1. Field of the Invention
The present invention relates generally to micro-fluid ejection devices and, more particularly, to a heater stack of a micro-fluid ejection device and a method for making the heater stack with its fluid heater element decoupled from its substrate.
2. Description of the Related Art
Micro-fluid ejection devices have had many uses for a number of years. A common use is in a thermal inkjet printhead in the form of a heater chip. In addition to the heater chip, the inkjet printhead basically includes a source of supply of ink, a nozzle plate attached to or integrated with the heater chip, and an input/output connector, such as a tape automated bond (TAB) circuit, for electrically connecting the heater chip to a printer during use. The heater chip is made up of a plurality of resistive heater elements, each being part of a heater stack. The term “heater stack” generally refers to the structure associated with the thickness of the heater chip that includes first, or heater forming, strata made up of resistive and conductive materials in the form of layers or films on a substrate of silicon or the like and second, or protective, strata made up of passivation and cavitation materials in the form of layers or films on the first strata, all fabricated by well-known processes of deposition, patterning and etching upon the substrate of silicon. The heater stack also has one or more fluid vias or slots that are cut or etched through the thickness of the silicon substrate and the first and second strata, using these well-known processes, serve to fluidly connect the supply of ink to the heater stacks. A heater stack having this general construction is disclosed as prior art in U.S. Pat. No. 7,195,343, which patent is assigned to the same assignee as the present invention. The disclosure of this patent is hereby incorporated by reference herein.
Despite their seeming simplicity, construction of heater stacks requires consideration of many interrelated factors for proper functioning. The current trend for inkjet printing technology (and micro-fluid ejection devices generally) is toward lower jetting energy, greater ejection frequency, and in the case of printing higher print speeds. A minimum quantity of thermal energy must be present on an external surface of the heater stack above a resistive heater element therein, in order to vaporize the ink inside an ink chamber between the heater stack external surface and a nozzle in the nozzle plate so that the ink will vaporize and escape or jet through the nozzle in a well-known manner. The overall heating energy or “jetting energy” produced by the heater stack must pass through the plurality of layers of the first and second strata that form the heater stack before the requisite energy for fluid ejection reaches the external surface of the heater stack. The greater the thickness of the layers of the first strata of the heater stack, the more jetting energy that will be required before the requisite energy for ink drop formation and ejection can be reached on the heater stack external surface. However, a minimum presence of protective layers of the second strata of the heater stack is necessary to protect the resistive heater element from chemical corrosion, from fluid breaks, and from mechanical stress from the effects of cavitation.
During inkjet heater chip operation, some of the heating energy is wasted due to heating up the “heater overcoat”, or the second strata, and also heating up the substrate. Since heating or jetting energy required is proportional to the volume of material of the heater stack that is heated during an ejection sequence, reducing the heater overcoat thickness, as proposed in U.S. Pat. No. 7,195,343 is one approach to reducing the jetting energy required. However, as the overcoat thickness is reduced, corrosion of the ejectors or heater elements becomes more of a factor with regard to ejection performance and quality. So this patent proposes the additional steps of applying a sacrificial layer of an oxidizable metal on the resistive heater layer and then oxidizing the sacrificial layer to convert it to exhibit a protective function rather than a conductive function and thereby obviate the potential corrosive impacts of reducing overcoat thickness.
However, with the overcoat thickness decreasing, heat loss to the substrate then becomes the dominant factor. Thus, there is a need for an innovation that will reduce the heat loss to the substrate.
