Technical Field
Embodiments described in the present disclosure are directed generally to catalytic heaters having replaceable catalytic cartridges for heating applications.
Description of the Related Art
A number of fluids that are normally found in gaseous form are commonly stored and transported under pressure as liquids, including, for example, methane, butane, propane, butadiene, propylene, and anhydrous ammonia. Additionally, fuel gasses comprising one or more constituent gasses are also stored and transported under pressure as liquids, including, e.g., liquefied petroleum gas (LPG), liquefied natural gas (LNG), and synthetic natural gas (SNG). Of these, LPG is perhaps the most commonly used. Accordingly, the discussion that follows, and the embodiments described, refer specifically to LPG. Nevertheless, it will be understood that the principles disclosed with reference to embodiments for use with LPG tanks can be similarly applied to tanks in which other liquefied gases are stored or transported, and are within the scope of the invention.
LPG is widely used for heating, cooking, agricultural applications, and air conditioning, especially in locations that do not have natural gas hookups available. In some remote locations, LPG is even used to power generators for electricity. LPG is typically held in pressurized tanks that are located outdoors and above ground. Under one atmosphere of pressure, the saturation temperature of LPG, i.e., the temperature at which it boils, is around −40° C. As pressure increases, so too does the saturation temperature. LPG is held in a liquid state by gas pressure inside the tank. As gas vapor is drawn from the tank for use, the pressure in the tank drops, allowing more of the liquefied gas to boil to vapor, which increases or maintains pressure in the tank.
As the gas boils, the phase change from liquid to gas draws thermal energy from the remaining liquid, which tends to reduce the temperature of the LPG in the tank. If LPG temperature drops, the boiling slows or stops, as the LPG temperature approaches the saturation temperature. Thus, boiling LPG tends to increase pressure and saturation temperature, while at the same time tending to decrease the actual temperature of the LPG in the tank, until an equilibrium temperature is reached, at which point the saturation temperature is equal to the current temperature of the LPG. Provided the energy expended to vaporize the gas does not exceed the thermal energy absorbed by the tank externally, from, for example, sunlight and the surrounding air, the LPG will continue to boil as vapor is drawn off, until the tank is empty. On the other hand, if more energy is expended to vaporize the gas than is replaced by external sources, the temperature in the tank will drop toward the equilibrium temperature, resulting in less energetic boiling, and a drop in tank pressure. If tank pressure drops too low, it can interfere with the operation of appliances and equipment that draw gas for use, such as furnaces, ovens, ranges, etc.
For purposes of the following disclosure, the maximum continuous rate at which gas can flow from a supply tank using only ambient energy to vaporize the LPG, without causing the tank pressure to drop below an acceptable level, will be referred to as the maximum unassisted flow rate. It will be recognized that this rate will vary according to the ambient temperature near the tank.
Low tank pressure is a particular concern in regions where ambient temperature can drop to very low levels, such as during the winter at high latitudes, or at very high altitudes. For example, when ambient temperature drops very low, the heat energy available to warm an LPG storage tank is reduced, while at the same time, the cold temperature prompts an increased draw of gas to fuel furnaces to warm homes and other buildings. As gas pressure drops below the regulated pressure of the gas line, flames in furnaces, water heaters, and other gas consuming appliances reduce in size, producing less heat and prompting users to open gas valves further, which only accelerates the pressure drop. Eventually, tank temperature can drop below the boiling point of unpressurized gas, at which point, no gas will flow. It can be seen that, as ambient temperature drops, the potential for unacceptable loss of pressure increases, as does the potential demand for gas, such as for heating.
Generally, disadvantages of many of the systems available are often related to the difficulty of providing heat in the close vicinity of an LPG tank without creating a condition that would be dangerous in the event of a tank leak or tank over-pressure. The complexity of systems in which a heat source is remotely located not only increases the cost, but also the likelihood of malfunction. Additionally, vaporizers and heaters that employ electric heating elements, or that are electrically controlled, are impractical for use in applications where electrical power is not available. In such cases, an electric generator is required to provide the electricity, resulting in costly efficiency losses.
One problem associated with electric tank heaters, in particular, is that the heating element is in direct contact with the tank wall. Temperature differentials between the element and the tank can promote water condensation, which can be trapped between the heating element and the surface of the tank, resulting in deterioration of the paint and subsequent corrosion of the steel tank wall. Most jurisdictions have stringent regulations regarding the use of combustion sources near LPG tanks and gas transmission lines. These regulations dictate explosion-proof requirements for electrical connections, minimum distances to open flames, etc. The restrictions vary according to the size of a tank and proximity to public areas.
