Heating and cooling technologies

Information

  • Patent Grant
  • 11857004
  • Patent Number
    11,857,004
  • Date Filed
    Thursday, June 10, 2021
    3 years ago
  • Date Issued
    Tuesday, January 2, 2024
    10 months ago
Abstract
A heating and cooling device is disclosed comprising at least one integral low voltage heating and cooling source and an efficient flexible heat distribution means having a thermal conductivity of from 375 to 4000 W/mK for distributing the heat and cool across a surface. Further aspects include thermal interface compounds to provide full thermal contact as well as the use of a phase change material to provide a long lasting heating and/or cooling effect without the use of external electrical input. Preferred applications include automotive and furniture seating heating and cooling, along with outdoor garments having distributed heating and cooling effects.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.


THE NAMES OF THE PARTIES TO A JOINT RESEARCH AGREEMENT

Not Applicable


INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC OR AS A TEXT FILE VIA THE OFFICE ELECTRONIC FILING SYSTEM (EFS WEB)

Not Applicable


STATEMENT REGARDING PRIOR DISCLOSURES BY THE INVENTOR OR A JOINT INVENTOR

Not Applicable


BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to heated and cooled assemblies for use in OEM and aftermarket heaters/coolers, methods of manufacturing same, and methods of using same. More particularly, the invention relates to conductive heat transfer systems for heating and cooling automotive seats, medical containers, office furniture of all types, food warmers, as well as articles of clothing.


2. Description of the Prior Art

Conventional heating and cooling systems for vehicle seats, furniture seats, medical containers, food warmers and articles of clothing are well known in the art, including one of the most common types of forced air heating and cooling systems that includes a forced air heater and/or cooler within an automobile seat, seat assembly or articles of clothing. Conventional heated articles have included inefficient electric resistance heating mechanisms, among others. Other utilized methods of warming include chemical reaction type systems which may be efficient, but they require a new expenditure after each activation.


Practitioners of those forced air heating and cooling system inventions have become aware of certain issues which are presented by those prior art inventions. One particular problem that has plagued car manufacturers and consumers has been that those systems utilize a great deal of energy due to the inefficiency associated with heat transfer using air as the heat transfer medium. There are other complexities which give rise to interior space concerns along with these energy consumption issues.


Heated articles of clothing, predominantly for motorcycle enthusiasts and outdoorsmen, have utilized electrical resistance wires placed throughout the clothing, much like an old fashioned electric blanket. Typically, motorcycle jackets that used the electrical wires needed to be plugged into the motorcycle to continuously feed electricity to the device.


As anyone knows who has recently purchased a vehicle, heated seats are very popular. Although heated seats may be used in a multitude of applications, I will be focusing on the automobile, as that represents the largest sales volume of heated/cooled seats which are purchased by the public. Clearly, mechanisms for heating and cooling seats may be useful for many other applications, more fully described hereinbelow.


Heating and cooling of automobile seats are desirable features that are widely adopted by automobile buyers, although there are improvements to be made on the existing systems. Updating these technologies in order to utilize less electricity, new materials and technologies help to transfer heating and cooling, hopefully minimizing moisture build up, which is advantageous for any applications in the seating industry.


The seating industry has been looking for both a one-directional and a bi-directional heat transfer material that has a high rate of heating and/or cooling. Furthermore, consistent heating and cooling over an entire heating surface while consuming a low power amount will be welcomed by the industry.


The prior art usually includes a forced convection heating system with an air distribution model dependent on air flow. As an occupant on the seat increases in weight, the quality of air flow decreases. In these cases, there is a heat sink resistance that is undesirable. In the conventionally available heated seat technologies, including the microthermal module, a Peltier circuit was used in conjunction with a heat exchanger to provide heated or cooled air that exits to the seat cushion. Issues arise due to the air distribution method which may include a first top layer of perforated leather, then a distribution layer atop conventional scrim material, followed by an underlying cushioning by a channel molded in foam. Heating and cooling has been shown to be inefficient and requires a fair amount of “real estate” or spaces for airflow passages. Although this accepted conventional standard has a relatively low cost, it is ineffective when considering the amount of energy utilized. Further moisture build up is a concern with prior art methods.


During operation, of course, it is foreseeable that people driving those vehicles may experience spills of liquids, such as sodas and coffees, from fast food restaurants, being imbibed in the vehicle are bound to happen. These spilled fluids can penetrate the seat fabric and enter into the interior of the seat causing mold growth, foul odors and bacterial growth.


Another desire of the industry is to monitor the thermal status of the seat occupant without added sensors that add complexity and expense.


In addition, another common desire of seating manufacturers is to have a seat that would store or release thermal energy for use during periods when the vehicle is not running to improve comfort for the seat occupant upon entering a vehicle and being able to maintain the thermal storage capability for longer periods.


It would therefore be desirable to the vehicle seating industry if there was provided a new alternative technology with an improved conductive heat transfer that could heat and/or cool a seat or seat assembly, along with a method of making the seats, or a method of using them for heating and cooling seats. It would be advantageous for the industry to review such a new technology. Certain technical benefits can be realized by the utilization of a conductive heat transfer system utilizing thermoelectric devices.


SUMMARY OF THE INVENTION

In accordance with the above-noted desires of the industry, the present invention provides various aspects, including a conductive heat transfer model, a method of making same, a method of controlling same and various methods of using them for heating and cooling seats. This includes a heating and cooling device, preferably a new and improved thermoelectric module adhered to and in conjunction with at least one layer of a thermally conductive material for distributing the heat or coolness throughout more of the surface area. This overcomes many of the aforementioned problems with the prior art because energy consumption can be minimized, while heating and cooling distribution is maximized.


By using optional incorporation of phase change material schemes, the problems of an inability to be directly thermally charged in the seat assembly itself, along with issues arising from a lack of methods to extend their thermal capability over a longer time are alleviated.


Improvements on existing systems may also include sensing technologies that may provide an information feedback loop, along with new materials and new thermoelectric technologies to improve the seat cooling and heating, without generating moisture.





BRIEF DESCRIPTION OF THE DRAWINGS

For a further understanding of the nature and advantages of the expected scope and various aspects of the present invention, reference shall be made to the following detailed description, and when taken in conjunction with the accompanying drawings, in which like parts are given the same reference numerals, and wherein:



FIG. 1 shows the simplest aspect of the present invention with a thermoelectric module incorporated into a thermally conductive heat transfer pad to be incorporated into a seat, a seat assembly or as an aftermarket configuration;



FIG. 2 illustrates a perspective environmental view of the present invention;



FIG. 3 is a side elevational view of a second aspect made in accordance with the present invention;



FIG. 4 is a side elevational view of another aspect of the present invention;



FIG. 5 is a side elevational view of yet another aspect of the present invention;



FIG. 6 is yet another aspect of the side elevational view;



FIG. 7 is a perspective view of the fan aspect of the present invention;



FIG. 8 is a top plan view of the multi-layer aspect;



FIG. 9 is a cutaway view of still another aspect of the seat assembly utilizing the present invention;



FIG. 10 is an environmental view of an vehicle aspect of the invention, including use in a chair with a recharger:



FIGS. 11A and 11B are top plan views of a seat assembly with graphene strips;



FIG. 12 is a perspective view of a heat transfer block and heat sink assembly;



FIG. 13 is a side cutaway view of the assemblies of FIG. 12;



FIG. 14 is a back view of a heated garment;



FIG. 15 is a perspective view of thermal box;



FIG. 16 is a flow chart of the Internet of Things application for heating; and



FIGS. 17A-17E show variations of a sheeted thermal conductive material.





Although the invention will be described by way of examples hereinbelow for specific aspects having certain features, it must also be realized that minor modifications that do not require undo experimentation on the part of the practitioner are covered within the scope and breadth of this invention. Additional advantages and other novel features of the present invention will be set forth in the description that follows and in particular will be apparent to those skilled in the art upon examination or may be learned within the practice of the invention. Therefore, the invention is capable of many other different aspects and its details are capable of modifications of various aspects which will be obvious to those of ordinary skill in the art all without departing from the spirit of the present invention. Accordingly, the rest of the description will be regarded as illustrative rather than restrictive.


DETAILED DESCRIPTION OF THE INVENTION

In order to provide the above referenced advantages to the industry, the present invention proposes a novel design using a unique combination of elements. In its simplest aspect of the present invention of a heated and/or cooled seat, garment or thermally controlled box, an integral heating and cooling device, preferably a thermoelectric device, shall be bonded to a flexible thermally conductive material for dissipating the temperature difference across an area. Basically, the thermoelectric module will act as a heat/cool source, while the thermally conductive material will distribute the heat/cool over a larger surface area.


As such, thermoelectric modules may be used as the integral source of heating and/or cooling, and when these thermoelectric modules come in thermal contact with the thermally conductive material, the heated or cooled temperature effect is spread out over a greater surface area due to thermal conduction. In order to accomplish a temperature gradient differential to heat or cool a seat, it may be preferable to utilize carbon based materials such as graphite, for spreading the temperature difference out over a wider distribution area across the surface of the seat. New graphite included materials have a thermal conductivity from one to five times higher than copper, making conductive heat transfer an industrial possibility. This may be utilized for small area conductive heating and cooling, while still being strong and flexible as well as possessing high thermal conductivity. Of course, the material must be durable enough to withstand many years of people sliding in and out of the seat.


Such a superior heat transfer design system may use the recently improved thermoelectric materials, especially those made from bismuth telluride. These new materials have incremental improvements of about 2° C. These 2° C. changes of temperature can mean the difference between “almost cool” and “cool”. This will provide a new avenue for the industry to provide cooling on seats. Materials improvements in the thermoelectric device can also be used in either improved forced air systems or for the entirely new concept in the present invention.


Thermoelectric devices are solid state devices, and these solid state cooling devices can be attained with the new thermoelectric alloy and crystal growing processes.


Examples of the various aspects of the present invention are discussed in greater detail more fully hereinbelow, detailing various combinations of basic forms and optional components to enhance the heating and cooling aspects. These various aspects will be broken down into component based options by paragraphs hereinbelow:


I. Combination Thermoelectric Module and Thermally Conductive Materials


a. First, the Thermoelectric Module


In its most basic form, the present invention includes the use of an integral heating and cooling device, especially a thermoelectric heating and cooling device, in thermal communication with and attached to a flexible thermally conductive material in order to spread out the heat or coolness. This is especially useful underneath the seat of any seat assembly. The thermoelectric devices that are utilized may be any conventional thermoelectric device, but are preferably bismuth telluride based devices. These devices should operate efficiently from 10 to 16 VDC, as this range is compatible with automotive electrical requirements and other low-voltage applications. Preferably, the thermoelectric device utilized is a 127 couple bismuth telluride based device, some of which are commercially available from Tellurex Corporation of Traverse City, Michigan.


Although it is possible that devices with a higher couple count could be used to increase efficiency, cost benefit analysis criteria are used to decide the design of the thermoelectric modules for each application and varied seat assemblies. Should the thermoelectric or other solid state devices of different chemical or mechanical makeup be developed that will improve performance or lower cost, clearly these would be able to be utilized in the present invention.


In certain aspects, the thermoelectric module could include P and N couples that are spaced further apart which would increase the size of the thermoelectric module and therefore increase the area of direct contact with the thermally conductive material described below. In this aspect, it may alleviate the need for a thermal transfer block, which also spreads the heat flow over a wider area to give a larger area of contact for the thermally conductive material. Another control for the thermoelectric module may be the use of pulse width modulation.


b. Next, the Thermally Conductive Material


The other part of the first aspect of the present invention will include a thermally conductive material that is suitable for distributing heat and cold generated by the thermoelectric module across a wider area than the surface of the thermoelectric device itself. Although there are many different thermally conductive heat transfer materials which are rugged enough to withstand seating and millions of entries and egresses in and out of a vehicle seat, the most common ones would include thermally conductive materials such as copper sheets or woven materials, thermally conductive polymers, carbon based conductive materials such as carbon fiber fabric or graphite fabrics, and including the recently available graphene nanoplatelets sheets. Since carbon based materials are strong and flexible in addition to being highly thermally conductive, they are especially suitable for the present invention.


Graphene in a single layer atomic thickness is extremely thermally conductive, i.e. from 2,000 to 4,000 Watts/meterKelvin in the X & Y axes. Practically, though, because of the lack of cross sectional area in the Z-direction, the actual heat that can be transferred is low. In other words, the thermal conductivity is very high per cross sectional area, but if the cross sectional area approaches zero, the actual heat transfer is minimal.


Therefore, usable graphene for practical applications preferably employs many layers of graphene, often in the form of platelets, nanoplatelets, nanotubes and/or nanoparticles. Though using the graphene platelets in this form reduces the thermal conductivity per cross sectional area, the overall heat transfer can be very high because the cross sectional area is relatively large due to thickness in the Z-direction. In addition, these thicker graphene materials can be easily handled especially if bonded to a thin polymer film. As the development of this material advances, the thermal conductivity will also increase, upward of the 2,000-4,000 W/mK mark, though it is not known how close it will get to the “theoretical” limit.


The examples disclosed below utilize thermally conductive materials, some with 400-600 W/mK in thermal conductivity and some with 2000-4000 W/mK. Using multi-layers of thinner 400-600 W/mK material may increase the thermal conductivity to 1,500 W/mK. Of course, thinner multi-layer approaches increase the cost, are less available and are more difficult to work with, though this is certainly a possibility. Higher thermal conductivity graphene in low cost form is becoming available for materials in the 400-2,000 W/mK or similar range.


Further, a pyrolytic graphite sheet material tested with a higher thermal conductivity of 700-800 W/mK, including material of 1,500 W/mK. Pyrolytic graphite sheet material is a suitable thermally conductive material. Pyrolytic graphite fiber cloth of a pitch based carbon fiber fabric, commercially available from Mitsubishi Plastics of Japan had a thermal conductivity of 800 W/mK. Because it was a fabric, it was great for flexibility. However, initial tests showed that the fabric weave, was not active in carrying heat in the cross weave material. For example, in this trial, the pyrolytic graphite fiber cloth was bonded to a 3″×3″ conduction plate. The strands that were linear with the heat conduction path carried heat and the cross weave material fibers, once it left the area of the conduction plate, were perpendicular to the heat flow and only communicated with the preferred heat transfer strands at circular points where the strands met. Therefore, thermal adhesives may be used to thermally connect all the fibers.


