Heater with safety mechanisms

Information

  • Patent Grant
  • 8461494
  • Patent Number
    8,461,494
  • Date Filed
    Wednesday, March 17, 2010
    14 years ago
  • Date Issued
    Tuesday, June 11, 2013
    11 years ago
Abstract
An indoor or outdoor heater with a safety bar, a tiltable heater head, a power controlling and power limiting device serving as safety mechanisms.
Description
FIELD OF INVENTION

The invention relates generally to a heating device.


BACKGROUND OF THE INVENTION

Freestanding Liquid Propane gas (LPG) heaters are used for heating patio surroundings. Though popular, they have quite a number of limitations. First, conventional LPG patio heaters do not operate with an optimal efficiency to adequately heat a sizable area. they have approximately 40% heat energy conversion rate. Second, in the presence of wind, the efficiency of LPG patio heater is further reduced. Third, LPG patio heaters need to be refilled and the frequency of which depends on the extent of usage. The cost to operate an LPG patio heater is approximately eight times greater than operating a Short-Wave-Infrared (SWI) heater. Fourth, conventional LPG patio heaters tend to be rather bulky and therefore difficult to relocate due to its requirement to house a large and heavy LPG tank. Fifth, limited by the requirement to house a large and heavy LPG tank, many aesthetically more appealing designs cannot be implemented. Sixth, due to the requirement to dissipate exhaust fumes, LPG heaters can only be safely operated in an outdoor environment. This substantially reduces the utility opportunities of LPG heaters.


Many existing SWI heater systems are wall mounted SWI heaters, or tripod mounted SWI heaters. Wall mounted SWI heaters can only be used where they are mounted. Thus, they can serve limited purposes. Many SWI heaters that are not wall-mounted are supported by simple tripod stands. Tripod stands are obtrusive and can be accidentally tripped thus create both a safety hazard and a fire hazard.


SWI heaters have a heat energy conversion rate of approximately 92% and can be used indoors or outdoors. SWI heaters can be directly aimed toward an object to be heated whereas LPG heaters are designed to heat the ambient environment surrounding the heaters and whatever objects within the ambient environment heating zone. However, this means the object to be heated must be in the path of the infrared light waves. Wall mounted and tripod mounted units are often not capable of being in a close enough proximity to the objects to be heated.


SWI heaters rely on electricity as its energy source. Most home circuits have a 15 ampere limitation and commercial offices may have a 20 ampere limitation. With 110-120 VAC power supplied in average households, SWI heaters cannot consume a power rating exceeding 1650-1800 watts. Given voltage fluctuations do occurred for various reasons, a theoretical limit of 1650 watt is possible but a more prudent limit of 1500 watts may be more appropriate to provide added safety precautions. Limiting the maximum wattage to less than 1500 watts limits the utility value of SWI heaters. However, allowing SWI heaters to function at the prudent maximum residential power rating of 1500 watts might raise some legitimate safety concerns. To address these concerns, the present invention provides a number of safety mechanisms to eliminate the safety concerns while allowing SWI heaters to function at the prudent maximum power ratings of 1500 watts for residential use.


Of course the present invention may be used in commercial settings and industrial settings. If so, the maximum power consumption may be raised far above that for residential use. The safety mechanisms addressed in the present invention would become even more important.


OBJECTION OF THE INVENTION

It is a first object of the present invention to provide a heater without any exhaust fumes thus usable either indoors or outdoors.


It is a second object of the present invention to provide a support assembly with wheels for ease of relocation convenience.


It is a third object of the present invention to provide a heater head with a predetermined degrees of rotational freedom so heat can be directed to a desired area.


It is a fourth object of the present invention to provide a safety bracket so that a minimum distance may be maintained between the heater head and an adjacent article.


It is a fifth object of the present invention to provide a thermocouple so that the heater head may be turned off if the thermocouple senses a temperature level reaching a threshold dangerous level.


It is a sixth object of the present invention to provide a heater much more efficient to use than conventional LPG heaters.