One problem associated with other tank heaters, in particular, is that servicing the heater and replacing integral components can be burdensome and costly in situations where the entire heater or other component must be sent to an off-site location from the storage tank for servicing. As such, the heater will be out of commission during such servicing, which negatively affects delivery of the fuel in the tank to a load.
According to an embodiment, a catalytic heating system is provided, including a catalytic tank heater removably coupled to a storage tank. When a load draws sufficient vapor to cause the tank to self refrigerate and lose pressure, the catalytic tank heater is operated to warm the tank and restore pressure. Vapor from the tank is provided as fuel to the tank heater, and can be regulated to increase heat output as tank pressure drops.
In some aspects, the catalytic tank heater includes at least one replaceable catalytic heater cartridge, having a catalyst layer with catalyst coating, for easy removal and replacement of the catalytic heater cartridge once the catalyst layer is no longer useful. A service technician (or even a customer) can remove the catalytic tank heater from the storage tank and simply remove the contaminated catalytic heater cartridge and replace it with a new catalytic heater cartridge, all while on-site and near the location of the tank. This provides particular benefits and advantages over existing systems (discussed further below). For example, the customer is not required to have the heater or heater elements serviced at a distant location away from the location of the storage tank, which may be a remote location in many instances. Furthermore, the heater will only be removed and inoperable for a relatively short period of time while the cartridge is being replaced. Current systems result in the heater being inoperable for weeks, or even months, while the sensitive catalytic material is merely replaced at a different location. Accordingly, providing a catalytic tank heater having at least one replaceable catalytic heater cartridge for easy replacement on-site provides at least these advantages over existing systems.
In some aspects, the catalytic tank heater may have a cabinet having an open space defining a plenum chamber. The replaceable catalytic heater cartridge is coupled to the cabinet of the heater and covers the open space to provide a substantially gas-tight seal to the plenum chamber. The replaceable catalytic heater cartridge faces the storage tank and is spaced therefrom a distance sufficient to permit passage of air between the catalytic heater cartridge and the storage tank.
In some aspects, a main fuel supply line is coupled to the plenum chamber and is configured to deliver fuel to the chamber from the storage tank, or from another fuel supply. A fuel distribution header, having a fuel supply port coupled to the main fuel supply line, is positioned in the plenum chamber and is configured to deliver fuel to the plenum chamber. In some aspects, a heating element is positioned at least partially within the plenum chamber and is configured to heat the catalyst layer of the replaceable catalytic heater cartridge and to initiate combustion when fuel is supplied to the plenum chamber. After multiple or continuous uses of the heater, the heater cartridge can be quickly and easily replaced with a new cartridge for further use of the heater. Methods of replacing the cartridge and heating a tank with the replaceable cartridge are also provided, as further discussed below.
According to another embodiment, a catalytic heater is provided having at least one replaceable catalytic heater cartridge for easy removal and replacement of the catalytic heater cartridge. The catalytic heater and the replaceable catalytic heater cartridge in this embodiment may have the same or similar features as the catalytic tank heater of the heater system described above and in regards to
With the known systems shown in
These cumbersome and complicated procedures of these existing systems are required for at least two reasons. First, the catalyst layer 132 is quite difficult to handle because it is comprised of fibrous refractory material that is loose, pliable, soft and friable. The catalyst layers are typically comprised of a woven ceramic fiber pad that is treated with chemicals that attach to the fibers, such as platinum and palladium, which act as catalysts for the reaction between a combustion gas and oxygen. When such material is contaminated, it requires replacement by uncontaminated catalyst material, which requires servicing by skilled technicians at the manufacturer's factory or at a different servicing location. The second reason existing systems are cumbersome and complicated is because of the configuration of the existing heater system 104 and its heater element 106. As shown in