Although any thermally conductive material may be utilized with varying degrees of effectiveness, the preferred thermally conductive materials for the present invention include graphene nanoplatelet material with a thermal conductivity of from 375 W/mK to 2000-4000 W/mK depending on thickness and configuration, while commercially available pyrolytic graphite sheets with thermal conductivity of 650-1550 W/mK and pyrolytic woven graphite fibers, with a thermal conductivity of 800 W/mK is also suitable.


Preferably, the best carbon-based thermal conductivity material is sheeted materials of graphene nanoplatelets adhered to a thin plastic sheet in order to add strength. As the thermal conductivity of graphene is more than double that of copper, it is a suitable material for this application. Such graphene nanoplatelet sheets are preferably from 5 micrometers to 500 micrometers thick, and may be optionally bonded to a thin plastic sheet made of polyethylene, or any other suitable substrate in order to exhibit greater strength and resistance to ongoing stress and strain due to persons getting in and out of seats.


By utilizing carbon-based materials, heat may be transferred and distributed directly throughout the entire surface area of the conductive material, alleviating the need for air ducting and distribution, further simplifying seat construction and standardizing the design while still providing individualized climate control, thereby increasing design flexibility. In short, the present invention uses a heat transfer pad to distribute heat and cool, rather than using forced air. Standardization becomes possible because there will be minor differences whether or not a low weight passenger is sitting on the seat or someone of more substantial weight, such as happens when a substantially weighted person may crush the air ducts in conventional seats with heating and cooling capabilities.


In that regard, suitable graphene nanoplatelet materials are commercially available from many sources, including XG Sciences, of Lansing, Michigan, USA, among other international distributors. Graphene nanoplatelets are suitable for the present application because this relatively new class of carbon nanoparticles exhibits multifunctional properties. The graphene nanoplatelets have a “platelet” morphology, as they have a very thin but wide aspect ratio. This unique size, shape and morphology tends to the make the particles especially effective at providing barrier properties while their pure graphitic composition gives them good electrical and thermal conductivity properties. They also can exhibit stiffness, high strength and surface hardness. Such materials may be used in a single layer, or any number of multiple layers in order to achieve the desired effect. For automotive seating, it is preferable that a single sheet is utilized, as it has a thermal conductivity of 400-500+W/mK. As many of the grades of graphene materials are made of either nanoplatelets, nanoparticles, nanotubes or combinations thereof that are commercially available, typical surface areas which are able to dissipate heat may include from 5 to over 750 m2/g, wherein the average particle diameters can range from 5 microns to over 100 microns. These sheeted graphene nanoplatelet or graphene nanotube materials are especially useful for dissipating heat once it is placed in direct mechanical and thermal contact with the thermoelectric device described hereinabove.


Further aspects of the invention may include the use of a thermally conductive plastic sheeted material with an inclusion of intermittent bits of highly thermally conductive components, such as carbon or graphene nanoparticles, graphene nanotubes, or graphene nanoplatelets in order to improve the thermal conductivity of the thermally conductive plastic sheeted material.


II. Combination Thermoelectric Module, Thermally Conductive Material and Perforated Top


a. The Perforated Material


In addition to the above-mentioned basic thermoelectric module and thermally conductive combination, other optional aspects of the present invention may include further elements to be added to that combination. In this second aspect of the invention, the basic thermoelectric and thermally conductive combination further includes the use of a perforated material that will contact the person in the seat. The perforated material may include perforated leather, or any other suitable perforated seating material to allow air flow to the seat occupant and prevent moisture from building up due to condensation. Suitable perforated materials will allow air flow which will therefore improve seat heating and also provide improved moisture transfer.


III. Combination Thermoelectric Module, Thermally Conductive Material, and Phase Change Material


Yet another element that may be utilized with the base thermoelectric and thermally conductive combination may include phase change materials capable of storing or releasing heat during a phase transition. This may provide additional capacity in the present application. The materials that are preferably associated with this aspect of the invention include hydrated potassium bicarbonate or other phase change materials could be used that are applicable to the phase change temperature that is desired for the application. Bear in mind that a phase change material has a high heat of fusion which is capable of storing and releasing large amounts of energy. In this instance, the heat is either absorbed or released when the material changes from solid to liquid and vice versa, which makes the phase change material a latent heat storage material. For example, a sodium acetate heating pad becomes warm when it crystallizes.


Certain organic phase change materials such as paraffin and fatty acids have very high heats of fusion and are safe and non-reactive, besides being recyclable and compatible with pretty much every conventional material of construction. Although they have traditionally been flammable, certain containment processes allow use in various applications.


Of preferred interest in this application may include inorganic salt hydrates, as they are non-flammable while still exhibiting a high heat of fusion. As described above, the preferred phase change material is a hydrated potassium bicarbonate. Of course, other phase change materials may be adapted for this application, and may include the eutectics or hydroscopic materials as they can absorb heat when their water condenses or they can release water when the water evaporates. Although not an inclusive listing, suitable the phase change materials include hydrated potassium bicarbonate, sodium acetate, paraffin, fatty acids, inorganic salt hydrates, eutectics, hydroscopics, hygroscopics, and combinations thereof. This may or may not be useful in terms of controlling the moisture content in a seat when certain dew point situations are realized.


In various aspects of the present invention, this combination of the thermoelectric module, thermally conductive material, perforated seats, and/or phase change material pads within the seat, or any combination thereof may make the seat usable to provide a more efficient system than the conventional air chamber type heating and cooling seats.


Of special interest in the present invention is that in certain aspects, there is essentially no movement of air necessary, unlike the conventional systems produced with split air chamber designs and utilizing significant amount of “real estate” underneath the seat. From a packaging and manufacturing standpoint, the thermoelectric module and thermally conductive material of the present invention is much easier for packaging, shipping and for placement in a seat during manufacturing. There are very few air chamber components that need to be manufactured and installed.


Further, the various weights of the human beings sitting on the seats hamper the design of prior art seat heaters and coolers, because the air chambers become compressed when an obese person sits on the seat versus a child sitting on the seat. As one can imagine, an obese person will compress the air chambers to the point where the air can no longer even distribute. The fact that the present invention does not rely upon air movement, gives much greater leeway to seat designers as well as the operation of the seat heater and cooler.


My design alleviates much of the moisture that is involved in seats during heating and cooling, and therefore does not even need to be addressed for moisture retention or vaporization. If no air flow exists, such as when there are no perforations to allow air flow, moisture can condense when it is cold. Using my invention, with even a 2° C. differential, and especially with perforations, the moisture problem is alleviated.


IV. Combination Thermoelectric Module, Thermally Conductive Material, and Phase Change Material with Perforated Materials


Further comprising the present invention is the optional use of all these aspects including perforated top layer materials with phase change material utilized in combination with the first aspect of the present invention including thermally conductive material in order to store or release heat during a phase transition. Such a phase change material may be any substance with a high heat of fusion which, melting and solidifying at a certain temperature, is capable of storing and releasing large amounts of energy. As one may recall sodium acetate heating pads, it is realized when the sodium acetate solution crystallizes, it becomes warm. Such phase change materials' latent heat storage capabilities can be achieved through solid-solid, solid-liquid, solid-gas, and liquid-gas phase change. The preferable phase change for use in the present application is the solid-liquid change as it is most practical for use as thermal storage due to the small volume required to store the heat. Although conventional phase change materials may be organic, such as paraffin and/or fatty acids, inorganic phase change materials, such as salt hydrates, eutectic materials, which may be organic-organic, organic-inorganic, or inorganic-inorganic compounds, along with hygroscopic materials which may be advantageous due to their water absorption and release properties.


Preferably, as mentioned above, in this aspect the phase change material which can optionally be used in the present invention is hydrated potassium bicarbonate or any other phase change material which is applicable to the phase change temperature that is desired in the automotive or other seat assembly applications.


In addition, optionally, with any or all of the above-mentioned aspects, yet another element may be helpful in order to optimize the heat transfer. This element includes a thermally conductive interface which may be utilized to great advantage. Such a thermally conductive interface may be thermal grease, silver filled gels, filled waxes, or silicones. This interface will help to make full thermal contact between the components, increasing the efficiencies of each thermal communication.


Methods for making each of the above aspects include assembling each component as shown in the appended drawings, and applying a coating of thermally conductive interface between the thermoelectric module and the thermally conductive material, or the thermoelectric, the thermally conductive and the phase change material.


These benefits include, but are not limited to, the fact that all the power used in the fan can be used for ambient heat transfer via the heat sink which will improve overall performance. An ambient heat sink can be optimized for its purpose instead of fitting into the form factor required and using a portion of the air flow also for the cooling/heating of the seat occupant. This provides more freedom for thermoelectric module design, wherein the seat packaging can also be improved. Various shapes and sizes of the heating and cooling area are easily accomplished by utilizing various sizes of heat transfer materials and the thermoelectric devices. This also means that there is a reduction in designing for occupants with different weights because the thermal feedback loop can provide better control of temperature with the occupant being directly thermally coupled to the heated and cooled surface.


Looking now to the drawings, we look at FIG. 1, wherein the seat heater and cooler is generally denoted by numeral 10, and includes a rubber pad 12 and immediately thereunder and surrounding is a thermally conductive material heat transfer pad 14 which is then in turn in thermal communication with a thermal transfer block under the thermally conductive material heat transfer pad 14 and includes a thermoelectric device under and in thermal communication with a thermal transfer block, which in turn is in thermal communication with a heat sink with a fan below the heat sink. Heat transfer pad 14 may be made of any of the thermally conductive materials described hereinabove, such as graphene nanoplatelets, graphene nanotubes or the like.



FIG. 2 shows the seat heater and cooler of FIG. 1 in its environment in an automotive vehicle seat assembly, and further illustrates the seat assembly generally denoted by numeral 20, with the seat heater and cooler 24 in place in the seat as well as in the back of the seat assembly 20. A thermoelectric device 22 is shown in a cutaway portion of the seat while the thermoelectric device 24 is shown within the heat transfer pad 26 on the back of seat 20.



FIG. 3 shows in detail the thermoelectric device in combination with the various components comprised the entire heat transfer pad and seat heater and cooler. An upper thermal transfer block 30 is located on top of heat transfer pad substrate 33 which is then placed in thermal communication with a lower heat transfer block 40. Seat foam 32 acts as a support for the passenger, and holds the upper thermal transfer block 30 in place. The thermoelectric module 36 is in thermal communication with heat sink 38 for receiving air flow from a fan 35 through air flow 34 that is heated or cooled by the heat sink 38. In operation, fan 35 creates an air flow 34 from below to bring the air up into contact with the thermo sink 38 which is then in contact thermoelectric device 36 and then to lower heat transfer block 40. Substrate 33 made of a thermally conducting material helps to dissipate the heat or coolness across its surface and also is helped by thermal interface 30. Advantageously, an optional thermal interface, such as thermal grease, silver filled gels, filled waxes, silicones or pads to name a few suitable interface materials. What was used successfully in the prototypes is Arctic Silver from AI Technology Inc. of Princeton Junction, New Jersey, may be used between the thermal transfer blocks and the thermally conductive material to provide a void free contact for best heat transfer.


Looking next to FIG. 4, another view of the aspect shown in FIG. 3 is shown with a further cushioning aspect of seat foam 32, topped by and defined by a thermally conductive material layer 60 which is in thermal communication with heat transfer block 62 which is sitting on top of thermoelectric module 52. Seat foam 32 surrounds air chamber exit duct 58. Heat sink 54 is shown directly below and in thermal communication with thermoelectric module 52. Fan 56 is shown in its box configuration bringing air up into the heat sink area 54 for heat exchange and also exhausting any air through air chamber exit duct 58. Seat foam 32 is located between air chamber 58 and thermally conductive material 60. All of this is meant to heat up or cool down the conductive heat transfer material 60, which is preferably made of a highly dissipative carbon based material, such as the graphene nanoplatelet material described in detail hereinabove.



FIG. 5 shows yet another aspect of the present invention utilizing a fan, air chambers, and the combination of a thermoelectric module, thermally conductive material, a perforated seat cover, and a phase change material as described above. The seat heater and cooler generally denoted by the numeral 70, and includes the flexible thermally conductive material 72 having perforations 74 therein. The perforations allow air flow to help to minimize the trapping of moisture, which alleviates the clammy feeling if the dew point is too low. Underneath the flexible thermally conductive material 72, a phase change material 76 is used to provide a storage of heat and cool. The phase change material 76 is in contact with the thermally conductive material 72 which is in thermal communication with thermal interface 78 which is in direct thermal communication with the heat transfer block 80, which in turn is in thermal communication with the thermoelectric module 82 underneath. As in the other aspects, the thermoelectric module 82 is located in thermal communication with heat sink 84 which is heated and cooled by air coming through fan 86. Fan 86 moves the air through air passages 88 in order to put moving air in contact with the seat occupant primarily to reduce the chance of moisture formation on the seat surface and will exchange some heat with the phase change material and the thermally conductive material pad as it moves through the perforations though the main heat transfer mechanism to the occupant is via the thermally conductive material and then via the seat covering material (leather or other) that is in direct contact with the occupant. Fan 86 distributes the air through the heat sink 84, transferring heat to or from the heat sink 84, depending on the direction of the electrical DC current flow direction in the thermoelectric device and whether the seat occupant is to be heated or cooled, which is then exhausted into the ambient environment through air flow chamber 90, acting as an exit duct.