It is a seventh object of the present invention to provide an extendable safety bar.


It is an eighth object of the present invention to provide an extendable utility bar with distance markings for usage convenience.


It is a ninth object of the present invention to deviate from the large and bulky bottom design theme due to the requirement to house a large and bulky LPG tank.


It is a tenth object of the present invention to use a continuous energy supply source so that exchanging for a resupply tank of energy source is not needed.


It is an eleventh object of the present invention to use an energy source that is more efficient in heat generation than a LPG energy source.


Other objects of the present invention would become self evident upon a review of the following written specification, drawings and claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a diagram of a patio heating device in accordance with an embodiment of the present invention.



FIG. 2 illustrates a side view of a short-wave-infrared (SWI) heater support assembly in accordance with an embodiment of the present invention.



FIG. 3 illustrates an exemplary embodiment of a retracted short-wave-infrared (SWI) heater support assembly in accordance with an embodiment of the present invention.



FIG. 4 illustrates a first alternative embodiment of the heater head with a safety guard.



FIG. 5 illustrates a second alternative embodiment of the heater head with a safety guard.



FIG. 6 illustrates a top view and a side view of a safety guard of the second alternative embodiment of the heater head.



FIG. 7 illustrates a side view showing how a heater is mounted to a support assembly and the presence of a rotatable angle limiter.



FIG. 8 illustrates a side view of how a safety guard maintains a minimum distance between a heater and an adjacent article.



FIG. 9 illustrates a side view of how an alternative and longer safety guard may be installed on a heater.



FIG. 10 illustrates a side view of how the alternative and longer safety guard maintains a minimum distance between a heater and an adjacent article while the heater emits heat to the article at a downward angle.



FIG. 11 illustrates a side view of another alternative safety guard which extends perpendicular to an article and the heater head emits heat directly to the article instead of at a downward angle.



FIG. 12 illustrates a top view and a side view of an adjustable safety guard of a heater head.



FIG. 13 illustrates a side view of the adjustable safety guard that is installed on a heater head which has a 90 degrees of rotational freedom along an axle on the support assembly.



FIG. 14 illustrates a circuit diagram of a thermocouple device which opens an otherwise closed circuit when a predetermined temperature is reached.





DETAILED DESCRIPTION OF THE INVENTION

Before describing in detail embodiments by way of examples that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of method steps and apparatus components related to a system of short-wave-infrared (SWI) heater with support assembly. Accordingly, the apparatus components and method steps have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to the understanding of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description given herein. Thus, for simplicity and clarity of illustrations, common and well-understood elements that are useful or necessary in a commercially feasible embodiment may not be depicted in order to facilitate a less obstructed view of these various embodiments. Also, a device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.


It will be appreciated that embodiments by way of examples of the present invention described herein may comprise of one or more conventional processors with unique stored program instructions that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the system of short-wave-infrared (SWI) heater with support assembly. The non-processor circuits may include, but are not limited to, clock circuits, power source circuits, and user input devices. As such, these functions may be interpreted as steps of heating a patio using a short-wave-infrared (SWI) heater with support assembly. Alternatively, some or all functions could be implemented by a machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used. Thus, methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.


Generally speaking, pursuant to the various embodiments, the present invention discloses a system of short-wave-infrared (SWI) heater with support assembly. The support assembly, for example, comprises a mounting pole and an angled pole section providing an offset to the SWI heater.


Even though the present invention provides numerous examples of SWI heaters, a person of ordinary skill in the art readily recognizes that the safety mechanism disclosed herein would eliminate safety concerns in heater heads using other means of generating heat, including but not limited to ceramic, filament, liquid propane gas, etc.


Referring to FIG. 1, a diagram of a heating device is shown in accordance with an embodiment of the present invention. The heating device comprises a head unit 105. Head unit 105 may comprise a heating unit 110 such as a SWI heater. Head unit 105 can be used in a manner similar to a conventional LPG patio heater. An embodiment of the present invention, heating unit 110 is a SWI heater and an adjoining assembly that can be analogous to conventional LPG patio heaters but with additional features. The present invention enables heating more effectively, more directly and more economically than a conventional LPG heater.


