The present invention relates to a heater wire, or more particularly to a heater wire having significantly improved bending capacity even when its current carrying capacity is increased.
A heater wire known in the art (see, for example, Patent Document 1) is prepared as follows. A first heater wire is prepared by spirally winding a rectangular wire around a core wire and forming a meltdown layer around these wires, a second heater wire is prepared in the same manner as the first heater wire, the first heater wire and the second heater wire are twisted together, a signal wire is spirally wound around these twisted wires, and an insulating sheath is formed on the peripheral surface of these wires.
Patent Document 1 Japanese Patent Application Laid-open No. H10-340778
The above mentioned conventional heater wire includes a single rectangular wire. Therefore, the current carrying capacity and the bending capacity of the heater wire are substantially decided by the cross-sectional area of the rectangular wire. If the cross-sectional area of the rectangular wire is increased in order to increase the current carrying capacity, then the bending capacity decreases significantly.
It is an object of the present invention to provide a heater wire having significantly improved bending capacity even when its current carrying capacity is increased.
According to a first aspect of the present invention, there is provided a heater wire (100) obtained by twisting together a plurality of heating element wires (10) in which a rectangular wire (2) is spirally wound around a core wire (1), and forming an insulating sheath (3) on an outer peripheral surface thereof.
In the heater wire (100) according to the first aspect, the current carrying capacity can be increased by increasing the number of the heating element wires (10). As there is no need to increase the cross-sectional area of each of the rectangular wires (2), the bending capacity can be improved significantly.
According to a second aspect of the present invention, in the heater wire (100) according to the first aspect, there is provided a heater wire (100) in which a direction in which the rectangular wire (2) is wound and a direction in which the heating element wires (10) are twisted are opposite.
In the heater wire (100) according to the second aspect, because the direction in which the rectangular wire (2) is wound and the direction in which the heating element wires (10) are twisted are opposite, tight winding of the rectangular wire (2) does not occur when the heating element wires (10) are twisted, and therefore the flexibility can be maintained. Moreover, because the internal stress (residual stress) generated in the heater wire (100) are cancelled as they have different vector directions, the flexibility of the heater wire (100) can be maintained.
According to a third aspect of the present invention, therein provided a heater wire (200) obtained by twisting together a plurality of heating element wires (20) in which an insulation-coated rectangular wire (4) is spirally wound around a core wire (1), and forming an insulating sheath (3) on an outer peripheral surface thereof.
In the heater wire (200) according to the third aspect, the current carrying capacity can be increased by increasing the number of the heating element wires (20). As there is no need to increase the cross-sectional area of each of the rectangular wires (4), the bending capacity can be improved significantly. Moreover, because the heating element wires (20) are insulated from each other, abnormal heating at the breakage portion can be avoided when one of the heating element wires (20) breaks down.
According to a fourth aspect of the present invention, in the heater wire (200) according to the third aspect, there is provided a heater wire (200) in which a direction in which the rectangular wire (4) is wound and a direction in which the heating element wires (20) are twisted are opposite.
In the heater wire (200) according to the fourth aspect, because the direction in which the rectangular wire (2) is wound and the direction in which the heating element wires (10) are twisted are opposite, tight winding of the rectangular wire (4) does not occur when the heating element wires (20) are twisted, and therefore the flexibility can be maintained. Moreover, because the internal stress (residual stress) generated in the heater wire (100) are cancelled as they have different vector directions, the flexibility of the heater wire (200) can be maintained.
According to the present invention, it is possible to present a heater wire (100, 200) having significantly improved bending capacity even when its current carrying capacity is increased.
The present invention is described in detail below with reference to the embodiments shown in the drawings. Incidentally, it is not intended that the present invention be limited only to these embodiments.
The heater wire 100 has a structure in which three heating element wires 10 are twisted together, and an insulating sheath 3 is arranged on a peripheral surface of these wires.
a) and (b) are cross-sectional views along a line A-A shown in
Each heating element wire 10 has a structure in which a rectangular wire 2 is spirally wound around a core wire 1.
One method of manufacturing the heater wire 100 is a straw extrusion method in which the three twisted heating element wires 10 are covered by a straw-shaped insulating sheath 3, and this assembly is set in an extrusion device and extruded. When the heater wire 100 is manufactured by the straw extrusion method, the following two situations can occur. That is, as shown in
When, as shown in
A direction in which the rectangular wire 2 is spirally wound around in the heating element wire 10 and a direction in which the three heating element wires 10 are twisted in the heater wire 100 are opposite.