Phase change materials store or release heat during a phase transition. The materials presently associated with this invention include hydrated potassium bicarbonate. Other suitable phase change materials may be applicable to the phase change temperature that is desired. Phase change materials are used only in certain aspects of this invention. They provide short-term cooling or heating to a seat occupant, for example when the stops to shop for an hour and they would want to come out to a hot car that has a pre-cooled seat. Its performance can be engineered such that a thin insulating layer of material can be placed between the thermally conductive material to allow most of the heating or cooling provided by the thermoelectric device to act upon the leather or cloth seat covering and the seat occupant, while allowing a level of thermal leakage that either heats or cools the phase change material. When the car is in the rest position, such as in the case of someone shopping or at a doctor's appointment, the phase change material can release or absorb heat slowly as the thin insulating layer retards a high level of heat transfer. How this layer, or if there is a layer at all, is engineered is dependent upon the desired thermal requirements.



FIG. 6 is yet another aspect of the present invention utilizing the perforated seat in conjunction with the thermoelectric module and the thermally conductive material pad for distributing heat or cool to the passenger of the seat. This aspect is generally denoted by numeral 100, and includes an air flow 102 coming into the fan 104. Fan 104 distributes the air through the heat sink 106, transferring heat to or from the heat sink 106, depending on the direction of the electrical DC current flow direction in the thermoelectric module and whether the seat occupant is to be heated or cooled, which is then exhausted into the ambient environment through air passage 120. Thermal interface 112 is in communication with heat transfer block 114 and thermoelectric module 116. The fan 104 also moves air through air passages 124 and up through perforated material 110 to provide air movement to the passenger on top of the seat assembly 100. Seat foam 108 surrounds air chamber 120 for circulating air.



FIG. 7 shows another aspect of the present invention and is generally denoted by numeral 130 in which air flow 132 enters into fan 134 which distributes air through an air splitting chamber 136. This low aspect ratio air moving design 130 also includes a thermoelectric module 142 which is in thermal communication with the heat transfer block 144. As the air transfers through air splitting chamber 136, it is directed through the seat 138 by ventilation there through, while exhaust air from the heat sink is exited through passage 140.


Looking next to FIG. 8, there is shown a two layer carbon based thermally conductive material pad generally denoted by numeral 150 and including a thermally conductive plate 152 that is in thermal communication with the underside of the thermally conductive base material 154. Slits 158 in the bottom layer of thermally conductive material 154 remains in thermal communication with each of the various panels created by the slits by a top thermally conductive ring 156 so that the break caused by the splits in the thermally conductive base material remain in thermal communication with one another. This configuration of thermally conductive materials to fabricate the thermally conductive pad allows for extra flexibility and robustness for application where large downward deflections in the seat are common while maintaining overall high thermal performance. For example, if a bony kneed occupant kneels on the seat, exerting a great deal of downward force, their knee will not create any problems with the material.



FIG. 9 shows a cutaway view of yet another aspect of the present invention of a seat heater and cooler with an extended thermal lifetime, which is generally denoted by numeral 160, including the base elements of a thermoelectric module 168 in thermal communication with a thermally conductive material 162 in combination with a phase change material 163 to extend the life of the heating and/or cooling aspect of the phase change material 163. Preferably, an optional layer of thermal interface 164, such as a thermal grease or any other suitable interface material as described hereinabove, may be used to create a better connection for thermal communication. A heat transfer block 166 may also be utilized in a similar fashion as the aspects described above, in order to distribute the heat or coolness across a broader area. Thermoelectric module 168 would preferably be a similar thermoelectric module as the ones described above, which would be the heat or coolness source that is dissipated by heat transfer block 166. As shown in FIG. 9, a heat sink 170 collects the proper heat or coolness as it passes through from fan 176. Not shown are heat or coolness collecting fins in heat sink 170, as this angle shows the side of the last fin. An exit duct 174 is used for egress of air moving though the seat heater and cooling assembly 160. Seat foam 172 surrounds the exit ducts 174, fan 176, and heat sink 170. Fan 176 is shown in a side elevational view, so it appears as a fan underneath heat sink 170, which urges an air flow through exit duct 174.


Looking back at FIG. 9, it should be noted that FIG. 9 shows a seat heater and cooler assembly that incorporates a phase change material, without any air flow directly to the occupant, such as with the aspects above that included a perforated air flow seat design. Phase change materials can extend the life of a heated and cooled device without the need for electricity, because phase change materials utilize chemical reactions that are either exothermic reactions, which give off heat, or they may utilize an endothermic reaction, which absorbs energy, thereby cooling. Upon activation, the phase change material, preferably potassium bicarbonate in this aspect, will heat up or cool down, whichever is desired, and will keep that temperature for an extended period of time. Since phase change material is perfectly reversible, without any hysteresis, it can be used and reused many times over to provide the desired effect. Further, it can be used in combination with the thermoelectric device and the effect of the phase change material can be distributed over a larger area by the use of the thermally conductive material.



FIG. 10 shows yet a further aspect of the present invention, for use in, for example, an office chair or any other non-automotive application or in an automotive application where running electrical wiring is not desirable, a rechargeable system is disclosed and is generally denoted by numeral 260, including an office chair 262 having a heated and cooled seat 266. At the bottom of the office chair is a magnetic resonance receiver 264 which can be moved in close proximity to the embedded magnetic resonance transmitter 268 within floor mat 270. In operation, the magnetic resonance receiver 264 is placed over the embedded magnetic resonance transmitter 268, such that wireless recharging or powering of the heated and cooled seat 266 can be achieved. Power from the floor mat is transmitted by embedded magnetic resonance transmitter 268 wirelessly to the magnetic resonance receiver 264 when it is in proper location, thereby providing power to the heated and cooled seat 266 in the office chair.


In yet one more aspect, the present invention can include a superhydrophobic aspect for addressing moisture issues. The superhydrophobic material is envisioned on the top surface of the seat top material which would optionally be the uppermost layer in any of the above aspects. In that regard, and for some of the aspects hereinabove, a possibility exists for water to condense onto the cool surface of the heated and cooled seat surface. Air flow through a perforated seat and/or air chambers or ducts will move air, thereby effecting a remedy by evaporating the condensed moisture. This circulating air aspect was also noted above, in the aspect with air moving through perforations in the thermally conductive material. In this aspect, the use of a superhydrophobic surface in incorporated in the seat covering, whether it be leather or cloth. The superhydrophobic surface propels water droplets from the surface of the seat by self-propelled jumping condensate powered by surface energy upon coalescence of the condensed water phase. This aspect can keep the seat surface dry when water condensate begins to form on the seat surface. Such a superhydrophobic material may be commercially available as “Never Wet”, from Rust-Oleum of Vernon Hills, Illinois, or a superhydrophobic material available from Lotus Leaf Coatings, Inc., of Albuquerque, New Mexico.


Furthermore, in certain aspects, the thermally conductive layer can act as an active thermal gate for heat transfer to and from the phase change material layer. For example, if during previous vehicle operation, the phase change material layer was cooled, and now the vehicle is parked on a hot sunny day and, under normal circumstances, the phase change material would then begin warming up due to heat transfer from the car seat outer covering, whether it be leather or cloth. In this example, heat would move from the leather or cloth outer car seat covering to the thermally conductive material layer to either directly to the phase change material, or in an alternate aspect, an intermediate variable insulating layer through to the phase change material layer. This variable insulating layer may be a layer of insulating or partially insulating material that separates the phase change material from the thermally conductive material. Determining the insulating value of such a variable insulating material will be dependent upon the expected conditions of use. If the heat pumping product is to be slowly imparted upon the phase change material, a more insulating layer would be chosen. In this instance this would mean that the phase change material would either take-in or give-off heat also at a slow rate, depending on whether the seat is in heating mode or cooling mode. This means that the seat surface temperature thermal response to the heat pumping of the thermoelectric system would be little affected. If one desired a more rapid thermal response of the seat surface temperature by the heat pumping portion of the system, a higher insulating layer would be more suitable and appropriate. Consequently, if an application requires quicker charging or discharging of the phase change material, a less insulating layer would be used.


On the other hand, if the thermally conductive material layer is to be activated in the cooling mode, via the thermoelectric device, during the period of time the vehicle is parked, thermal energy from the seat covering would be transferred to the thermally conductive material layer and pumped out of the immediate area, blocking heat transfer to the phase change material layer further extends the thermal storage time of the phase change material during times when the vehicle is non-operational times. As in the cooling mode noted above, the same type of operation can be effected in the heating mode during cold weather by using the thermoelectric device to pump heat into the thermally conductive material, thereby blocking heat from escaping the phase change material. The level of heat pumping acting as a thermal block to reduce heat transfer to the phase change material layer may be regulated to meet the requirements desired by the vehicle occupant in accordance with the vehicle manufacturer's specifications.


As one can imagine, a higher heat pumping level will require more electrical energy from the vehicle. Consequently, a higher amount of electrical energy is needed in the long haul, thereby negatively affecting the reserve power in the vehicle's battery. Time-temperature algorithms that properly match intended use with electrical energy consumption are anticipated by this invention. For example, by inputting commonly experienced vehicle cabin temperatures with pre-selected times or learned occupant usage patterns along with vehicle battery conditions, the amount of heat pumping and heat blocking may be easily optimized. Furthermore, it is envisioned that this control system can also simply be used as a timer, in its simplest form.


In addition, during certain aspects' operation of the seat cooling and heating method which only uses the thermally conductive material option without the phase change material layer, or the method that uses the thermally conductive material with air flow, one can use these same thermal controlling methods, materials and concepts for the parked or vehicle at rest scenario described hereinabove.


Looking next to FIG. 11A and FIG. 11B, there can be seen yet another aspect of the present invention utilizing strips of the thermally conductive material, rather than an entire sheet of material, like the one shown in FIG. 1. It appears that the less mass of the thermally conductive material used, the faster that the heat/cool is able to be disbursed. This translates into a faster response time to the passenger of the seat. Sensory response to this arrangement can vary with the individual seat occupant but what has been observed is that because smaller areas are heated and cooled, their temperature can be changed at a somewhat faster rate than when using full sheet, full seat coverage. This allows for a more dramatic response to the seat occupant and a sensory response that can seem faster. However, as one can note, a smaller area of the seat is heated or cooled. Optimization of the net covered area versus heating or cooling across the entire surface has been determined to be about 20% net covered area with strips covering up to about 50% net covered area. The thermally conductive material is in thermal communication with a thermoelectric device and acts to distribute heat and coolness across the seat.


Looking still at FIGS. 11A and 11B, seat assemblies generally denoted by numerals 300 and 316 respectively are shown attached to seat supports 310, and 318, and including thermally conductive material strips 312 and 320 in thermal communication with thermoelectric devices 314 and 322. Device 314 is shown covered with a foam block, while device 322 is shown without the foam block. FIG. 11A illustrates a foam piece that allows for near the same level of foam thickness across the seat for comfort. The graphene strips are in thermal communication with a heat transfer plate, much like the other aspects. The graphene strips emerge through the foam, just like that shown on FIG. 3. In FIG. 11B, this shows a heat transfer plate, which is in thermal communication with the graphene strips prior to the foam being put into place that will make it a more monolithic foam surface for comfort.



FIG. 11B shows an electrical wire 324 for electrical communication to a power source. Automotive seat assemblies generally use foam for comfort and support. Generally, polyurethane foam is preferred, and is well known in the art. In all automotive cooled/heated seat applications, while foam is still used for occupant comfort, it also acts as a thermal insulator to block the movement of heat from the thermally conductive material, which supplies the cooling and heating to the seat occupant, from being dissipated, un-doing its intended function. Whether the foam is common polyurethane, specially formulated polyurethane, or other polymeric material or whether it is made of another material such as cotton, synthetic fabric material, fiberglass, polyisocyanate foam, or natural batting material, the function is the same. Seating foam is commercially available through many automotive supply companies such as Johnson Controls Inc. of Michigan, Faurecia of Europe, or chemical suppliers such Dow Chemical Corporation of Midland, Michigan.



FIG. 12 illustrates a perspective elevational view of an aluminum block heat transfer member generally denoted by numeral 326. An aluminum block 328 is in thermal communication with a sheet or strips of thermally conductive material 330, preferably graphene material. Aluminum block 328 sits atop thermoelectric device 332 for efficient heat transfer. A heat sink assembly 334 lies underneath the thermoelectric device 332, showing the vertically oriented heat sink fins. A fan 336 blows air across the heat sink fins and receives electrical power by electrical wire 338. Alternatively, aluminum block 328 may be replaced with a multi-layer assembly of thermally conductive strips adhered to one another as more fully described with reference to FIG. 13 below.


In this and all other aspects, preferred suitable thermally conductive flexible materials may include graphene nanoplatelet or nanotube sheets or strips, although any other suitable thermally conductive flexible material may be used. A particularly suitable thermal conductivity material used thus far in development of this concept includes the use of a graphene nanoplatelet sheet of 180 μm thick sheeted material made from a sheet of graphene nanoplatelet material bonded to a suitable substrate material, such as a thin plastic sheet, for added strength. In this aspect, the thin plastic sheet substrate may be any suitable sheeted plastic, but is preferably polyester or polyethylene, as these materials exhibit a bit of thermal impedance. A 220 μm thick sheet was also tested and found to be suitable. The thickness of the material shall be based on the area that requires cooling and heating. This determined thickness can range from 120 μm to 220 μm but other thicknesses may be used for certain applications. This material preferably has a thermal conductivity of 400-500+W/mK. Such a suitable graphene nanoplatelet material is commercially available from XG Sciences, Inc. of Lansing Michigan Other materials have also been used include carbon fiber fabric and graphite fabric, such as some of the industrial materials purchased from several companies such as Mitsubishi Plastics of Japan.


Many possible thin sheeted substrate materials may be used onto which multiple graphene strips are glued to act as a low mass and lower weight support. Especially thin strong materials, such as carbon fiber material, a mesh of plastic or metal, or even a thin layer of fiberglass may be useful as a substrate onto which the multiple strips are adhered, forming a strong yet flexible structure. This thin sheeted substrate material being adhered to the graphene strips or sheet may have many configurations, including a solid sheet, or a partial sheet, such as one with perforations, expanded foraminous slits, or any other configuration which would expose a net free area of contact from between 4% and about 50% to provide a more direct contact with the heat transfer materials without the thermal impedance of a covering layer. Using this multi-layer strip “paper mache” configuration may be most advantageous because it will heat up faster than a solid aluminum block, such as the one disclosed above in FIG. 12, because the system would not have to push all the heat or cool out of the aluminum block first before heat or coolness would be transferred to the surface of the seat. This configuration has a much smaller mass and better heat conductivity than a solid metal block.