Head unit 105 can further comprise a shield 115 surrounding heating unit 110 to protect heating unit 110 from, say, light rain or morning dew, bugs, etc. Shield 115 can be made of aluminum or any suitable man-made or natural material.


An offset assembly 120 is coupled to head unit 105 to provide an offset to head unit 105. Those skilled in the art will appreciate that offset assembly 120 allows head unit 105, which comprises heating unit 110, to be placed in close proximity to the area being heated without being obtrusive. Offset assembly 120, for example, comprises an angled pole section which ensures that head unit 105 is substantially away or ‘offset’ from the rest of the patio heating device. In an embodiment of the present invention, head unit 105 is mounted on offset assembly 120 via a mounting device. The mounting device allows a user to adjust the position of head unit 105.


A mounting pole 125 is releasably coupled to offset assembly 120 for easy portability and storage. Mounting pole 125 can be, for example, a telescoping pole or can comprise a plurality of sections such that the sections can be fastened or screwed together. Height of mounting pole 125 is adjustable by rearranging height placement of the plurality of sections.


Furthermore, a base unit 130 is coupled to mounting pole 125. Base unit 130, for example, can comprise a plurality of wheels that also enable easy portability and storage. In an embodiment of the present invention, a weighted body, for example, a weighted disc, is attached to the base unit 130. Those skilled in the art would realize that the weighted body can provide stability to the patio heating device.


Head unit 105, for example, comprises a shield 115, mounting pole 125 and base unit 130 may be made of powder-coated steel, stainless steel or other suitable material which is durable, weather proof and economical.


Turning now to FIG. 2, a side view of a short-wave-infrared (SWI) heater with support assembly is shown in accordance with an embodiment of the present invention. A shield 205 is used to house a SWI heater 210. Shield 205 can be made of aluminum or any other suitable material. Shield 205 can provide SWI heater 210 protection from light rain, morning dew, etc. Shield 205 together with SWI heater 210 forms head unit 105 of FIG. 1. Those skilled in the art shall realize that the shape of shield 205 is not restricted to the one shown in FIG. 2 and can be of any shape, provided it protects SWI heater 210.


In an embodiment of the present invention, shield 205 can be mounted on angled pole section 220 via a rotating collar mount 215, for example, a 45-degree rotating collar mount. Rotating collar mount 215 allows head unit 105, to be rotated about rotating collar mount 215 so that a user can adjust head unit 105 to direct the heat towards an area to be heated. Moreover, angled pole section 220 can have a 110 to 120 degrees bend to provide an offset to head unit 105. Those of ordinary skill in the art shall realize that having head unit 105 offset from rest of the short-wave-infrared (SWI) heater support assembly allows head unit 105 to heat from overhead instead of directly adjacent to, for example from the side of, the area to be heated.


An embodiment of the present invention also comprises a positioning bar 225 coupled to SWI heater 210. Positioning bar 225 can allow the user to adjust the position of SWI heater 210 without having to touch SWI heater 210, which can get hot while SWI heater 210 is operating.


The mounting pole shown in the embodiment depicted in FIG. 2 comprises three sections, an uppermost section 230, a middle section 235 and a bottommost section 240, in addition to angled pole section 220. The three sections enable the mounting pole to be adjustable in height, for example the three sections can be telescoping or can be screwed together. Angled pole section 220 is coupled to the uppermost section 230. The mounting pole, for example a telescoping pole, allows the SWI heater support assembly to be compact for shipping and can minimize the height of the SWI heater support assembly for easy storage. When the mounting pole is retracted, the height of head unit 105, in accordance with an embodiment of the present invention, may be reduced by approximately 30 inches to approximately 64 inches. In accordance with an embodiment of the present invention, when the sections are substantially fully extended, head unit 105 has a height of approximately 94 inches. This height allows the head unit 105 to be high enough to provide heat from overhead. Those skilled in the art will realize that other dimensions for the mounting pole can also be used and is within the scope of the present invention.