The present invention meets this need by providing an innovation which involves only a small degree of change or modification to the heater stack in its first strata structure and to the currently-employed fabricating processes and which basically is compatible therewith and minimizes any additional costs. Underlying certain embodiments of the present invention is the insight by the inventors herein that performance of the heater stack could be enhanced in terms of attainment of improved thermal efficiency by substantially decoupling the attachment, but not the physical contact of, the fluid heater element of the heater stack from the underlying substrate of the heater stack. The benefits of this heater stack structure is that during the heat-up period of an ink jetting cycle at east the fluid heater element will buckle upward away from and out of contact with the substrate due to thermal expansion which will enable the fluid heater element to transfer most of its jetting energy into the ink above it with virtually none transferring into the substrate below it. Then, during the next following cool-down period of the ink jetting cycle, the fluid heater element will thermally contract or de-buckle downward toward and back into physical contact with (substantially touch) the substrate so that the fluid heater element will now transfer quickly any residual heat it has into the substrate in preparation for the next jetting cycle. This decouple-for-heating heater stack structure will substantially enable the attainment of an adequate jetting frequency.
Accordingly, in an aspect of the present invention, a heater stack for a micro-fluid ejection device includes a first strata configured to support and form a fluid heater clement responsive to repetitive electrical activation and deactivation to produce repetitive cycles of fluid ejection from the device, and second strata overlying the first strata to provide protection of the fluid heater element from adverse effects of the repetitive cycles of fluid ejection, each cycle involving alternating periods of heat-up and cool-down of the fluid heater element. The first strata includes a substrate, heater substrata overlying the substrate, and a sacrificial layer of a predetermined material, particularly a preselected polymer, deposed between the substrate and heater substrata and processed so as to provide a decoupled relationship at least between the fluid heater element and the substrate. During the heat-up period of a respective cycle of fluid ejection, the decoupling results in at least the fluid heater element buckling away from and out of physical contact with the substrate due to thermal expansion of the fluid heater element in response to the electrical activation thereof enabling the fluid heater element to transfer heat energy for producing fluid ejection into the fluid substantially without transferring the heat energy into the substrate. During the next following cool-down period of the respective cycle of fluid ejection, the decoupling results in the fluid heater element de-buckling back toward and into physical contact with the substrate due to thermal contraction of the fluid beater element in response to the electrical deactivation thereof enabling the fluid heater element to transfer residual heat energy to the substrate and prepare for the following heat-up period of the next respective one of the cycles of fluid ejection.
In another aspect of the present invention, a method for making a heater stack includes processing one sequence of materials to produce first strata supporting and forming a fluid heater element, wherein processing the one sequence of materials includes depositing a sacrificial layer of a predetermined material, particularly a preselected polymer, on a substrate, depositing and patterning layers of resistive and conductive materials on the sacrificial layer to produce a heater substrata supporting and forming thereon the fluid heater element responsive to repetitive electrical activation and deactivation to produce repetitive cycles of fluid ejection from the device, each cycle involving alternating periods of heat-up and cool-down of the fluid heater element corresponding respectively to the repetitive electrical activation and deactivation of the fluid heater element, and decomposing the sacrificial layer of the predetermined material so as to produce a decoupled relationship between at least the fluid heater element and substrate. During the heat-up period of a respective one of the cycles of fluid ejection, the decoupled relationship results in at least the fluid heater element buckling away from and out of physical contact with the substrate due to thermal expansion of the fluid heater element in response to the electrical activation thereof enabling the fluid heater element to transfer heat energy for producing fluid ejection into the fluid substantially without transferring the heat energy into the substrate. During the next following cool-down period of the respective one of the cycles of fluid ejection, the decoupled relationship results in the fluid heater element de-buckling back toward and into physical contact with the substrate due to thermal contraction of the fluid heater element in response to the electrical deactivation thereof enabling the fluid heater element to transfer residual heat energy to the substrate and prepare for the following heat-up period of the next respective one of the cycles of fluid ejection. The method also includes processing another sequence of materials to produce second strata overlying the heater substrata and the fluid heater element thereof to provide protection of the fluid heater element from adverse effects of the repetitive cycles of fluid ejection.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numerals refer to like elements throughout the views.
Also, the present invention applies to any micro-fluid ejection device, not just to heater stacks for thermal inkjet printheads. While the embodiments of the present invention will be described in terms of a thermal inkjet printhead, one of ordinary skill will recognize that the invention can be applied to any micro-fluid ejection system.