In this and other aspects of the present invention, the use of a heat transfer block may be desirable. A heat transfer block allows the heat transfer area of the thermoelectric device to be increased, thereby increasing the thermal contact area of the thermally conductive material used to spread the heat to the seat occupant or to capture the heat from the seat occupant. This increased area reduces the thermal resistance of the heat pumping system. A heat transfer block can be of any thermally conductive material and is commonly aluminum and can be sourced from any commercial metal supplier. Alternatively, the multiple strip configuration described above may be advantageous. In some instances, the heat transfer block may not be required with the thermoelectric device being bonded directly to the heat transfer material.


Furthermore, in these various aspects, the inclusion of a heat sink may be desirable. The heat sink may be in the form of a common finned heat sink, which allows heat to be either taken away during the cooling mode from the sink or transferred to the sink during the heating mode by the passage of air. This type of heat exchanger can also be constructed of other metals such as copper or other thermally conductive materials such as carbon, graphite, or thermally conductive plastics. Other suitable air type heat exchangers may include folded fins, micro-channel configurations, liquid, and heat pipes. Another method is to use the same or similar type of thermally conductive material that is used in the seat for thermal transfer of cooling and heating and use it for the heat sink. This uses a conductive method to transfer heat to or from a source to the heat pumping device. As an example, a thermally conductive member can be attached to the metal floor of a vehicle. Heat sinks can be purchased from many suppliers worldwide such as Aavid Thermalloy LLC distributors throughout the world.


In addition, to increase the efficiency of this heating and cooling system, a fan may be desirable. The preferred fans include both axial and radial fans. These fans are used to pass air through a heat sink and in some applications of the present invention, also pass air through the seat cover to the occupant. Depending upon the size of the seat and the cooling and heating requirements, these fans can have capacities ranging from 5 cfm to 35 cfm of airflow and are preferred to be of a brushless design and electronically commutated. For large bench seating applications in open air environments, such as in golf cars, the fan flow rate may be higher. Other air moving means may also be employed such as piezoelectric fans, diaphragm air pumps, air flow multipliers or electrostatic air movers. An axial fan desirable in some of the aspects shown in the drawings are uniquely suitable because it provides for both passing air through the heat sink and also supplies flowing air to the seat occupant via the use of pass-through cavities in the heat sink. A rotary fan will split the flow of air so that some goes through the heat sink and some goes to the seat occupant.



FIG. 13 illustrates an alternative aspect 340 to the aluminum block heat transfer block of FIG. 12, and indicates the use of multiple adhered layers 342 of the thermally conductive flexible material for the heat transfer block. This aspect is much like a “paper mache” build up of material to construct a heat transfer block member that thermally connects the thermoelectric device 348 to the graphene strips 342 distributing heat and coolness through the seat assembly, as shown above in FIGS. 11A and 11B. Preferably, in this aspect of the invention, multiple adhered layers 342 of nanoplatelet graphene sheets or strips are adhered together to form a somewhat flexible multi-layer thermal transfer block replacement for the previously described solid aluminum heat transfer block. By substituting this “paper mache” version of the graphene strips, a lower mass heat transfer member is achieved, while retaining strength and flexibility. This aspect was designed to provide more robustness and flexibility of the material in the event that more weight is pressed down onto the seat, such as when an obese person sits down or especially if he puts all his weight on his knee, thereby compounding the downward force at a pin point. The flexibility afforded by this structure was helpful. This multi-layer concept was tested and showed an improvement in the overall robustness of the conductive member of the invention, while maintaining good heat transfer properties.


Referring again to FIG. 13, it can be seen that the multi-layer strips could either be butt jointed to the top of the thermoelectric device 348 or the C-shaped configuration shown in FIG. 13 may be employed to increase the surface area contacting the thermoelectric device, or in another aspect, a thermal transfer plate 346 on top of the thermoelectric device 348 may be utilized. Heat sink 350 receives air from fan 352 and moves the air across the surface of the thermoelectric device 348. Graphene sheet 344 is secured atop the heat transfer plat 346 which transfer temperature to graphene sheet 344 to distribute heat and/or coolness. Although not shown explicitly, the base layer of the bottom of the C-shaped thermally conductive material was tested in two different configurations, i.e. in direct bonded contact with the heat transfer block or being directly bonded to the thermoelectric module itself, depending on the design. The bottom of the C-shaped configuration is a multi-layer structure bonded with a flexible adhesive heat transfer material. Suitable adhesives for any of the aspects of the present invention may include any thermally conductive interface, including thermal greases, silver filled gels, filled waxes, silicones, pads or any combination thereof.


Preferably the thermally conductive adhesive is a reworkable, aluminum nitride filled, electrically insulating and thermally conductive paste type adhesive, although any suitable adhesive may be used. In this example, such a suitable flexible epoxy adhesive may include Prima-Bond® or Arctic Silver®, adhesives, both commercially available from AI Technology, Inc. of Princeton, New Jersey.


In the preferred aspect, the base layer was slit to allow for more deformation during use.


Greater deformation is needed in instances such as when an obese person puts his knee on a car seat and puts a significant portion of his body weight on top of a relatively small area of the seat without crinkling the multi-layer. The second layer elastically and physically holds the slit sections in place and provides for heat transfer between the slit sections so as to maximize heat transfer between the sections and prevent any hot or cool sections relative to the other sections (temperature uniformity).


For all aspects of the present invention, suitable thermoelectric cooling/heating devices may include any commercially available thermoelectric device. The preferred thermoelectric devices are 127 couple bismuth telluride based devices, as they operate effectively at 10-16 VDC, which is compatible with automotive electrical requirements and other low voltage applications. It is also possible that devices with higher couple counts will be used to increase efficiency. Such suitable thermoelectric devices can be purchased from several manufacturers such as Marlow Industries of Dallas, Texas.


Yet another aspect of my invention includes apparatus and methods for the vehicle operator to have the capability to communicate to the vehicle that they would like the car seat to be pre-cooled or pre-heated before they enter the vehicle. The thermal seat portion of the invention can be activated by wireless communication from the operator via a mobile communication device or key fob.


Furthermore, in still another aspect of the present invention, the thermoelectric module that is a part of this invention can act as a sensor. In prior art air-only based seat heating and cooling systems, the thermoelectric module is thermally separated from the seat surface and the seat occupant. However, in my invention, the occupant is in thermal contact with the seat cover, which is in contact with the thermally conductive material which is in contact with the thermoelectric device. Thermoelectric devices, while being able to provide heat pumping bi-directionally, can also produce electrical energy via the Seebeck effect when there is a temperature difference between the two planar sides of the device. Therefore, utilizing this electrical generation aspect of this invention, heat from the occupant can be used to generate electrical energy that can be directly related to the temperature of the occupant and become a temperature sensor. The temperature information can be used to help control the temperature of the seat occupant and automatically aid in turning on or off or modulating the heat supplied to the seat occupant or the heat removed from the seat occupant providing optimal comfort.



FIG. 14 illustrates yet another aspect of the present invention with a thermally controlled garment generally denoted by the numeral 360. Jacket 362 includes thermal controls on its back to keep the occupant warm and/or cool in accordance with the present invention. Heat distribution sheets 364 surround at least a portion of the inner layer of jacket 362, and these heat distribution sheets am in thermal communication with thermoelectric device 370 and heat sink 366 through heat transfer plate 368. As with other aspects of the present invention, the thermoelectric device and the heat distribution sheets are in accordance with the descriptions hereinabove. Thermoelectric device 370 may be used to either heat or cool the garment, providing comfort and temperature controls for the wearer of the garment. Thermoelectric device 370 can be powered either by a battery or can be plugged into any outlet, such as one on a motorcycle, a snowmobile, or a boat.


Looking again at FIG. 14, it must be noted that such a jacket 362, or any other garment incorporating the heating and cooling technologies of the present invention, can be utilized for firemen, Coast Guard boats men, military applications and the like. In these instances, since they would be out-of-doors applications, and the garment would not be anywhere near an electrical outlet, a battery power pack would also be an advantage.


Garment 360 can exhibit gradient heating and cooling zones by insulating portions of the path for the thermal distribution, thereby intensifying the hot/cold at a particular location distant from the thermoelectric device. This is an attribute that is unachievable with electrical wiring systems.


Looking next to FIG. 15, a refrigerator or heater box generally denoted by numeral 380 includes a box container 382 with a heat distribution sheet 384 surrounding the cavity inside the box 382. Thermoelectric device 386 is in thermal communication with heat distribution sheets 384, providing heat and/or coolness to the contents of the box. This is a great advantage over the prior art because previously, uncontained liquids such as melted ice liquids could not be included in the cooling boxes as they might harm the fan. In the present aspect of this invention, water in the box does not matter. Again, this box can either be activated electrically through an electrical output through a wire or through a battery pack. In addition, the exterior of the box can be constructed such that the outer skin is of graphene material and provides the heat sinking that may be normally supplied by a heat sink and fan.


In all aspects, if the device is only to be used in the cooling mode, the heat sink could be comprised of a heat pipe to reject the heat from the hot side of the thermoelectric device, providing a greater cooling efficiency. Likewise, a thermally conductive material, like graphene, could be use on both sides of the thermoelectric device. The thermally conductive material on the hot side could be conductively attached to a heat dissipation member, such as the auto body cockpit floor of an automobile, to dissipate heat without the use of a fan or other mechanical heat dissipation device.


Referring next to FIG. 16, a new thermal control technology via the Internet of Things (IoT) is made possible with the present invention. Office chair 390 is in electrical communication with a magnetic resonance or inductive recharging pad 392. Especially in the office chair application, as previously disclosed in the description of FIG. 10, controlling operation of the cooling and heating functions as they relate to the temperature in a building and providing information on the seat occupant and use of the chair is accomplished by integrating the seat cooling and heating system with control technology. As already noted above, the cooled and heated seat system can act as a sensor, providing a wireless signal to a smart thermostat 394, which is in communication with a computer that controls the temperature settings of HVAC system 396.


When a person sits in seat 390, the thermal energy from the person is transmitted via the heat distributing graphene to the thermoelectric device. The transmitted thermal energy creates a temperature differential between the two sides of the thermoelectric device and electrical energy is then produced. This electrical energy can power a transmitter that can indicate that there is someone sitting in seat 390. When connected wirelessly to a smart room thermostat 394, thermostat 394 and building HVAC system 396 can know that a person is sitting in their seat and, sensing the temperature of the building space and the normal desired seat temperature of the seat occupant, transmits to the seat the proper set temperature desired by the occupant, initiating either cooling or heating of the seat via the seat cooling/heating system.


The thermal control technology can also function in such a way that the seat transmits a signal to smart room thermostat 394 that the seat is being occupied and is cooling or heating to a certain temperature and smart room thermostat 394 communicates with the building's HVAC system 396 and provides less cooling or less heating to the space because the individual in the seat is comfortable in their personal space and does not require the building to fully provide for the occupants thermal comfort.


By providing individualized comfort for the seat occupant in their seat due to operation of the cooling or heating process provided by the seat, the temperature of the conditioned space can be allowed to be either warmer or cooler than would normally be provided, reducing the energy required to maintain the conditioned space's temperature. For example, in a building where summer heat requires the cooling of the building, a person in a thermally controlled chair can maintain their personal comfort even if the building is allowed to drift up in temperature by several degrees. Not having to provide as much air conditioning saves energy.


Another aspect of the heated and cooled seat technology that is communicating with other devices by the Internet of Things (IoT) is that the building operator can know which seats are being occupied and where they are occupied and adjust the thermal control for the space accordingly. Other aspects of the building's systems can also be optimized such as lighting and security systems. In addition, via the cloud, the system can communicate seat use parameters to the seat manufacturer or building owner so as to gather information on how the seating system is being used and use this information to improve the seat user's experience.


Mobile phones can communicate to the chair with information as that the office worker will be arriving to sit in the chair soon, so the chair can be thermally preconditioned upon the seat user's arrival or to set the preferred temperature for the chair. Via a mobile device, a seat occupant can control chairs in different portions of the building if they are moving to another seat for a meeting.


In a like fashion, extensions of the technology can be utilized with the above-mentioned thermally controlled garments. By using the same thermal engine used in the seating application, the heating and cooling system can be used to control body temperature. In this application, the graphene material is positioned to wrap around the garment wearer and provide thermal control in both heating and cooling modes. Though the drawing shows a jacket as the garment, other garments can also be thermally controlled in a similar manner. Phase change material, as noted above for seating applications, can also be employed in this application.


The present invention can be used to thermally control the thermal box from above. Using the same thermal engine, the system can be used to heat and cooled insulated spaces such as a ‘cooler box.’ Present thermoelectrically heated and cooled cooler boxes, like those made by Igloo Products Corporation or Coleman International of Kansas, use air that is heated or cooled by passing box interior air through a heat sink. Therefore, liquid levels in the box must be maintained below a certain level or damage to the system can result. Ice, for example, should not be used in these coolers. When the ice melts, water can easily penetrate the fan/heatsink/thermoelectric module/wiring and cause failure. The present system wraps the thermally distributing graphene around the inside wall of the cooler box, or molded into the interior box liner, and is thermally connected to the thermoelectric system in the same way as the seat cooler/heater.