Bottommost section 240 of the mounting pole is mounted on a base unit 245. Base unit 245 can be circular in shape. However, those skilled in the art will realize that different dimensions and shapes can also be used for base unit 245 and are within the scope of the present invention.


In one embodiment of the present invention, a weighted body, like a weighted disc, providing stability to the SWI heater support assembly is mounted on the underside of base unit 245. Those skilled in the art will realize that the weighted body can provide stability for the SWI heater support assembly thereby compensating for the weight of SWI heater 210 in head unit 105, which is offset from the center of base unit 245 and mounting pole. A steel flange 250 can be mounted to the top of base unit 245. Bottommost section 240 of the mounting pole may be fastened to steel flange 250. Also, a plurality of wheels 255 can be attached to base unit 245 enabling the SWI heater support assembly to be easily moved.


In accordance with the embodiments of the present invention, a tightening collar 260 is affixed to the upper portion of bottommost section 240. Middle section 235 can be inserted in tightening collar 260 and affixed to bottommost section 240. Another tightening collar 265 can be used to attach uppermost section 230 to middle section 235. Those skilled in the art will realize that if the mounting pole is desired to be telescoping in nature, uppermost section 230 may need to be smaller in diameter than middle section 235 and middle section 235 may need to be smaller in diameter than bottommost section 240. An attachment, coupling collar 270 can be mounted on the top of uppermost section 230 so that angled pole section 220 can be inserted in attachment coupling collar 270. Those skilled in the art will realize that attachment coupling collar 270 can be mounted on top of uppermost section 230 such that angled pole section 220 can be freely rotated about attachment coupling collar 270, for example, a 360 degree rotation of angled pole section 220 is possible. Angled pole section 220 can bend at an approximate 110 to 120 degrees angle or may be otherwise angled relative to uppermost section 230, middle section 235 and bottommost section 240.


In an embodiment of the present invention, a power switch coupled to a dimmer 275 are mounted to the mounting pole with a power cord 280 running to head unit 105 and providing power to SWI heater 210. Power switch coupled to a dimmer 275 can allow a user to turn SWI heater 210 on and off and to adjust the heat output.


Turning now to FIG. 3, an exemplary embodiment of a retracted short-wave-infrared (SWI) heater support assembly is shown in accordance with an embodiment of the present invention. Uppermost section 230 and middle section 235 of the mounting pole of FIG. 2 are retracted to obtain a mounting pole 305 with a decreased height. Therefore, the height of a SWI heater 310 can be adjusted by virtue of the present embodiment. Moreover, the position of SWI heater 310 can be changed using a rotating collar mount 315 and a positioning bar 320. For example, if a user is sitting on a chair and wishes to have SWI heater 310 be directed towards him from the side, mounting pole 305 can be retracted and adjusted accordingly as depicted in the present embodiment and rotating collar mount 315 and positioning bar 320 can be adjusted according to the user's comfort. Also, the heat output of SWI heater 310 can be adjusted using a power switch coupled to a dimmer 325.


Therefore, the embodiments of the present invention relate to the SWI heater and support assembly with an offset mounting pole. Such a heater can solve the problems of a conventional SWI heater support assembly, for example a tripod mounted unit which falls over easily, by making the SWI heater a free standing stable unit with an offset design. This design allows a user to place the SWI heater immediately above or adjacent to the objects to be heated without the SWI heater being obtrusive. More specifically, the offset design of the SWI heater support assembly allows head unit 105 to overhang the area to be heated without base unit 245 and the mounting pole of the SWI heater support assembly needing to be placed in the space to be heated.