The core wire 1 is, for example, made of polyarylate fiber. The core wire 1 has an outer diameter s, for example, between 0.10 millimeter (mm) and 0.27 mm.
The rectangular wire 2 is, for example, an annealed copper rectangular wire. The rectangular wire 2 has a thickness t, for example, between 0.023 mm and 0.060 mm, and a width w, for example, between 0.15 mm and 0.75 mm.
Thus, “the thickness t of the rectangular wire/the outer diameter s of the core wire” is between 0.085 and 0.600, “the width w of the rectangular wire/the outer diameter s of the core wire” is between 0.556 and 7.500, and “the width w of the rectangular wire/the thickness t” is between 5.00 and 15.00.
The insulating sheath 3 is, for example, made of polyamide resin, and is formed by extrusion.
The heater wire 100 has an outer diameter D of, for example, 0.9 mm.
An experiment for measuring the flexibility was conducted at a temperature of 22 degrees Celsius on a heater wire 100 having certain dimensions. The dimensions of the heater wire 100 were as follows the outer diameter s of the core wire=0.17 mm, the thickness t of the rectangular wire=0.027 mm, the width w of the rectangular wire=0.32 mm, a winding pitch p of the rectangular wire=0.45 mm, “the thickness t of the rectangular wire/the outer diameter s of the core wire”=0.159, “the width w of the rectangular wire/the outer diameter s of the core wire”=1.882, “the width w of the rectangular wire/the thickness t”=6.33. The horizontal distance Q was found to be 82.7 mm.
An experiment for measuring the bending capacity was conducted at a temperature of 22 degrees Celsius on a heater wire 100 having an outer diameter D of 0.9 mm and in which each of the three heating element wires 10 had certain dimensions. The dimensions of the heating element wires 10 were as follows: the outer diameter s of the core wire=0.17 mm, the thickness t of the rectangular wire=0.027 mm, the width w of the rectangular wire=0.32 mm, the winding pitch p of the rectangular wire=0.45 mm, “the thickness t of the rectangular wire/the outer diameter s of the core wire”=0.159, “the width w of the rectangular wire/the outer diameter s of the core wire”=1.882, “the width w of the rectangular wire/the thickness t”=6.33. It was found that the heater wire 100 did not break even when the reciprocating number reached 1,50,000.
A bending radius R in the above experiment for measuring the bending capacity is 5 mm, so that a bending circumference (2π·R) of the heater wire 100 would be 31.4 mm. Accordingly, “the outer diameter C of the heater wire 100/the bending circumference of the heater wire 100” would be 2.9%. If “the outer diameter D of the heater wire 100/the bending circumference of the heater wire 100” is 2.9% or below, the conditions will be more relaxed than the conditions used in the above experiment, so that the wire will not break even for a reciprocating number of 1,50,000.
As a first comparative example, an experiment for measuring the bending capacity was conducted at a temperature of 22 degrees Celsius on a heater wire having only one heating element wire 10 having certain dimensions. The dimensions of the heating element wire 10 were as follows: the outer diameter s of the core wire=0.17 mm, the thickness t of the rectangular wire=0.027 mm, the width w of the rectangular wire=0.31 mm, and the winding pitch p of the rectangular wire=0.45 mm. This wire broke at a reciprocating number of 41,500. This means that, the current carrying capacity (conducting surface area) increased about 3.1 times and the bending capacity ratio increased about 3.8 times or more in the heater wire 100 of the first embodiment as compared to the heater wire of the first comparative example.
As a second comparative example, an experiment for measuring the bending capacity was conducted at a temperature of 22 degrees Celsius on a heater wire having only one heating element wire 10 having certain dimensions. The dimensions of the heating element wire 10 were as follows: the outer diameter s of the core wire=0.17 mm, the thickness t of the rectangular wire=0.060 mm, the width w of the rectangular wire=0.36 mm, and the winding pitch p of the rectangular wire=0.45 mm. This wire broke at a reciprocating number of 18,300. This means that, the current carrying capacity (conducting surface area increased 1.2 times and the bending capacity increased about 8.5 times or more in the heater wire 100 of the first embodiment as compared to the heater wire of the second comparative example.
The heater wire 100 of the first embodiment has the following advantages.
The heater wire 200 has a structure in which three heating element wires 20 are twisted together, and the insulating sheath 3 is arranged on a peripheral surface of these wires.
a) and (b) are cross-sectional views along a line A-A shown in
The heating element wire 20 has a structure in which an enamel-coated rectangular wire 4 is spirally wound around the core wire 1.
