the thickness direction of the substrate 5. The heating resistor 6 is formed by printing a conductive paste, which contains silver and a palladium-based alloy as a main component through screen printing, and by firing the conductive paste. The conductor 7 is provided on the main surface 5a of the substrate 5 and is electrically connected to the heating resistor 6. Power from an external power source (not shown) is supplied to the heating resistor 6 via the conductor 7. The heater 1 according to the embodiment includes one heating resistor 6. However, a plurality of heating resistors 6 may be connected to each other in parallel, for example. In addition, one heating resistor 6 may be formed into a tortuous shape while being folded back at both ends of the substrate 5.
The protection film 8 covers the heating resistor 6 and the conductor 7. As the protection film 8, for example, a glass film is used. Since the protection film 8 covers the heating resistor 6 and the conductor 7, the voltage endurance and the wear resistance of the heater 1 are improved.
Groove Portion of Heater
The above-described heater 1 is manufactured by splitting the base material into a plurality of pieces along the groove line 10 after forming the plurality of circular groove portions 11 on a flat plate-shaped base material (not shown) through a groove portion forming process (specifically, laser scribing process), that is, after forming the groove line 10 (refer to
Since the plurality of circular groove portions 11 are formed as described above, when the substrate 5 is split into the plurality of heaters 1 by being folded along the groove line 10, each of the circular groove portions 11, which are arranged along the groove line 10, is split and thus the plurality of groove portions 11a, each of which is groove portion with a semi-conical section, are formed on the end surface 5c of the substrate 5 of the heater 1. That is, in the embodiment, the groove portions 11a are groove portions, remaining on the end surface 5c of the substrate 5 of the heater 1 which are obtained, when the plurality of circular groove portions 11 are split along the groove line 10. As illustrated in
In addition, in the heater 1, the coefficient A=100×D/(T×P) satisfies 0.4≤A≤0.9 where T [μm] is the thickness of the substrate 5, D [μm] is the depth of the groove portion 11a in the thickness direction of the substrate 5, and P [μm] is the pitch between the plurality of groove portions 11a.
External Dimension of Heater
As illustrated in
Deflective Strength of Heater
As illustrated in
The deflective strength F [MPa] was calculated by using F=(3×G×L)/(2×W×T2) where T [mm] is the thickness of the heater 1, W [mm] is the width of the elongated heater 1 in the lateral direction, L [mm] is a distance between the supporting points (distance between central axes of supporting members 15), and G[N] is the maximum load when the heater 1 is broken. Twenty heaters 1 were used as samples for measuring the deflective strength for each of a case where the coefficient A satisfies 0.4≤A≤0.9 and a case where the coefficient A satisfies 0.9<A.
As illustrated in
Thermal Shock Strength of Heater
As illustrated in
As described above, according to the heater 1 of the embodiment, since the coefficient A satisfies 0.4≤A≤0.9, it is possible to suppress a variation in external dimension of the heater 1 (substrate 5) and is possible to suppress a decrease in deflective strength as mechanical strength and thermal shock strength as thermal strength of the heater 1 (substrate 5).
Manufacturing Method of Heater
The manufacturing method of the heater 1, which is configured as described above, will be described. The manufacturing method of the heater 1 includes the forming process, the groove portion forming process, and the splitting process. In the forming process, the heating resistor 6 and the conductor 7, which is electrically connected to the heating resistor 6, are formed on the substrate 5, which is formed of a heat resistant insulating material. In addition, in the forming process, the heating resistor 6 and the conductor 7 are covered with the protection film 8. In the groove portion forming process, the groove line 10, in which the plurality of circular groove portions 11 are arranged, is formed by irradiating the substrate 5 with laser light. In the splitting process, the substrate 5 is split along the groove line 10. In the groove portion forming process, the plurality of circular groove portions 11, in each of which the coefficient A=100×D/(T×P) satisfies 0.4≤A≤0.9, are formed where T [μm] is the thickness of the substrate 5, D [μm] is the depth of the plurality of circular groove portions 11 in the thickness direction of the substrate 5, and P [μm] is a pitch between the plurality of circular groove portions 11.
The order, in which the processes included in the manufacturing method of the heater 1, are executed is not limited to the above-described order. For example, the groove portion forming process, the forming process, and the splitting process may be executed in this order so that the heating resistor 6 and the conductor 7 are covered with the protection film 8, and the substrate 5 is split along the groove line 10 after the groove line 10, in which the plurality of circular groove portions 11 are arranged, is formed by irradiating the substrate 5 with laser light in advance.