For purposes of illustration, the replaceable catalytic cartridge 208 is shown as a shadow box positioned within the cabinet 212. According to one method of operation, when the replaceable catalytic cartridge 208 requires replacement, a service technician or customer can simply remove the catalytic tank heater 206 from the tank 202 and replace the used replaceable catalytic cartridge 208 with a new replaceable catalytic cartridge. Alternatively, the service technician can disconnect only the top side walls 216 from the straps 210, open the cabinet 212, replace the cartridge 208 and reconnect the top side walls 216 to the straps 210; complete removal of the cabinet 212 is not required. The catalytic tank heater 206 can then be reattached to the tank 202 without the need to remove the catalytic tank heater 206 from the location of the tank 202 for servicing, as discussed above regarding the existing systems of
According to one method of operation, the tank 202 supplies vaporized gas to the load as required, according to known processes, absorbing heat from its environment to boil the liquefied gas as it is drawn. As long as the gas pressure remains above a selected threshold, the pressure at the control terminal 229 of the second regulator valve 224 is sufficient to hold the valve closed. However, in the event the pressure drops below the threshold, the valve 224 opens and catalytic tank heater 206 is activated to produce radiant heat by catalytic oxidation of the gas. As pressure drops in the tank 202, the reduction of pressure, as transmitted by the feedback line 227 to the control terminal 229 of the second regulator valve 224, opens the valve further, increasing the gas flow to the catalytic tank heater 206, and thereby increasing the amount of heat produced. As heat from the catalytic tank heater 206 is absorbed by the tank 202, it is conducted to the interior of the tank, and transferred to the liquefied gas inside, warming the gas and increasing the equilibrium temperature, resulting in an increased rate of boiling, thereby increasing tank pressure. The increased tank pressure is fed back, via the feedback line 227, to the second regulator valve 224, which reduces gas flow as the pressure rises, thereby regulating the tank pressure.
An optional alternate fuel source 234 is shown, coupled to the first regulator valve 222 via alternate gas supply line 236a, shown in dotted lines. In the case where a storage tank is used to store liquefied gas that is not appropriate for use in a catalytic heater system, such as, e.g., anhydrous ammonia, vapor from the storage tank cannot be used to operate the catalytic tank heater 206. In such a case, the feedback line 227 is coupled directly to the outlet 230 of the tank 202, and the alternate supply line 236b replaces the line 236a of the supply line 228. The heater control circuit 220 operates substantially as described above to control the catalytic tank heater 206 to warm the tank 202, but draws fuel from the alternate fuel source 234. Additional heater control circuits are described in the '363 application, which include features that may be used with the features of the present disclosure, such as with respect to the features pertaining to FIGS. 7, 11, 16, and 19 of the '363 application, for example. It will be appreciated that some or all of the features and embodiments disclosed in the '363 application may be utilized with the components of the present disclosure, particularly as pertaining to operation with the catalytic tank heater 206 and replaceable catalytic cartridge 208 of the present disclosure.
In some aspects, the catalytic heater cartridge 208 covers the plenum chamber 240 to provide a substantially gas-tight seal to the plenum chamber (
In some aspects, to remove a used catalytic heater cartridge 208, a person removes the fasteners 259 and L-brackets 258, then moves the second portion 256 of the cartridge 208 in a direction away from the heater 206, and then slides the first portion 250 out of the flange 252. When the used catalytic heater cartridge 208 is detached, the heating element and other components of the heater can be more easily serviced and/or replaced than with existing systems. To attach a new cartridge to the catalytic tank heater 206, the person can slide the first portion 250 into the flange 252 and then secure the second portion 256 with the L-brackets 258 and fasteners 259. Replacing the used catalytic heater cartridge 208 can be accomplished without completely removing the catalytic tank heater 206 from tank 202 (perhaps by disengaging only one of the straps 210). More importantly, replacing the used catalytic heater cartridge 208 can be accomplished without removing the catalytic tank heater 206 from the location where the tank 202 is situated. This provides all the advantages discussed above regarding the replaceability of the catalytic heater cartridge 208 from catalytic tank heater 206, all while servicing the system on-site.
It will be appreciated that the catalytic heater cartridge 208 can be attached and removed from the catalytic tank heater 206 by other means and mechanisms, such as with other fasteners. The catalytic heater cartridge 208 may also be slidably engaged to the catalytic tank heater 206, such as a cassette. Accordingly, it is possible that it is not required to detach the catalytic tank heater 206 from the tank 202 because the catalytic heater cartridge 208 may simply slide into place from any position around the perimeter of the catalytic tank heater 206.