The following applications for my heating and cooling technology are envisioned for the present invention. First, there are heated and cooled seating applications for vehicles of all types, such as automobiles, farm equipment, as well as other seating applications for office furniture and the like. Although this invention is not limited to the following, some of the applications will include automotive seating, truck seating, motorcycle seating, off-road vehicle seating, golf car seating, heavy equipment seating, farm equipment seating, office chair seating, military vehicle seating, airplane seating, wheel chair seating, therapeutic blankets, therapeutic bedding, therapeutic wraps, hyperthermic cancer and other treatment beds, cooled and heated surfaces in automobiles, cooled and heated surfaces—general, cold-chain medical, food, chemical thermal storage boxes, heated and cooled garments, industrial process temperature controlled surfaces, biological incubation apparatus, digital display temperature control, thermal chromic signage and displays, thermal control of batteries, heated & cooled automotive steering wheels, led cooling plain, electronic circuit board thermal maintenance, cooled/heated large format food display and serving surfaces.



FIGS. 17A through 17E illustrate variations of devices and methods for improving thermal conductivity in the Z-axis in specific areas, especially in the area where the heat is transferred from the thermoelectric device, usually by a thermally conductive member or thermal block. It can also be directly attached to the thermoelectric device. In describing these variations on how to accomplish this, a perforated plastic or other film layer such as those described in FIGS. 17A-17E. FIG. 17A illustrates a top or bottom view of a sheet of film layer, preferably a plastic or polyurethane layer, wherein perforations can exist on either one side or both sides, depending upon the application. If it is on both sides, as is shown in FIG. 17C, the holes are preferably offset so as to maximize strength of the substrate film layer. However, any suitable substrate may be used besides a plastic film.



FIG. 17A generally denotes a film layer by the numeral 400, and includes a sheeted film 402 having perforations on the top 404 and shown in phantom are underneath perforations 406. FIG. 17B is a side view of the film of FIG. 17A, illustrating the relative placement of a heat transfer block 412 in contact with a thermal interface compound 414, having extruded through perforations 416. Once the thermally interfacing compound squeezes into perforations, it makes intimate thermal contact directly with the graphene 408 resulting in a higher thermal conductivity contact.



FIG. 17C illustrates a perforated film with perforations on both the top and the bottom. Plastic film 420 has perforations 422 formed therein with a sheet of graphene 424 lying there between for strength. Thermal interface compound 426 oozes between the planar surfaces and provides a complete thermal communication contact between the elements and the heat transfer block 428. Under high pressure, graphene platelets will extrude into the void areas left by the perforations in the film layer which is used for support. This results in a planar surface where the graphene material is filling the voids and the thermal interface compound just provides the interface between the planar surface and the heat transfer block.


In yet another aspect, FIG. 17D illustrates a thermal contact area by the voids in the film. In this aspect, the heat transfer compound 436 squeezes into the void areas in the film layer, showing where graphene layer 432 is intermediate between the film layer 430 on top of heat transfer block 434.


In yet another variation of the film layer, FIG. 17E shows another aspect of the present invention wherein a needle plate is disclosed to make better thermal contact. In FIG. 17E, film 440 surrounds a sheet of graphene 448. Atop thermoelectric device 444 is heat transfer block 442 which includes thermally conductive needle-like members which extend up through thermal transfer compound 446 to make contact with graphene layer 448. By the inclusion of needles on the heat transfer plate 442, greater surface area is incorporated and therefore better heat transfer can be obtained. The heat transfer needles may penetrate the film layer into the thermally conductive material. The heat transfer block with its needles are preferably made of a highly thermally conductive material such as copper, aluminum, magnesium, pyrolytic graphite, or combinations thereof.


In this aspect, the needles penetrating the graphene take advantage of the extremely conductive X and Y axis thermal conductivity of the graphene and transfer heat into or out of the graphene in the Z axis.


In summary, numerous benefits have been described which result from employing any or all of the concepts and the features of the various specific aspects of the present invention, or those that are within the scope of the invention. The foregoing description of several preferred aspects of the invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings with regards to the specific aspects. The aspect was chosen and described in order to best illustrate the principles of the invention and its practical applications to thereby enable one of ordinary skill in the art to best utilize the invention in various aspects and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims which are appended hereto.


INDUSTRIAL APPLICABILITY

The present invention finds utility in the seating industry as well as other applications where heating and cooling distribution may be effected efficiently.