FIG. 4 shows an alternative embodiment of a heater head 400. This is a new generation of heater head with a higher power rating than those already in the industry. Because of its higher power rating, new safety features are introduced. As shown, a safety bracket 402 is added. This safety bracket is attached to the heater head 400 by inserting a pair of end hooks of the safety bracket 402 into a pair of hook receiving taps 404. The safety bracket is rotatable. When needed, the safety bracket can be rotated outward to prevent any adjacent article from reaching a front surface of the heater head 400 where the temperature is the hottest and where it is most capable of igniting the article. When not in used, the safety bracket can be rotated inward to rest on top of heat shield 406. An advantage of this safety bracket is that it has the least amount of aesthetics disturbance when the safety bracket 402 is rotated inward. A disadvantage associated with this safety bracket is that it serves as a part time safety device only when the safety bracket 402 is rotated outward. An ideal safety device provides full time protection.



FIG. 5 is another alternative heater head 502 where a full time dedicated safety bracket 504 is shown. Safety bracket 504 is permanently attached to the heater head 502 by fastening a set of screws 506 into a set of pre-drilled receiving holes 508 on both sides of the heater head 502. As reliability of any safety device is of utmost importance, the safety bracket 504 is made of a metallic material thus is durable for the useful life of the safety bracket. An unintended problem associated with using a metallic material for the safety bracket is that it tends to become hot after prolong use of the heater head 502 and becomes too hot to the touch. Therefore, in addition to the safety bracket, there is also a burn-safe heat insulator 510 surrounding a middle front portion of the safety bracket 504. By way of an example, this heat insulator 510 only insulates part of the metallic safety bracket 504. It is of course possible to make the heat insulator 510 to cover more area or even the entire metallic safety bracket 504. However, in this example, only part of the safety bracket is covered to maintain the metallic aesthetic appeal of the heater head. This heat insulator 510 serves several purposes. The first and foremost purpose is to provide a part of the safety bracket that is safe to the touch for people who use heaters under different circumstances and for different purposes. The second purpose is to use the safety bracket 504 as a handle bar upon relocation of the heater. The third purpose is to use the safety bracket 504 as a handle to rotate the tilting angle of the heater head. This safety bracket is non-rotatable thus permanently protrudes in front of the front surface of the heater 502. It ensures a minimum distance is always kept between any adjacent article and the front of the heater head 502 on a full time basis.



FIG. 6A shows a top view of safety bracket 504 with a front bar 602 and two side bars 604 including therewith a number of dimensions. These dimensions are merely suggestive and the invention can be practiced with endless amount of dimension variations thus they should not be construed as restrictive.



FIG. 6B shows a side view of safety bracket 504.



FIG. 7 shows that a heater head has a 90 degrees freedom of rotation when fully installed onto a support assembly and put in actual use. To provide a reference perspective, 0 degree designates a front surface of the heater head is completely facing downward as shown in position 702. 90 degrees designate a front surface of the heater head is completely facing outward as shown in position 704. As heat rises, therefore it is unnecessary for the heater head to face upward. However, if necessary, the number of degrees of rotational freedom can of course be increased beyond 90 degrees.


This 90 degrees freedom of rotation is made possible by a rotation angle limiter 706 having a cut-out portion 718. The cut-out portion 718 provides the possible angles of rotation anywhere between 0 to 90 degrees. Position 708 shows the 0 degree point where the heater head is facing downward and position 710 shows the 90 degree point where the heater head is facing away.


The heater head is installed to the support assembly by installing one end of a mounting bracket 711 to a pole coupler 714 of the support assembly and installing another end of the mounting bracket 711 to a pair of receivers 712. The mounting bracket 711 is installed to the pair of receivers 712 by nuts and bolts as represented by 716.


The rotation angle limiter 706 and the associated cut out portion 718 could be a part of either the mounting bracket 711 or a part of receivers 712. Whatever degree selected between 0 and 90 degrees is held in place by friction between the surfaces of the mounting bracket 711 and the surfaces of the pair of receivers 712. Of course, any frictional force between the surfaces of the mounting bracket 711 and the pair of receivers 712 is generated by the fastening force of nuts and bolts 716.



FIG. 8 shows by way of an example that a heating head is held in place at the 45 degree position and the safety bracket 504 maintains a minimum distance between a front surface of the heater head and an adjacent article 802.