As described above, the plurality of groove portions 11a are arranged on the end surface 5c of the substrate 5, which is included by the heater 1 according to the embodiment, along the outer periphery of the substrate 5. The coefficient A=100×D/(T×P) satisfies 0.4≤A≤0.9 where T [μm] is the thickness of the substrate 5, D [μm] is the depth of the groove portion 11a in the thickness direction of the substrate 5, and P [μm] is a pitch between the groove portions 11a. With the coefficient A satisfying 0.4≤A, it is possible to suppress a variation in external dimension of the heater 1 (substrate 5) and is possible to enhance the processing accuracy of the external dimension of the heater 1. With the coefficient A satisfying A≤0.9, it is possible to secure suitable mechanical strength and thermal strength of the heater 1. Therefore, according to the heater 1, it is possible to suppress a variation in external dimension of the heater 1 and is possible to suppress a decrease in mechanical strength and thermal strength of the heater 1 without adding a processing process to a manufacturing process of the heater 1.
In addition, according to the heater 1, it is possible to suppress cracking occurring in the substrate 5 of the heater 1 when handling the heater 1 in a manufacturing process of the heater 1 or in a manufacturing process of an image forming apparatus which uses the heater 1 after splitting the base material into the plurality of heaters 1 without adding a processing process to a manufacturing process of the heater 1. Therefore, according to the heater 1, it is possible to suppress an increase in manufacturing cost of the heater 1 and the image forming apparatus.
Note that, in the substrate 5 illustrated in
Next, a fixing device according to the embodiment, which uses the heater 1 according to the embodiment, will be described with reference to the drawings.
In a toner fixing process, on a contact surface between the fixing film belt 201 and the silicone resin layer 204, a toner image U1 that is adhered to the recording sheet (copying paper) M, which is a medium, is heated and melted by the heater 1 via the fixing film belt 201. As a result, at least a surface portion of the toner image U1 is softened and melted with the temperature thereof exceeding the melting point. Thereafter, the recording sheet M is separated from the heater 1 and is separated from the fixing film belt 201 in a position on a paper sheet discharging side of the pressure roller 203, and a toner image U2 is spontaneously solidified while radiating heat so that the toner image U2 is fixed onto the recording sheet M.
Finally, the image forming apparatus according to the embodiment, which includes the heater 1 according to the embodiment, will be described with reference to the drawings.
A lighting device 102, which includes a lamp for irradiation with light and a reflecting mirror, is provided on the upper portion of the housing 101. Light emitted from the lighting device 102 is reflected on a surface of the document M1 on the document mounting table and is guided onto a photosensitive drum 104 via a short focus small diameter image forming element array 103 such that the photosensitive drum 104 is subjected to slit exposure. The photosensitive drum 104 is provided to be rotatable (direction Z in
The recording sheet M, accommodated in a cassette 107, is fed onto the photosensitive drum 104 by a pair of transportation rollers 109, which rotate in synchronization with a feeding roller 108 and the toner image on the photosensitive drum 104 while being in pressure contact with each other in a vertical direction. Then, the toner image on the photosensitive drum 104 is transferred onto the recording sheet M by a transferring discharger 110. Thereafter, the recording sheet M, which is fed to the downstream side from a position on the photosensitive drum 104, is guided to the fixing device 200 along a transportation guide 111 and is discharged onto a tray 112 after being subjected to a heating and fixing process (above-described toner fixing process). After the toner image is transferred to the recording sheet M, the toner remaining on the photosensitive drum 104 is removed by a cleaner 113.
In the fixing device 200, the heater 1 is provided in a state of being pressurized by the silicone resin layer 204, which is attached onto the outer periphery of the pressure roller 203. In the heater 1, the heating resistor 6 of an effective length corresponding to the width (length) of the largest sheet on which the copying machine 100, can perform a copying operation, that is, the heating resistor 6, which is longer than the width (length) of the largest sheet, is provided in the width direction of the recording sheet M, which is orthogonal to a transportation direction of the recording sheet M. In addition, a non-fixed toner image on the recording sheet M, being fed between the heater 1 and the pressure roller 203, is melted by being heated by the heating resistor 6 so that a copied image such as a character, a symbol, or an image appears on the recording sheet M.
An example, in which the heater 1 according to the embodiment is used as a fixing heater of the image forming apparatus such as the copying machine 100, is described above. However, the purpose of use of the heater 1 is not limited to this. The heater 1 according to the embodiment may be used as a heat source for heating or temperature control being mounted onto household electrical appliances, precision machines for business or experiment, equipment for chemical reaction, or the like.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2016-125762 | Jun 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20010032835 | Murooka | Oct 2001 | A1 |
Number | Date | Country |
---|---|---|
H11-040319 | Feb 1999 | JP |
2000-044344 | Feb 2000 | JP |
2004179556 | Jun 2004 | JP |
Entry |
---|
English translation of JP-2004179556-A (Year: 2004). |
Number | Date | Country | |
---|---|---|---|
20170371281 A1 | Dec 2017 | US |