Claims
  • 1. A heating and cooling system having a sheeted thermally conductive material for distributing heat or coolness across a surface configured to contact a person, the system comprising: a heating and cooling source for generating heat or coolness;a heat transfer plate in thermal communication with the heating and cooling source, the heat transfer plate configured to distribute heat or coolness generated by the heating and cooling source, the heat transfer plate comprising needles extending from a surface of the heat transfer plate;a flexible sheeted thermally conductive material in thermal communication with the heat transfer plate, the flexible sheeted thermally conductive material configured to distribute heat or coolness generated by the heating and cooling source over a distribution area across the surface configured to contact the person larger than a surface of the heating and cooling source itself,wherein the needles extend from the surface of the heat transfer plate into the flexible sheeted thermally conductive material to transfer heat between the heating and cooling source and the flexible sheeted thermally conductive material; anda film layer surrounding the flexible sheeted thermally conductive material, the needles extending through the film layer into the flexible sheeted thermally conductive material,wherein the needles extend through the film layer on a first side of the flexible sheeted thermally conductive material without extending through the film layer on a second side of the flexible sheeted thermally conductive material, the first side opposite the second side.
  • 2. The system of claim 1, wherein the needles comprise at least one of copper, aluminum, or graphite.
  • 3. The system of claim 1, wherein the needles extend through a heat transfer compound into the flexible sheeted thermally conductive material, the heat transfer compound positioned between the heat transfer plate and the flexible sheeted thermally conductive material.
  • 4. The system of claim 1, wherein the flexible sheeted thermally conductive material comprises graphene.
  • 5. The system of claim 1, wherein the flexible sheeted thermally conductive material comprises panels of material separated by slits.
  • 6. The system of claim 5, further comprising a thermally conductive ring connected to the panels of material, the thermally conductive ring thermally connecting the panels of material between the slits.
  • 7. The system of claim 1, wherein the flexible sheeted thermally conductive material comprises strips of material.
  • 8. The system of claim 1, wherein the heating and cooling source comprises a thermoelectric device.
  • 9. The system of claim 1, wherein the film layer comprises plastic or polyurethane.
  • 10. A heating and cooling system having a sheeted thermally conductive material for distributing heat or coolness across a surface configured to contact a person, the system comprising: a heating and cooling source for generating heat or coolness;a flexible sheeted thermally conductive material in thermal communication with the heating and cooling source, the flexible sheeted thermally conductive material configured to distribute heat or coolness generated by the heating and cooling source over a distribution area across the surface configured to contact the person larger than a surface of the heating and cooling source itself; anda film layer surrounding the flexible sheeted thermally conductive material, the film layer comprising perforations, wherein a thermal interface compound is positioned within the perforations to provide thermal communication between the heating and cooling source and the flexible sheeted thermally conductive material,wherein the film layer comprises the perforations both on a first side of the flexible sheeted thermally conductive material and on a second side of the flexible sheeted thermally conductive material, the first side opposite the second side, andwherein the perforations on the first side are offset relative to the perforations on the second side.
  • 11. The system of claim 10, further comprising a heat transfer block configured to distribute heat or coolness generated by the heating and cooling source, the film layer positioned over the heat transfer block, the thermal interface compound thermally connecting the heat transfer block and the flexible sheeted thermally conductive material.
  • 12. The system of claim 10, wherein the film layer comprises plastic or polyurethane.
  • 13. The system of claim 10, wherein the flexible sheeted thermally conductive material comprises graphene.
  • 14. The system of claim 10, wherein the heating and cooling source comprises a thermoelectric device.
  • 15. The system of claim 10, wherein the flexible sheeted thermally conductive material comprises panels of material separated by slits.
  • 16. The system of claim 15, further comprising a thermally conductive ring connected to the panels of material, the thermally conductive ring thermally connecting the panels of material between the slits.
  • 17. The system of claim 10, wherein the flexible sheeted thermally conductive material comprises strips of material.
US Referenced Citations (843)
Number Name Date Kind
1839156 Lumpkin Dec 1931 A
2235620 Nessell Mar 1941 A
2362259 Findley Nov 1944 A
2363168 Findley Nov 1944 A
2461432 Mitchell Feb 1949 A
2462984 Maddison Mar 1949 A
2493067 Goldsmith Jan 1950 A
2512559 Williams Jun 1950 A
2519241 Findley Aug 1950 A
2782834 Vigo Feb 1957 A
2791956 Guest May 1957 A
2813708 Frey Nov 1957 A
2884956 Perlin May 1959 A
2931286 Fry, Sr. et al. Apr 1960 A
2959017 Gilman et al. Nov 1960 A
2976700 Jackson Mar 1961 A
2984077 Gaskill May 1961 A
3019609 Pietsch Feb 1962 A
3030145 Kottemann Apr 1962 A
3039817 Taylor Jun 1962 A
3077079 Pietsch Feb 1963 A
3085405 Frantti Apr 1963 A
3090206 Anders May 1963 A
3136577 Richard Jun 1964 A
3137142 Venema Jun 1964 A
3137523 Karner Jun 1964 A
3138934 Roane Jun 1964 A
3178894 Mole et al. Apr 1965 A
3186240 Daubert Jun 1965 A
3197342 Neild Jul 1965 A
3212275 Tillman Oct 1965 A
3240628 Sonntag, Jr. Mar 1966 A
3253649 Laing May 1966 A
3266064 Figman Aug 1966 A
3282267 Eidus Nov 1966 A
3298195 Raskhodoff Jan 1967 A
3300649 Strawn Jan 1967 A
3325312 Sonntag, Jr. Jun 1967 A
3326727 Fritts Jun 1967 A
3351498 Shinn et al. Nov 1967 A
3366164 Newton Jan 1968 A
3392535 De Castelet Jul 1968 A
3486177 Marshack Dec 1969 A
3529310 Olmo Sep 1970 A
3550523 Segal Dec 1970 A
3599437 Panas Aug 1971 A
3615870 Crouthamel Oct 1971 A
3627299 Schwartze et al. Dec 1971 A
3632451 Abbott Jan 1972 A
3640456 Sturgis Feb 1972 A
3648469 Chapman Mar 1972 A
3681797 Messner Aug 1972 A
3703141 Pernoud Nov 1972 A
3767470 Hines Oct 1973 A
3786230 Brandenburg, Jr. Jan 1974 A
3818522 Schuster Jun 1974 A
3819418 Winkler et al. Jun 1974 A
3839876 Privas Oct 1974 A
3870568 Oesterhelt et al. Mar 1975 A
3876860 Nomura et al. Apr 1975 A
3894213 Agarwala Jul 1975 A
3899054 Huntress et al. Aug 1975 A
3902923 Evans et al. Sep 1975 A
3916151 Reix Oct 1975 A
3926052 Bechtel Dec 1975 A
3927299 Sturgis Dec 1975 A
3928876 Starr Dec 1975 A
4002108 Drori Jan 1977 A
4044824 Eskeli Aug 1977 A
4100963 Dillenbeck Jul 1978 A
4124794 Eder Nov 1978 A
4195687 Taziker Apr 1980 A
4223205 Sturgis Sep 1980 A
4224565 Sosniak et al. Sep 1980 A
4281516 Berthet et al. Aug 1981 A
4301658 Reed Nov 1981 A
4314008 Blake Feb 1982 A
4315599 Biancardi Feb 1982 A
4336444 Bice et al. Jun 1982 A
4338944 Arkans Jul 1982 A
4391009 Schild et al. Jul 1983 A
4413857 Hayashi Nov 1983 A
4423308 Callaway et al. Dec 1983 A
4437702 Agosta Mar 1984 A
4438070 Stephens et al. Mar 1984 A
4459428 Chou Jul 1984 A
4491173 Demand Jan 1985 A
4493939 Blaske et al. Jan 1985 A
4497973 Heath et al. Feb 1985 A
4506510 Tircot Mar 1985 A
4518700 Stephens May 1985 A
4518847 Horst, Sr. et al. May 1985 A
4549134 Weiss Oct 1985 A
4554968 Haas Nov 1985 A
4567351 Kitagawa et al. Jan 1986 A
4572430 Takagi et al. Feb 1986 A
4611089 Elsner et al. Sep 1986 A
4639883 Michaelis Jan 1987 A
4665707 Hamilton May 1987 A
4671567 Frobose Jun 1987 A
4677416 Nishimoto et al. Jun 1987 A
4685727 Cremer et al. Aug 1987 A
4686724 Bedford Aug 1987 A
4688390 Sawyer Aug 1987 A
4704320 Mizunoya et al. Nov 1987 A
4711294 Jacobs et al. Dec 1987 A
4712832 Antolini et al. Dec 1987 A
4777802 Feher Oct 1988 A
4782664 Sterna et al. Nov 1988 A
4791274 Horst Dec 1988 A
4793651 Inagaki et al. Dec 1988 A
4802929 Schock Feb 1989 A
4812733 Tobey Mar 1989 A
4823554 Trachtenberg et al. Apr 1989 A
4825488 Bedford May 1989 A
4828627 Connery May 1989 A
4847933 Bedford Jul 1989 A
4853992 Yu Aug 1989 A
4859250 Buist Aug 1989 A
4923248 Feher May 1990 A
4930317 Klein Jun 1990 A
4947648 Harwell et al. Aug 1990 A
4969684 Zarotti Nov 1990 A
4981324 Law Jan 1991 A
4988847 Argos et al. Jan 1991 A
4997230 Spitalnick Mar 1991 A
5002336 Feher Mar 1991 A
5012325 Mansuria et al. Apr 1991 A
5014909 Yasuo May 1991 A
5016304 Ryhiner May 1991 A
5022462 Flint et al. Jun 1991 A
5057490 Skertic Oct 1991 A
5070937 Mougin et al. Dec 1991 A
5077709 Feher Dec 1991 A
5088790 Wainwright et al. Feb 1992 A
5097674 Imaiida et al. Mar 1992 A
5102189 Saito et al. Apr 1992 A
5106161 Meiller Apr 1992 A
5111025 Barma et al. May 1992 A
5111664 Yang May 1992 A
5117638 Feher Jun 1992 A
5119640 Conrad Jun 1992 A
5125238 Ragan et al. Jun 1992 A
5148977 Hibino et al. Sep 1992 A
5166777 Kataoka Nov 1992 A
5187349 Curhan et al. Feb 1993 A
5188286 Pence, IV Feb 1993 A
5226188 Liou Jul 1993 A
5255735 Raghava et al. Oct 1993 A
5256857 Curhan et al. Oct 1993 A
5265599 Stephenson et al. Nov 1993 A
5278936 Shao Jan 1994 A
5279128 Tomatsu et al. Jan 1994 A
5335381 Chang Aug 1994 A
5367728 Chang Nov 1994 A
5372402 Kuo Dec 1994 A
5375421 Hsieh Dec 1994 A
5382075 Shih Jan 1995 A
5385382 Single, II et al. Jan 1995 A
5409547 Watanabe et al. Apr 1995 A
5413166 Kerner et al. May 1995 A
5416935 Nieh May 1995 A
5419489 Burd May 1995 A
5419780 Suski May 1995 A
5430322 Koyanagi et al. Jul 1995 A
5448788 Wu Sep 1995 A
5448891 Nakagiri et al. Sep 1995 A
5456081 Chrysler et al. Oct 1995 A
5473783 Allen Dec 1995 A
5493742 Klearman Feb 1996 A
5493864 Pomerene et al. Feb 1996 A
5497632 Robinson Mar 1996 A
5505520 Frusti et al. Apr 1996 A
5515238 Fritz et al. May 1996 A
5524439 Gallup et al. Jun 1996 A
5542503 Dunn et al. Aug 1996 A
5544487 Attey et al. Aug 1996 A
5544488 Reid Aug 1996 A
5555732 Whiticar Sep 1996 A
5561981 Quisenberry et al. Oct 1996 A
5576512 Doke Nov 1996 A
5584084 Klearman et al. Dec 1996 A
5584183 Wright et al. Dec 1996 A
5594609 Lin Jan 1997 A
5597200 Gregory et al. Jan 1997 A
5601399 Okpara et al. Feb 1997 A
5606639 Lehoe et al. Feb 1997 A
5613729 Summer, Jr. Mar 1997 A
5613730 Buie et al. Mar 1997 A
5623828 Harrington Apr 1997 A
5626021 Karunasiri et al. May 1997 A
5626386 Lush May 1997 A
5634342 Peeters et al. Jun 1997 A
5637921 Burward-Hoy Jun 1997 A
5640728 Graebe Jun 1997 A
5642539 Kuo Jul 1997 A
5645314 Liou Jul 1997 A
5650904 Gilley et al. Jul 1997 A
5653741 Grant Aug 1997 A
5660310 LeGrow Aug 1997 A
5667622 Hasegawa et al. Sep 1997 A
5675852 Watkins Oct 1997 A
5690849 DeVilbiss et al. Nov 1997 A
5692952 Chih-Hung Dec 1997 A
5704213 Smith et al. Jan 1998 A
5715695 Lord Feb 1998 A
5721804 Greene, III Feb 1998 A
5724818 Iwata et al. Mar 1998 A
5729981 Markus et al. Mar 1998 A
5734122 Aspden Mar 1998 A
5761908 Oas et al. Jun 1998 A
5761909 Hughes et al. Jun 1998 A
5772500 Harvey et al. Jun 1998 A
5798583 Morita Aug 1998 A
5800490 Patz et al. Sep 1998 A
5802855 Yamaguchi et al. Sep 1998 A
5802856 Schaper et al. Sep 1998 A
5822993 Attey Oct 1998 A
5827424 Gillis et al. Oct 1998 A
5833321 Kim et al. Nov 1998 A
5850741 Feher Dec 1998 A
5865031 Itakura Feb 1999 A
5871151 Fiedrich Feb 1999 A
5884485 Yamaguchi et al. Mar 1999 A
5884486 Hughes et al. Mar 1999 A
5887304 Von der Heyde Mar 1999 A
5888261 Fortune Mar 1999 A
5895964 Nakayama Apr 1999 A
5902014 Dinkel et al. May 1999 A
5921100 Yoshinori et al. Jul 1999 A
5921314 Schuller et al. Jul 1999 A
5921858 Kawai et al. Jul 1999 A
5924289 Bishop, II Jul 1999 A
5924766 Esaki et al. Jul 1999 A
5924767 Pietryga Jul 1999 A
5927599 Kath Jul 1999 A
5927817 Ekman et al. Jul 1999 A
5934748 Faust et al. Aug 1999 A
5936192 Tauchi Aug 1999 A
5937908 Inoshiri et al. Aug 1999 A
5948303 Larson Sep 1999 A
5950067 Maegawa et al. Sep 1999 A