Referring now to
More particularly the first strata 12 of the heater stack 10 includes a substrate 18, a heater substrata, generally designated 20, overlying the substrate 18, and a sacrificial layer 22 of a predetermined material, such as a suitable preselected polymer, deposed between the substrate 18 and the heater substrata 20. The substrate 18 includes a base layer 24 of silicon or the like which at its front surface 24a has a thermal barrier layer 26 thereon to reduce any heat being thermally conducted to the base layer 24 of the substrate 18 from the heater substrata 20 during the repetitive cycles of fluid ejection. The sacrificial layer 22 overlies the thermal barrier layer 26. The heater substrata 20 includes a resistor or resistive film or layer 28 overlying the sacrificial layer 22 and an electrical conductor film or layer 30 partially overlying the resistive layer 28. The conductor layer 30 has a gap 32 defined therein separating the conductor layer 30 into an anode portion 30a and a cathode portion 30b which overlie corresponding spaced apart lateral portions 28a, 28b of the resistive layer 28. The latter are interconnected and separated by a central portion 28c of the resistive layer 28 deposed under and co-extensive with the gap 32 of the conductor layer 30. The anode and cathode portions 30a, 30b of the conductor layer 30, being positive and negative terminals of ground and power leads electrically connected to a tab circuit (not shown), cooperate with the central portion 28c of the resistive layer 28 to form the fluid heater element 16 of the heater substrata 20 of the first strata 12. By way of example and not of limitation the various layers of the first strata 12 can be made of the various materials and have the ranges of thicknesses as set forth in above cited U.S. Pat. No. 7,195,343.
The second strata 14 of the heater stack 10 overlie the first strata 12 and more particularly the heater substrata 20 of the first strata 12 to protect the resistive fluid heater element 16 from the well-known adverse effects of fluid forces generated by the repetitive cycles of fluid ejection from the device. The second strata 14 include a passivation (protective) layer 34 and a cavitation (protective) layer 36. The function of the passivation layer 36 is primarily to protect the resistive and conductor layers 28, 30 of the first strata 12 from fluid corrosion. The function of the cavitation layer 36 is to provide protection to the fluid heater element 16 during fluid ejection operation which would cause mechanical damage to the heater stack 10 in the absence of the cavitation layer 36. By way of example and not of limitation, the various layers of the second strata 14 also can be made of the various materials and have the ranges of thicknesses as set forth in above cited U.S. Pat. No. 7,195,343.
Turning now to
Turning next to
Finally, turning to
Turing now to
Turning finally to
A principle underlying the design of some embodiments of the heater stack 10 of the present invention is that the resistive film or layer 28 is delaminated from the substrate 18, and particularly from the thermal barrier layer 26 on the base layer 24 of the substrate 18. The sacrificial layer 22 is made up of a suitable preselected polymer that is processed by being decomposed so as to provide a delaminated or decoupled relationship, thus providing a void, at least between the fluid heater element 16 and the substrate 18. For a polymer to be suitable for use as the sacrificial delamination layer 22, it should be compatible to current CMOS processing conditions i.e. its decomposition temperature should be below 400° C. However, it should also maintain its structural integrity during the heater deposition step at approximately 150° C. Under the current thermal processing conditions, polymers that may be used include polymethylmethacrylate (PMMA), polybutylene terephthalate (PBT), and polycarbonate. Different thermal processing conditions may lead to different polymer choices.
As a result of the presence of the decoupled relationship, during the heat-up period of a respective one of the cycles of fluid ejection the fluid heater element 16 buckles away from and out of physical contact with the substrate 18. This buckling is due to thermal expansion of the overlayers 68 and the material of the fluid heater element 16 in response to the electrical activation thereof. This, in turn, enables the fluid heater element 16 to transfer heat energy for producing fluid ejection into the fluid, without transferring as much heat energy into the substrate 18 as occurs in other ejector devices. The buckled condition of the fluid heater element 16 is depicted in
The foregoing description of several embodiments of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.