In some aspects, a heating device 261 having a heating element 260 is coupled to the cabinet 212. The heating element 260 is positioned at least partially or wholly within the plenum chamber 240 and is configured to heat and initiate combustion in the catalyst layer 242 when fuel is supplied to the plenum chamber 240. The heating element 260 may be an electric heating element having terminals 262 connected to a power source. At least a portion of the heating element 260 may extend through a gas-permeable diffusion and insulation layer 264 contained in the plenum chamber 240 (
As the temperature of the catalyst layer 242 reaches a selected threshold by conductive heat supplied by the heating element 260, gas is provided to the plenum chamber 240 via the fuel distribution header 266. The gas rises through the insulation layer 264 and to the heated catalyst layer 242 for combustion. The catalyst layer 242 is permeable to air, permitting air to pass into it, or as needed, through it to combust or react with the fuel provide from the plenum chamber. Once the heat output by the system is self-sustaining, electric power to the heating element 260 may be turned off or shut down so that no electrical component is active within the plenum chamber 240. The heat produced by the combustion of gas and oxygen, as facilitated by the catalyst material coating in the catalyst layer 242, is then transmitted by radiation to the wall 203 of the tank 202 to heat the LPG contained therein. The above heating operation may be accomplished and controlled by the control circuit 220 of
As best shown in
Depending upon the heating requirements of the system (as further described above), the gas valve 274 may be regulated by the heater control 220 to provide a selected volume of gas to the plenum chamber 240 only via the pilot fuel line 278. As such, catalytic combustion may be initiated by the gas provided by the pilot fuel line 278 and the heat provided by the heating element 260. Once combustion or reaction is initiated and if the heater control 220 determines that the pressure level in the tank 202 is below the threshold value, the gas valve 274 may be regulated to provide gas to the plenum chamber 240 via the main fuel supply line 276 to the fuel distribution header 266. At such time, gas may continue to be provided to the plenum chamber 240 via the pilot fuel line 278 concurrently with the main fuel line 276, although not required.
As shown best in
A thermoelectric device 286 may be coupled to the back panel 215 of the inner cabinet 213. Operation of thermoelectric devices are well known, and are commonly used to perform various functions, according to thermoelectric principles. The thermoelectric device 286 may generate electricity to power components of the system, such as the control circuit 220 and the gas valve 274, using waste heat produced by the catalytic tank heater 206, commonly known as the Seebeck principle. The thermoelectric device 286 may have the same or similar configuration as the thermoelectric device shown in
The various embodiments described above can be combined to provide further embodiments. The U.S. patent application referred to in this specification and/or listed in the Application Data Sheet is incorporated herein by reference, in its entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1948298 | Howard | Feb 1934 | A |
2463477 | Buttner | Mar 1949 | A |
2564863 | Strobel | Aug 1951 | A |
3253641 | Gutzeit | May 1966 | A |
3796207 | Olson | Mar 1974 | A |
4833299 | Estes | May 1989 | A |
5458862 | Glawion | Oct 1995 | A |
5569020 | Griffin et al. | Oct 1996 | A |
5878739 | Guidry | Mar 1999 | A |
6119598 | Reynolds et al. | Sep 2000 | A |
6293471 | Stettin et al. | Sep 2001 | B1 |
6516754 | Chadwick | Feb 2003 | B2 |
7066729 | Rajewski | Jun 2006 | B1 |
7238020 | Yang et al. | Jul 2007 | B2 |
7248791 | Toth | Jul 2007 | B2 |
7319814 | Luo | Jan 2008 | B2 |
7410619 | Reiser et al. | Aug 2008 | B2 |
9523498 | Zimmer et al. | Dec 2016 | B2 |
20010045061 | Edlund | Nov 2001 | A1 |
20020124575 | Pant et al. | Sep 2002 | A1 |
20060076716 | Hysky et al. | Apr 2006 | A1 |
20090078247 | Sun | Mar 2009 | A1 |
20110132203 | Tippmann, Sr. et al. | Jun 2011 | A1 |
20110311928 | Zimmer | Dec 2011 | A1 |
20170241639 | Zimmer et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
2 659 677 | Sep 2010 | CA |
6-174233 | Jun 1994 | JP |
2002-181293 | Jun 2002 | JP |
2002-340294 | Nov 2002 | JP |
2004-257642 | Sep 2004 | JP |
2004-360878 | Dec 2004 | JP |
2009003481 | Jan 2009 | WO |
Entry |
---|
Two page sales flyer from Leo's Service (a Canadian company), advertising “The Leo Propane Pressure Recovery System.” Obtained on about Jun. 23, 2010. Date of first printing unknown. |
Number | Date | Country | |
---|---|---|---|
20140212822 A1 | Jul 2014 | US |