FIG. 9 shows by way of an example a safety bracket 902 that is longer than safety bracket 504. As it is quite apparent, the longer is the safety bracket, the longer is the minimum distance the safety bracket keeps an adjacent article away from a front surface of the heater head. A top view of the safety bracket 902 is very much the same as that shown in 6A deviating therefrom in that the side lengths are longer.


As also shown in FIG. 9, safety bracket 902 is not perpendicular to the front surface of the heater head. An angle α exists between an imaginary line perpendicular to the front surface of the heater head and the safety bracket 902. The purpose of this angle is to maintain a blowing angle between the heater head and the adjacent article when a minimum distance is kept in-between as shown by way of an example in FIG. 10.



FIG. 11 shows an alternative embodiment where a safety bracket 1102 is perpendicular to a front surface of a heater head. The purpose is to maintain a direct heat blow to an adjacent article 1104 that is a fixed distance away from the heater head. While the blowing angle may be of limited interest to residential users, it is foreseeable that the present invention may be of great utility value for commercial users. For example, for a controlled curing of animal hides in the leather goods industry, for a controlled curing of paints in a body shop, for making dried food in a food factory and the possibilities are limitless.


It is foreseeable that a commercial user might be interested in the present invention in addition to the safety purpose. For specialized users, FIG. 12A shows a top view of an extendible safety/utility bracket 1202. A side view of the same extendible safety/utility bracket 1202 as shown by way of an example in FIG. 12B. As shown, the extension feature is achieved by a telescopic design where a pair of small diameter side tubes 1204 maybe inserted into a pair of medium diameter side tubes 1205 and the pair of medium diameter side tubes 1205 maybe inserted into a pair of large diameter side tubes 1206. The exact distance the front bar 1208 is extended can be measured by a set of linear demarcations representatively shown as dash lines on each pair of side tubes 1204, 1205 and 1206 in FIG. 12A and FIG. 12B.


A number of dimensions are given in the drawings but they are merely examples and should not be construed as restrictive. The dimensions can of course be changed to suit whatever application requirements.


Each alternative embodiment as concurrently discussed may incorporate therewith features previously discussed thus each feature is not redundantly explained. FIG. 13 shows by way of an example an extendible safety/utility bracket that incorporates many features already explained in the discussion of prior embodiments. The angle α of the safety/utility bracket may include 0 degrees thus could be perpendicular to the front surface of the heater head.



FIG. 13 shows by way of an example a safety box 1302 situated on top of the support assembly. Within this safety box 1302 is a thermocouple 1402 connected in series with a junction box 1404 as shown in FIG. 14A. FIG. 14B shows in a circuit diagram form that the thermocouple 1402 is essentially a temperature activated switch. It is used as a safety device to shut off the heater head should the operating temperature reaches a threshold dangerous level that could permanently damage the heater such as melting any components, wires or parts.


In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The inventions defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.