5952728 Imanishi et al. Sep 1999 A
5987893 Schultz-Harder et al. Nov 1999 A
5988568 Drews Nov 1999 A
5992154 Kawada et al. Nov 1999 A
5994637 Imanushi et al. Nov 1999 A
5995711 Fukuoka et al. Nov 1999 A
6000225 Ghoshal Dec 1999 A
6003950 Larsson Dec 1999 A
6006524 Park Dec 1999 A
6019420 Faust et al. Feb 2000 A
6038865 Watanabe et al. Mar 2000 A
6048024 Wallman Apr 2000 A
6049655 Vazirani Apr 2000 A
6052853 Schmid Apr 2000 A
6053163 Bass Apr 2000 A
6059018 Yoshinori et al. May 2000 A
6062641 Suzuki et al. May 2000 A
6072924 Sato et al. Jun 2000 A
6072938 Peterson et al. Jun 2000 A
6073998 Siarkowski et al. Jun 2000 A
6079485 Esaki et al. Jun 2000 A
6084172 Kishi et al. Jul 2000 A
6085369 Feher Jul 2000 A
6086831 Harness et al. Jul 2000 A
6087638 Silverbrook Jul 2000 A
6094919 Bhatia Aug 2000 A
6097088 Sakuragi Aug 2000 A
6100463 Ladd et al. Aug 2000 A
6101815 Van Oort et al. Aug 2000 A
6103967 Cauchy et al. Aug 2000 A
6105373 Watanabe et al. Aug 2000 A
6109688 Wurz et al. Aug 2000 A
6112525 Yoshida et al. Sep 2000 A
6112531 Yamaguchi Sep 2000 A
6116029 Krawec Sep 2000 A
6119463 Bell Sep 2000 A
6120370 Asou et al. Sep 2000 A
6127619 Xi et al. Oct 2000 A
6141969 Launchbury et al. Nov 2000 A
6145925 Eksin et al. Nov 2000 A
6158224 Hu et al. Dec 2000 A
6161241 Zysman Dec 2000 A
6161388 Ghoshal Dec 2000 A
6164076 Chu et al. Dec 2000 A
6164719 Rauh Dec 2000 A
6171333 Nelson et al. Jan 2001 B1
6178292 Fukuoka et al. Jan 2001 B1
6179706 Yoshinori et al. Jan 2001 B1
6186592 Orizakis et al. Feb 2001 B1
6189966 Faust et al. Feb 2001 B1
6189967 Short Feb 2001 B1
6196627 Faust et al. Mar 2001 B1
6196839 Ross Mar 2001 B1
6206465 Faust et al. Mar 2001 B1
6213198 Shikata et al. Apr 2001 B1
6222243 Kishi et al. Apr 2001 B1
6223539 Bell May 2001 B1
6233959 Kang et al. May 2001 B1
6250083 Chou Jun 2001 B1
6256996 Ghoshal Jul 2001 B1
6262357 Johnson et al. Jul 2001 B1
6263530 Feher Jul 2001 B1
6266962 Ghoshal Jul 2001 B1
6282907 Ghoshal Sep 2001 B1
6289982 Naji Sep 2001 B1
6291803 Fourrey Sep 2001 B1
6306673 Imanishi et al. Oct 2001 B1
6326610 Muramatsu et al. Dec 2001 B1
6336237 Schmid Jan 2002 B1
6338251 Ghoshal Jan 2002 B1
6341395 Chao Jan 2002 B1
6345507 Gillen Feb 2002 B1
6347521 Kadotani et al. Feb 2002 B1
6378311 McCordic Apr 2002 B1
6385976 Yamamura et al. May 2002 B1
6391676 Tsuzaki et al. May 2002 B1
6393842 Kim et al. May 2002 B2
6400013 Tsuzaki et al. Jun 2002 B1
6402470 Kvasnak et al. Jun 2002 B1
6410971 Otey Jun 2002 B1
6425527 Smole Jul 2002 B1
6427449 Logan et al. Aug 2002 B1
6434328 Rutherford Aug 2002 B2
6438964 Giblin Aug 2002 B1
6444893 Onoue et al. Sep 2002 B1
6452740 Ghoshal Sep 2002 B1
6470696 Palfy et al. Oct 2002 B1
6474072 Needham Nov 2002 B2
6474073 Uetsuji et al. Nov 2002 B1
6481801 Schmale Nov 2002 B1
6487739 Harker Dec 2002 B1
6489551 Chu et al. Dec 2002 B2
6490879 Lloyd et al. Dec 2002 B1
6492585 Zamboni et al. Dec 2002 B1
6493888 Salvatini et al. Dec 2002 B1
6493889 Kocurek Dec 2002 B2
6509704 Brown Jan 2003 B1
6511125 Gendron Jan 2003 B1
6519949 Wernlund et al. Feb 2003 B1
6539725 Bell Apr 2003 B2
6541737 Eksin et al. Apr 2003 B1
6541743 Chen Apr 2003 B2
6546576 Lin Apr 2003 B1
6548894 Chu et al. Apr 2003 B2
6552256 Shakouri et al. Apr 2003 B2
6557353 Fusco et al. May 2003 B1
RE38128 Gallup et al. Jun 2003 E
6571564 Upadhye et al. Jun 2003 B2
6573596 Saika Jun 2003 B2
6574967 Park et al. Jun 2003 B1
6578986 Swaris et al. Jun 2003 B2
6580025 Guy Jun 2003 B2
6581225 Imai Jun 2003 B1
6583638 Costello et al. Jun 2003 B2
6598251 Habboub et al. Jul 2003 B2
6598405 Bell Jul 2003 B2
6604576 Noda et al. Aug 2003 B2
6604785 Bargheer et al. Aug 2003 B2
6605955 Costello et al. Aug 2003 B1
6606754 Flick Aug 2003 B1
6606866 Bell Aug 2003 B2
6619044 Batchelor et al. Sep 2003 B2
6619736 Stowe et al. Sep 2003 B2
6619737 Kunkel et al. Sep 2003 B2
6625990 Bell Sep 2003 B2
6626488 Pfahler Sep 2003 B2
6629724 Ekern et al. Oct 2003 B2
6637210 Bell Oct 2003 B2
6644735 Bargheer et al. Nov 2003 B2
6672076 Bell Jan 2004 B2
6676207 Rauh et al. Jan 2004 B2
6684437 Koenig Feb 2004 B2
6686532 Macris Feb 2004 B1
6687937 Harker Feb 2004 B2
6695402 Sloan, Jr. Feb 2004 B2
6700052 Bell Mar 2004 B2
6705089 Chu et al. Mar 2004 B2
6708352 Salvatini et al. Mar 2004 B2
6711767 Klamm Mar 2004 B2
6711904 Law et al. Mar 2004 B1
6719039 Calaman et al. Apr 2004 B2
6725669 Melaragni Apr 2004 B2
6727422 Macris Apr 2004 B2
6730115 Heaton May 2004 B1
6739138 Saunders et al. May 2004 B2
6739655 Schwochert et al. May 2004 B1
6743972 Macris Jun 2004 B2
6761399 Bargheer et al. Jul 2004 B2
6764502 Bieberich Jul 2004 B2
6767766 Chu et al. Jul 2004 B2
6772829 Lebrun Aug 2004 B2
6774346 Clothier Aug 2004 B2
6786541 Haupt et al. Sep 2004 B2
6786545 Bargheer et al. Sep 2004 B2
6790481 Bishop et al. Sep 2004 B2
6793016 Aoki et al. Sep 2004 B2
6804966 Chu et al. Oct 2004 B1
6808230 Buss et al. Oct 2004 B2
6812395 Bell Nov 2004 B2
6815814 Chu et al. Nov 2004 B2
6817191 Watanabe Nov 2004 B2
6817197 Padfield Nov 2004 B1
6817675 Buss et al. Nov 2004 B2
6818817 Macris Nov 2004 B2
6823678 Li Nov 2004 B1
6828528 Stowe et al. Dec 2004 B2
6832732 Burkett et al. Dec 2004 B2
6834509 Palfy et al. Dec 2004 B2
6840305 Zheng et al. Jan 2005 B2
6840576 Ekern et al. Jan 2005 B2
6841957 Brown Jan 2005 B2
6845622 Sauciuc et al. Jan 2005 B2
6855158 Stolpmann Feb 2005 B2
6855880 Feher Feb 2005 B2
6857697 Brennan et al. Feb 2005 B2
6857954 Luedtke Feb 2005 B2
6868690 Faqih Mar 2005 B2
6871365 Flick et al. Mar 2005 B2
6876549 Beitmal et al. Apr 2005 B2
6886351 Palfy et al. May 2005 B2
6892807 Fristedt et al. May 2005 B2
6893086 Bajic et al. May 2005 B2
6904629 Wu Jun 2005 B2
6907739 Bell Jun 2005 B2
6923216 Extrand et al. Aug 2005 B2
6935122 Huang Aug 2005 B2
6954944 Feher Oct 2005 B2
6959555 Bell Nov 2005 B2
6962195 Smith et al. Nov 2005 B2
6963053 Lutz Nov 2005 B2
6967309 Wyatt et al. Nov 2005 B2
6976734 Stoewe Dec 2005 B2
6977360 Weiss Dec 2005 B2
6981380 Chrysler et al. Jan 2006 B2
6990701 Litvak Jan 2006 B1
7000490 Micheels Feb 2006 B1
7036163 Schmid May 2006 B2
7040710 White et al. May 2006 B2
7052091 Bajic et al. May 2006 B2
7063163 Steele et al. Jun 2006 B2
7066306 Gavin Jun 2006 B2
7070231 Wong Jul 2006 B1
7070232 Minegishi et al. Jul 2006 B2
7075034 Bargheer et al. Jul 2006 B2
7082772 Welch Aug 2006 B2
7084502 Bottner et al. Aug 2006 B2
7100978 Ekern et al. Sep 2006 B2
7108319 Hartwich et al. Sep 2006 B2
7111465 Bell Sep 2006 B2
7114771 Lofy et al. Oct 2006 B2
7124593 Feher Oct 2006 B2
7131689 Brennan et al. Nov 2006 B2
7134715 Fristedt et al. Nov 2006 B1
7141763 Moroz Nov 2006 B2
7147279 Bevan et al. Dec 2006 B2
7165281 Larssson et al. Jan 2007 B2
7168758 Bevan et al. Jan 2007 B2
7178344 Bell Feb 2007 B2
7201441 Stoewe et al. Apr 2007 B2
7213876 Stoewe May 2007 B2
7220048 Kohlgrüber et al. May 2007 B2
7224059 Shimada et al. May 2007 B2
7231772 Bell Jun 2007 B2
7244887 Miley Jul 2007 B2
7246496 Goenka et al. Jul 2007 B2
7272936 Feher Sep 2007 B2
7273981 Bell Sep 2007 B2
7299639 Leija et al. Nov 2007 B2
7320223 Dabney Jan 2008 B1
7337615 Reidy Mar 2008 B2
7338117 Iqbal et al. Mar 2008 B2
7340907 Vogh et al. Mar 2008 B2
7355146 Angelis et al. Apr 2008 B2
7356912 Iqbal et al. Apr 2008 B2
7360365 Codecasa et al. Apr 2008 B2
7360416 Manaka et al. Apr 2008 B2
7370479 Pfannenberg May 2008 B2
7370911 Bajic et al. May 2008 B2
7380586 Gawthrop Jun 2008 B2
7425034 Bajic et al. Sep 2008 B2
7426835 Bell et al. Sep 2008 B2
7462028 Cherala et al. Dec 2008 B2
7469432 Chambers Dec 2008 B2
7475464 Lofy et al. Jan 2009 B2
7475938 Stoewe et al. Jan 2009 B2
7478869 Lazanja et al. Jan 2009 B2
7480950 Feher Jan 2009 B2
7506924 Bargheer et al. Mar 2009 B2
7506938 Brennan et al. Mar 2009 B2
7513273 Bivin Apr 2009 B2
7581785 Heckmann et al. Sep 2009 B2
7587901 Petrovski Sep 2009 B2
7587902 Bell Sep 2009 B2
7591507 Giffin et al. Sep 2009 B2
7608777 Bell et al. Oct 2009 B2
7621594 Hartmann et al. Nov 2009 B2
7640754 Wolas Jan 2010 B2
7665803 Wolas Feb 2010 B2
7708338 Wolas May 2010 B2
7731279 Asada et al. Jun 2010 B2
RE41765 Gregory et al. Sep 2010 E
7827620 Feher Nov 2010 B2
7827805 Comiskey et al. Nov 2010 B2
7862113 Knoll Jan 2011 B2
7866017 Knoll Jan 2011 B2
7877827 Marquette et al. Feb 2011 B2
7937789 Feher May 2011 B2
7963594 Wolas Jun 2011 B2
7966835 Petrovski Jun 2011 B2
7969738 Koo Jun 2011 B2
7996936 Marquette et al. Aug 2011 B2
8062797 Fisher et al. Nov 2011 B2
8065763 Brykalski et al. Nov 2011 B2
8104295 Lofy Jan 2012 B2
8143554 Lofy Mar 2012 B2
8181290 Brykalski et al. May 2012 B2
8191187 Brykalski et al. Jun 2012 B2
8222511 Lofy Jul 2012 B2
8256236 Lofy Sep 2012 B2
8332975 Brykalski et al. Dec 2012 B2
8397518 Vistakula Mar 2013 B1
8402579 Marquette et al. Mar 2013 B2
8418286 Brykalski et al. Apr 2013 B2
8434314 Comiskey et al. May 2013 B2
8438863 Lofy May 2013 B2
RE44272 Bell Jun 2013 E
8505320 Lofy Aug 2013 B2
8516842 Petrovski Aug 2013 B2
8539624 Terech et al. Sep 2013 B2
8575518 Walsh Nov 2013 B2
8621687 Brykalski et al. Jan 2014 B2
8732874 Brykalski et al. May 2014 B2
8777320 Stoll et al. Jul 2014 B2
8782830 Brykalski et al. Jul 2014 B2
8869596 Hagl Oct 2014 B2
8893329 Petrovksi Nov 2014 B2
8893513 June et al. Nov 2014 B2
8969703 Makansi et al. Mar 2015 B2
9027360 Chainer et al. May 2015 B2
9055820 Axakov et al. Jun 2015 B2
9105808 Petrovksi Aug 2015 B2
9105809 Lofy Aug 2015 B2
9121414 Lofy et al. Sep 2015 B2
9125497 Brykalski et al. Sep 2015 B2
9310112 Bell et al. Apr 2016 B2
9335073 Lofy May 2016 B2
9445524 Lofy et al. Sep 2016 B2
9451723 Lofy et al. Sep 2016 B2
9603459 Brykalski et al. Mar 2017 B2
9622588 Brykalski et al. Apr 2017 B2
9651279 Lofy May 2017 B2
9662962 Steinman et al. May 2017 B2
9685599 Petrovski et al. Jun 2017 B2
9719701 Bell et al. Aug 2017 B2
9814641 Brykalski et al. Nov 2017 B2
9857107 Inaba et al. Jan 2018 B2
9989267 Brykalski et al. Jun 2018 B2
9989282 Makansi et al. Jun 2018 B2
10005337 Petrovski Jun 2018 B2
10195970 Bauer Feb 2019 B2
10208990 Petrovski et al. Feb 2019 B2
10219323 Inaba et al. Feb 2019 B2
10228165 Makansi et al. Mar 2019 B2
10228166 Lofy Mar 2019 B2
10266031 Steinman et al. Apr 2019 B2
10288084 Lofy et al. May 2019 B2
10290796 Boukai et al. May 2019 B2
RE47574 Terech et al. Aug 2019 E
10405667 Marquette et al. Sep 2019 B2
10457173 Lofy et al. Oct 2019 B2
10495322 Brykalski et al. Dec 2019 B2
10589647 Wolas et al. Mar 2020 B2
10991869 Jovovic et al. Apr 2021 B2
11033058 Cauchy Jun 2021 B2
11075331 Bück Jul 2021 B2
11152557 Jovovic et al. Oct 2021 B2
11223004 Jovovic Jan 2022 B2
11240882 Inaba et al. Feb 2022 B2
11240883 Inaba et al. Feb 2022 B2
20010005990 Kim et al. Jul 2001 A1
20010014212 Rutherford Aug 2001 A1
20010028185 Stowe et al. Oct 2001 A1
20020017102 Bell Feb 2002 A1
20020026226 Ein Feb 2002 A1
20020062854 Sharp May 2002 A1
20020092308 Bell Jul 2002 A1
20020100121 Kocurek Aug 2002 A1
20020108380 Nelsen et al. Aug 2002 A1
20020121094 VanHoudt Sep 2002 A1
20020166659 Wagner et al. Nov 2002 A1
20020171132 Buchwalter et al. Nov 2002 A1
20020195844 Hipwell Dec 2002 A1
20030039298 Eriksson et al. Feb 2003 A1
20030041892 Fleurial et al. Mar 2003 A1
20030070235 Suzuki et al. Apr 2003 A1
20030084511 Salvatini et al. May 2003 A1
20030110779 Otey et al. Jun 2003 A1
20030133492 Watanabe Jul 2003 A1
20030145380 Schmid Aug 2003 A1
20030150060 Huang Aug 2003 A1
20030160479 Minuth et al. Aug 2003 A1
20030188382 Klamm et al. Oct 2003 A1
20030234247 Stern Dec 2003 A1
20040040327 Iida et al. Mar 2004 A1
20040070236 Brennan et al. Apr 2004 A1
20040090093 Kamiya et al. May 2004 A1
20040098991 Heyes May 2004 A1
20040113549 Roberts et al. Jun 2004 A1
20040164594 Stoewe et al. Aug 2004 A1
20040177622 Harvie Sep 2004 A1
20040177876 Hightower Sep 2004 A1
20040177877 Hightower Sep 2004 A1
20040195870 Bohlender Oct 2004 A1
20040238022 Hiller et al. Dec 2004 A1
20040238516 Bulgajewski Dec 2004 A1
20040255364 Feher Dec 2004 A1
20040264009 Hwang et al. Dec 2004 A1
20050000558 Moriyama et al. Jan 2005 A1
20050011009 Wu Jan 2005 A1
20050012204 Strnad Jan 2005 A1
20050045702 Freeman et al. Mar 2005 A1
20050056310 Shikata et al. Mar 2005 A1
20050067862 Iqbal et al. Mar 2005 A1
20050072165 Bell Apr 2005 A1
20050076944 Kanatzidis et al. Apr 2005 A1
20050078451 Sauciuc et al. Apr 2005 A1
20050086739 Wu Apr 2005 A1
20050121065 Otey Jun 2005 A1
20050126184 Cauchy Jun 2005 A1
20050140180 Hesch Jun 2005 A1