One method of manufacturing the heater wire 200 is the straw extrusion method in which the three twisted heating element wires 20 are covered a straw-shaped insulating sheath 3, and this assembly is set in an extrusion device and extruded. When the heater wire 200 is manufactured by the straw extrusion method, the following two situations can occur. That is, as shown in
When, as shown in
A direction in which the enamel-coated rectangular wire 4 is spirally wound in the heating element wire 20 and a direction in which the three heating element wires 20 are twisted in the heater wire 200 are opposite.
The core wire 1 is, for example, made of polyarylate fiber. The core wire 1 has an outer diameter s, for example, between 0.10 mm and 0.27 mm.
The enamel-coated rectangular wire 4 is, for example, an annealed copper rectangular wire having a coating of polyester imide resin. The enamel-coated rectangular wire 4 has a thickness t, for example, between 0.023 mm and 0.060 mm, and a width w, for example, between 0.15 mm and 0.75 mm.
Thus, “the thickness t of the rectangular wire/the outer diameter s of the core wire” is between 0.085 and 0.600, “the width w of the rectangular wire/the outer diameter s of the core wire” is between 0.556 and 7.500, and “the width w of the rectangular wire/the thickness t” is between 5.00 and 15.00.
The insulating sheath 3 is made of, for example, polyamide resin, and is formed by extrusion.
The heater wire 200 has an outer diameter of, for example, 0.9 mm.
An experiment for measuring the flexibility explained with reference to
As a third comparative example, an experiment for measuring the bending capacity was conducted at a temperature of 22 degrees Celsius on a heater wire having only one heating element wire 20 having certain dimensions. The dimensions of the heating element wire 20 were as follows: the outer diameter s of the core wire=0.17 mm, the thickness t of the rectangular wire=0.027 mm, the width w of the rectangular wire=0.31 mm, and the winding pitch p of the rectangular wire=0.45 mm. This wire broke at a reciprocating number of 1,66,000. This means that, the current carrying capacity (conducting surface area) increased about 3.1 times and the bending capacity ratio increased about 3.8 times or more in the heater wire 200 of the second embodiment as compared to the heater wire of the third comparative example.
As a fourth comparative example, an experiment for measuring the bending capacity was conducted at a temperature of 22 degrees Celsius on a heater wire having only one heating element wire 20 having certain dimensions. The dimensions of the heating element wire 20 were as follows the outer diameter s of the core wire=0.17 mm, the thickness t of the rectangular wire=0.050 mm, the width w of the rectangular wire=0.36 mm, and the winding pitch p of the rectangular wire=0.45 mm. This wire broke at a reciprocating number of 73,200. This means that, the current carrying capacity (conducting surface area) increased 1.2 times and the bending capacity increased about 8.5 times or more in the heater wire 200 of the second embodiment as compared to the heater wire of the fourth comparative example.
The bending capacity of the heater wire 200 of the second embodiment increased 14 times or more as compared to the same for the first comparative example and increased 33 times or more as compared to the same for the second comparative example.
The heater wire 200 of the second embodiment has the following advantages in addition to the advantages of the first embodiment.
When the desired current carrying capacity is small, as shown in
One method of manufacturing the heater wire 100 (or 200) is the straw extrusion method in which the two twisted heating element wires 10 (or 20) are covered by a straw-shaped insulating sheath 3, and this assembly is set in an extrusion device and extruded. When the heater wire 100 (or 200) is manufactured by the straw extrusion method, the following two situations can occur. That is, as shown in
When, as shown in
When the desired current carrying capacity is large, as shown in
One method of manufacturing the heater wire 200 (or 100) is the straw extrusion method in which the four or more twisted heating element wires 20 (or 10) are covered by a straw-shaped insulating sheath 3, and this assembly is set in an extrusion device and extruded. When the heater wire 200 (or 100) is manufactured by the straw extrusion method, the following two situations can occur. That is, as shown in
When, as shown in
In case of the heating element wires shown in
The heater wire according to the present invention can be used as a planer heater in appliances such as electric blankets, electric carpets, automobile seat heaters, toilet seat heaters, water heaters for warm water flushing toilets, heaters used in copying machines, heaters used in automatic vending machines, heaters used as instantaneous heaters.
1 Core wire
2 Rectangular wire
3 insulating sheath
4 Enamel-coated rectangular wire
10, 20 Heating element wire
100, 200 Heater wire
Number | Date | Country | Kind |
---|---|---|---|
2011-113993 | May 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/062537 | 5/16/2012 | WO | 00 | 11/4/2013 |