Claims
  • 1. An adjustable electric heater, comprising: a heater head with a pair of receiving taps;a mounting bracket with a pair of legs rotatably and correspondingly mounted to the pair of receiving taps;a support assembly supported by a supporting floor is mounted to the mounting bracket to uphold the heater head to a predetermined height; andan angle limiter is formed on one of said pair of legs and said pair of receiving taps to provide a predetermined degree of rotational freedom to the heater head.
  • 2. The adjustable electric heater of claim 1, further comprising a nut and a bolt to mounted each receiving tap to its corresponding leg.
  • 3. The adjustable electric heater of claim 2, wherein the angle limiter is an arc shape groove formed on one of said pair of legs and said pair of receiving taps and a stopping pin is formed on another one of said pair of legs and said pair of receiving taps that is in adjacent contact with said one of said pair of legs and said pair of receiving taps having the arc shape groove so that the stopping pin can be inserted therein the arc shape groove.
  • 4. The adjustable electric heater of claim 3, wherein the angle of coverage of the arc shape groove determines the predetermined degree of rotational freedom of the heater head.
  • 5. The adjustable electric heater of claim 4, wherein the heater head is held to any degree within the predetermined degree of rotational freedom by a force generated by said nut and said bolt.
  • 6. The adjustable electric heater of claim 5, further comprising a transitional mount mounted on a top portion of the support frame.
  • 7. The adjustable electric heater of claim 6, further comprising a safety box mount on the transitional mount.
  • 8. The adjustable electric heater of claim 1, further comprising a thermocouple electrically forming a closed circuit between a power supply line and the heater head, wherein the thermocouple opens the closed circuit once a temperature of the thermocouple reaches a predetermined threshold value.
  • 9. The adjustable electric heater of claim 1, wherein the support assembly further comprising a plurality of height segments connected together by a plurality of releasable couplers.
  • 10. The adjustable electric heater of claim 9, wherein the plurality of height segments each has a unique cross section dimension wherein the cross section dimension of a segment higher in position is smaller than the dimension of a segment lower in position thus allowing the plurality of height segments to be insertable into each lower segment and be held to a desired height position by the plurality of releasable couplers.
  • 11. The adjustable electric heater of claim 10, wherein the support assembly further comprises a base connected to a lowest one of the plurality of height segments providing stability support to the electric heater.
  • 12. The adjustable electric heater of claim 11, wherein the support assembly further comprising a set of wheels mounted to a side of the base wherein upon tilting of the plurality of height segments, the set of wheels engages the supporting floor.
  • 13. The adjustable electric heater of claim 9, wherein a temperature controller is mounted on one of the plurality of height segments to control a heat output level of the heater head.
  • 14. The adjustable electric heater of claim 9, wherein a top one of the plurality of height segments is in an arch shape positioning the heater head mounted thereon toward a particular direction where heat may be needed.
  • 15. The adjustable electric heater of claim 1, further comprising a heat shield mounted on the heater head.
  • 16. The adjustable electric heater of claim 15, further comprising a safety bar one of rotatably mounted and immutably mounted on the heat shield.
  • 17. The adjustable electric heater of claim 1, further comprising a safety bar one of rotatably mounted and immutably mounted on the heater head.
  • 18. The adjustable electric heater of claim 17, wherein the safety bar protrudes outwardly in a direction substantially perpendicular to a front surface of the heater head to prevent an object from coming into contact with the front surface of the heater head.
  • 19. The adjustable electric heater of claim 17, wherein the safety bar protrudes outward in a direction not substantially perpendicular to a front surface of the heater head to prevent an object from coming into contact with the front surface of the heater head.
  • 20. The adjustable electric heater of either claim 18, wherein the safety bar comprises a plurality of paired side segments each slidably insertable into another of said plurality of paired side segments thus making the safety bar adjustable in length.
  • 21. The adjustable electric heater of claim 20, wherein each of said plurality of paired side segments comprises a plurality of distance markers so that a distance between an object heated in front of the heater head may be adjusted.
  • 22. The adjustable electric heater of either claim 16, further comprising a heat insulator installed on the safety bar.
  • 23. The adjustable electric heater of either claim 17, further comprising a heat insulator installed on the safety bar.
  • 24. The adjustable electric heater of either claim 19, wherein the safety bar comprises a plurality of paired side segments each slidably insertable into another of said plurality of paired side segments thus making the safety bar adjustable in length.
Parent Case Info

This application hereby claims the priority date under 35 U.S.C. 119(e) of U.S. Provisional Application No. 61/202,616 filed on Mar. 18, 2009.

US Referenced Citations (5)
Number Name Date Kind
5841944 Hutchinson et al. Nov 1998 A
6082693 Benson et al. Jul 2000 A
7471883 Seutter et al. Dec 2008 B2
20090032076 Boldsen Feb 2009 A1
20090283606 Terrell et al. Nov 2009 A1
Related Publications (1)
Number Date Country
20100237062 A1 Sep 2010 US
Provisional Applications (1)
Number Date Country
61202616 Mar 2009 US