20050143797 Parish et al. Jun 2005 A1
20050145285 Extrand Jul 2005 A1
20050161072 Esser et al. Jul 2005 A1
20050173950 Bajic et al. Aug 2005 A1
20050183763 Christiansen Aug 2005 A1
20050193742 Arnold Sep 2005 A1
20050200166 Noh Sep 2005 A1
20050202774 Lipke Sep 2005 A1
20050220167 Kanai et al. Oct 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050257532 Ikeda et al. Nov 2005 A1
20050268956 Take Dec 2005 A1
20050278863 Bahash et al. Dec 2005 A1
20050285438 Ishima et al. Dec 2005 A1
20050288749 Lachenbruch Dec 2005 A1
20060005548 Ruckstuhl Jan 2006 A1
20060005944 Wang et al. Jan 2006 A1
20060053529 Feher Mar 2006 A1
20060075760 Im et al. Apr 2006 A1
20060078319 Maran Apr 2006 A1
20060080778 Chambers Apr 2006 A1
20060087160 Dong et al. Apr 2006 A1
20060102224 Chen et al. May 2006 A1
20060118158 Zhang et al. Jun 2006 A1
20060123799 Tateyama et al. Jun 2006 A1
20060137099 Feher Jun 2006 A1
20060157102 Nakajima et al. Jul 2006 A1
20060158011 Marlovits et al. Jul 2006 A1
20060162074 Bader Jul 2006 A1
20060162341 Milazzo Jul 2006 A1
20060175877 Alionte et al. Aug 2006 A1
20060197363 Lofy et al. Sep 2006 A1
20060200398 Botton et al. Sep 2006 A1
20060201161 Hirai et al. Sep 2006 A1
20060201162 Hsieh Sep 2006 A1
20060213682 Moon et al. Sep 2006 A1
20060214480 Terech Sep 2006 A1
20060219699 Geisel et al. Oct 2006 A1
20060225441 Goenka et al. Oct 2006 A1
20060225773 Venkatasubramanian et al. Oct 2006 A1
20060237166 Otey et al. Oct 2006 A1
20060243317 Venkatasubramanian Nov 2006 A1
20060244289 Bedro Nov 2006 A1
20060254284 Ito et al. Nov 2006 A1
20060273646 Comiskey et al. Dec 2006 A1
20060289051 Niimi et al. Dec 2006 A1
20070017666 Goenka et al. Jan 2007 A1
20070035162 Bier et al. Feb 2007 A1
20070040421 Zuzga et al. Feb 2007 A1
20070069554 Comiskey et al. Mar 2007 A1
20070086757 Feher Apr 2007 A1
20070089773 Koester et al. Apr 2007 A1
20070095378 Ito et al. May 2007 A1
20070095383 Tajima May 2007 A1
20070101602 Bae et al. May 2007 A1
20070107450 Sasao et al. May 2007 A1
20070138844 Kim Jun 2007 A1
20070142883 Quincy Jun 2007 A1
20070145808 Minuth et al. Jun 2007 A1
20070157630 Kadle et al. Jul 2007 A1
20070157631 Huang et al. Jul 2007 A1
20070158981 Almasi et al. Jul 2007 A1
20070163269 Chung et al. Jul 2007 A1
20070190712 Lin et al. Aug 2007 A1
20070193279 Yoneno et al. Aug 2007 A1
20070200398 Wolas et al. Aug 2007 A1
20070214956 Carlson et al. Sep 2007 A1
20070220907 Ehlers Sep 2007 A1
20070227158 Kuchimachi Oct 2007 A1
20070234742 Aoki et al. Oct 2007 A1
20070241592 Giffin et al. Oct 2007 A1
20070251016 Feher Nov 2007 A1
20070256722 Kondoh Nov 2007 A1
20070261412 Heine Nov 2007 A1
20070261413 Hatamian et al. Nov 2007 A1
20070261548 Vrzalik et al. Nov 2007 A1
20070262621 Dong et al. Nov 2007 A1
20070296251 Krobok et al. Dec 2007 A1
20080000025 Feher Jan 2008 A1
20080000511 Kuroyanagi et al. Jan 2008 A1
20080022694 Anderson et al. Jan 2008 A1
20080023056 Kambe et al. Jan 2008 A1
20080028536 Hadden-Cook Feb 2008 A1
20080028768 Goenka Feb 2008 A1
20080028769 Goenka Feb 2008 A1
20080053108 Wen Mar 2008 A1
20080053509 Flitsch et al. Mar 2008 A1
20080077211 Levinson et al. Mar 2008 A1
20080078186 Cao Apr 2008 A1
20080084095 Wolas Apr 2008 A1
20080087316 Inaba et al. Apr 2008 A1
20080154518 Manaka et al. Jun 2008 A1
20080155990 Gupta et al. Jul 2008 A1
20080163916 Tsuneoka et al. Jul 2008 A1
20080164733 Giffin et al. Jul 2008 A1
20080166224 Giffin et al. Jul 2008 A1
20080245092 Forsberg et al. Oct 2008 A1
20080263776 O'Reagan Oct 2008 A1
20080289677 Bell et al. Nov 2008 A1
20080307796 Bell et al. Dec 2008 A1
20090000031 Feher Jan 2009 A1
20090015042 Bargheer et al. Jan 2009 A1
20090026813 Lofy Jan 2009 A1
20090033130 Marquette et al. Feb 2009 A1
20090106907 Chambers Apr 2009 A1
20090108094 Ivri Apr 2009 A1
20090126110 Feher May 2009 A1
20090151909 Yang Jun 2009 A1
20090178700 Heremans et al. Jul 2009 A1
20090211619 Sharp et al. Aug 2009 A1
20090218855 Wolas Sep 2009 A1
20090235969 Heremans et al. Sep 2009 A1
20090269584 Bell et al. Oct 2009 A1
20090277897 Lashmore et al. Nov 2009 A1
20090293488 Coughlan, III et al. Dec 2009 A1
20100031987 Bell et al. Feb 2010 A1
20100132379 Wu Jun 2010 A1
20100132380 Robinson, II Jun 2010 A1
20100133883 Walker Jun 2010 A1
20100153066 Federer et al. Jun 2010 A1
20100154437 Nepsha Jun 2010 A1
20100154911 Yoskowitz Jun 2010 A1
20100198322 Joseph et al. Aug 2010 A1
20100282910 Stothers et al. Nov 2010 A1
20100294455 Yang et al. Nov 2010 A1
20100307168 Kohl et al. Dec 2010 A1
20110066217 Diller et al. Mar 2011 A1
20110101741 Kolich May 2011 A1
20110226751 Lazanja et al. Sep 2011 A1
20110271994 Gilley Nov 2011 A1
20110289684 Parish et al. Dec 2011 A1
20120000901 Bajic et al. Jan 2012 A1
20120003510 Eisenhour Jan 2012 A1
20120017371 Pollard Jan 2012 A1
20120049586 Yoshimoto et al. Mar 2012 A1
20120080911 Brykalski et al. Apr 2012 A1
20120129439 Ota et al. May 2012 A1
20120132242 Chu et al. May 2012 A1
20120145215 Hwang et al. Jun 2012 A1
20120174956 Smythe et al. Jul 2012 A1
20120198616 Makansi et al. Aug 2012 A1
20120201008 Hershberger et al. Aug 2012 A1
20120235444 Dilley et al. Sep 2012 A1
20120239123 Weber et al. Sep 2012 A1
20120261399 Lofy Oct 2012 A1
20120289761 Boyden et al. Nov 2012 A1
20120325281 Akiyama Dec 2012 A1
20130008181 Makansi et al. Jan 2013 A1
20130097777 Marquette et al. Apr 2013 A1
20130125563 Jun May 2013 A1
20130157271 Coursey et al. Jun 2013 A1
20130200424 An et al. Aug 2013 A1
20130232996 Goenka et al. Sep 2013 A1
20130239592 Lofy Sep 2013 A1
20140014871 Haddon et al. Jan 2014 A1
20140026320 Marquette et al. Jan 2014 A1
20140030082 Helmenstein Jan 2014 A1
20140041396 Makansi et al. Feb 2014 A1
20140090513 Zhang et al. Apr 2014 A1
20140113536 Goenka et al. Apr 2014 A1
20140131343 Walsh May 2014 A1
20140137569 Parish et al. May 2014 A1
20140159442 Helmenstein Jun 2014 A1
20140165608 Tseng Jun 2014 A1
20140180493 Csonti et al. Jun 2014 A1
20140182646 Choi et al. Jul 2014 A1
20140187140 Lazanja et al. Jul 2014 A1
20140194959 Fries et al. Jul 2014 A1
20140230455 Chandler et al. Aug 2014 A1
20140250918 Lofy Sep 2014 A1
20140256244 Sakurai et al. Sep 2014 A1
20140260331 Lofy et al. Sep 2014 A1
20140305625 Petrovski Oct 2014 A1
20140338366 Adldinger et al. Nov 2014 A1
20150033764 Gurevich Feb 2015 A1
20150116943 Olsson et al. Apr 2015 A1
20150118482 Kagawa Apr 2015 A1
20150231636 Lim et al. Aug 2015 A1
20150238020 Petrovski et al. Aug 2015 A1
20150298524 Goenka Oct 2015 A1
20160030234 Lofy et al. Feb 2016 A1
20160035957 Casey Feb 2016 A1
20160039321 Dacosta-Mallet et al. Feb 2016 A1
20160133817 Makansi et al. May 2016 A1
20160152167 Kozlowski Jun 2016 A1
20170047500 Shiraishi et al. Feb 2017 A1
20170066355 Kozlowski Mar 2017 A1
20170071359 Petrovski et al. Mar 2017 A1
20170164757 Thomas Jun 2017 A1
20170261241 Makansi et al. Sep 2017 A1
20170268803 Cauchy Sep 2017 A1
20170282764 Bauer et al. Oct 2017 A1
20170365764 Shingai et al. Dec 2017 A1
20180017334 Davis et al. Jan 2018 A1
20180076375 Makansi et al. Mar 2018 A1
20180111527 Tait et al. Apr 2018 A1
20180123013 Williams et al. May 2018 A1
20180170223 Wolas Jun 2018 A1
20180172325 Inaba et al. Jun 2018 A1
20180279416 Sajic et al. Sep 2018 A1
20180281641 Durkee et al. Oct 2018 A1
20180290574 Kozlowski Oct 2018 A1
20190051807 Okumura et al. Feb 2019 A1
20190230744 Inaba et al. Jul 2019 A1
20190239289 Inaba et al. Aug 2019 A1
20200035897 Jovovic Jan 2020 A1
20200035898 Jovovic et al. Jan 2020 A1
20200266327 Jovovic et al. Aug 2020 A1
20210041147 Cauchy Feb 2021 A9
20210370746 Pacilli et al. Dec 2021 A1
20220169158 Cauchy Jun 2022 A1
Foreign Referenced Citations (182)
Number Date Country
979490 Dec 1975 CA
2079462 Jun 1991 CN
2128076 Mar 1993 CN
2155318 Feb 1994 CN
2155741 Feb 1994 CN
1121790 May 1996 CN
1299950 Jun 2001 CN
1320087 Oct 2001 CN
1535220 Oct 2004 CN
1813164 Aug 2006 CN
1839060 Sep 2006 CN
1929761 Mar 2007 CN
101 033 878 Sep 2007 CN
200 974 488 Nov 2007 CN
101 097 986 Jan 2008 CN
101 119 871 Feb 2008 CN
101 219 025 Jul 2008 CN
101 249 811 Aug 2008 CN
101 331 034 Dec 2008 CN
101 332 785 Dec 2008 CN
101 370 409 Feb 2009 CN
101 511 638 Aug 2009 CN
101 663 180 Mar 2010 CN
101 871 704 Oct 2010 CN
102 059 968 May 2011 CN
201 987 052 Sep 2011 CN
102 576 232 Jul 2012 CN
102 729 865 Oct 2012 CN
102 801 105 Nov 2012 CN
104 282 643 Jan 2015 CN
204 157 198 Feb 2015 CN
106 937 799 Jul 2017 CN
208 355 060 Jan 2019 CN
111 306 838 Jun 2020 CN
195 03 291 Aug 1996 DE
199 12 764 Sep 2000 DE
299 11 519 Nov 2000 DE
102 38 552 Aug 2001 DE
101 15 242 Oct 2002 DE
202 17 645 Mar 2003 DE
201 20 516 Apr 2003 DE
10 2009 036 332 Feb 2011 DE
10 2009 058 996 Dec 2012 DE
0 424 160 Apr 1991 EP
0 411 375 May 1994 EP
0 621 026 Oct 1994 EP
0 834 421 Apr 1998 EP
0 862 901 Sep 1998 EP
0 730 720 Jul 2000 EP
1 486 143 Dec 2004 EP
1 598 223 Nov 2005 EP
1 972 312 Sep 2008 EP
1 845 914 Sep 2009 EP
2 396 619 Aug 2015 EP
2 921 083 Sep 2015 EP
1 675 747 Mar 2017 EP
2 882 307 Aug 2006 FR
2 893 826 Jun 2007 FR
874660 Aug 1961 GB
978057 Dec 1964 GB
1 435 831 May 1976 GB
56-097416 Aug 1981 JP
58-185952 Oct 1983 JP
60-080044 May 1985 JP
60-085297 May 1985 JP
01-281344 Nov 1989 JP
04-052470 Jun 1990 JP
04-165234 Jun 1992 JP
04-107656 Sep 1992 JP
05-026762 Feb 1993 JP
05-277020 Oct 1993 JP
09-37894 Feb 1997 JP
09-276076 Oct 1997 JP
10-044756 Feb 1998 JP
10-503733 Apr 1998 JP
10-227508 Aug 1998 JP
10-297243 Nov 1998 JP
10-332883 Dec 1998 JP
2000-060681 Feb 2000 JP
2000-164945 Jun 2000 JP
2000-244024 Sep 2000 JP
2000-325384 Nov 2000 JP
2001-174028 Jun 2001 JP
2001-208405 Aug 2001 JP
2002-514735 May 2002 JP
2002-227798 Aug 2002 JP
2002-306276 Oct 2002 JP
2003-042594 Feb 2003 JP
2003-174203 Jun 2003 JP
2003174203 Jun 2003 JP
2003-204087 Jul 2003 JP
2003-254636 Sep 2003 JP
2004-055621 Feb 2004 JP
2004-079883 Mar 2004 JP
2004-174138 Jun 2004 JP
2005-079210 Feb 2005 JP
2005-251950 Sep 2005 JP
2005-303183 Oct 2005 JP
2005-333083 Dec 2005 JP
2006-001392 Jan 2006 JP
2006-021572 Jan 2006 JP
2006-076398 Mar 2006 JP
2006-122588 May 2006 JP
2006-137405 Jun 2006 JP
2012-111318 Jun 2012 JP
2014-135455 Jul 2014 JP
10-1998-0702159 Jul 1998 KR
10-2001-0060500 Jul 2001 KR
10-2005-0011494 Jan 2005 KR
10-2006-0048748 May 2006 KR
10-1254624 Apr 2013 KR
10-1524090 May 2015 KR
10-1873857 Jul 2018 KR
66619 Feb 1973 LU
2562507 Sep 2015 RU
WO 9420801 Sep 1994 WO
WO 9514899 Jun 1995 WO
WO 9531688 Nov 1995 WO
WO 9605475 Feb 1996 WO
WO 9807898 Feb 1998 WO
WO 9831311 Jul 1998 WO
WO 9923980 May 1999 WO
WO 9944552 Sep 1999 WO
WO 9958907 Nov 1999 WO
WO 0211968 Feb 2002 WO
WO 02053400 Jul 2002 WO
WO 02058165 Jul 2002 WO
WO 03014634 Feb 2003 WO
WO 03051666 Jun 2003 WO
WO 03063257 Jul 2003 WO
WO 2004011861 Feb 2004 WO
WO 2005105516 Nov 2005 WO
WO 2005115794 Dec 2005 WO
WO 2006037178 Apr 2006 WO
WO 2006041935 Apr 2006 WO
WO 2006078394 Jul 2006 WO
WO 2006102509 Sep 2006 WO
WO 2007060371 May 2007 WO
WO 2007089789 Aug 2007 WO
WO 2007142972 Dec 2007 WO
WO 2008023942 Feb 2008 WO
WO 2008045964 Apr 2008 WO
WO 2008046110 Apr 2008 WO
WO 2008057962 May 2008 WO
WO 2008076588 Jun 2008 WO
WO 2008086499 Jul 2008 WO
WO 2008115831 Sep 2008 WO
WO 2009015235 Jan 2009 WO
WO 2009036077 Mar 2009 WO
WO 2009097572 Aug 2009 WO
WO 2010009422 Jan 2010 WO
WO 2010088405 Aug 2010 WO
WO 2010129803 Nov 2010 WO
WO 2010137290 Dec 2010 WO
WO 2011026040 Mar 2011 WO
WO 2011156643 Dec 2011 WO
WO 2012061777 May 2012 WO
WO 2013052823 Apr 2013 WO
WO 2014052145 Apr 2014 WO
WO 2014145556 Sep 2014 WO
WO 2014164887 Oct 2014 WO
WO 2015085150 Jun 2015 WO
WO 2015123585 Aug 2015 WO
WO 2016077843 May 2016 WO
WO 2016130840 Aug 2016 WO
WO 2017059256 Apr 2017 WO
WO 2017066261 Apr 2017 WO
WO 2017086043 May 2017 WO
WO 2017100718 Jun 2017 WO
WO 2017106829 Jun 2017 WO
WO 2017136793 Aug 2017 WO
WO 2017201083 Nov 2017 WO
WO 2018071612 Apr 2018 WO
WO 2018148398 Aug 2018 WO
WO 2018175506 Sep 2018 WO
WO 2019173553 Sep 2019 WO
WO 2020112902 Jun 2020 WO
WO 2020172255 Aug 2020 WO
WO 2020180632 Sep 2020 WO
WO 2021025663 Feb 2021 WO
WO 2022198216 Sep 2022 WO
WO 2022198217 Sep 2022 WO
Non-Patent Literature Citations (17)
Entry
U.S. Appl. No. 17/309,456, filed May 27, 2021, Pacilli et al.
U.S. Appl. No. 17/433,893, filed Aug. 25, 2021, Cauchy.
U.S. Appl. No. 14/821,514, filed Aug. 7, 2015, Lofy.
U.S. Appl. No. 15/685,912, filed Aug. 24, 2017, Petrovski et al.
U.S. Appl. No. 16/277,765, filed Feb. 15, 2019, Petrovski et al.
U.S. Appl. No. 16/818,816, filed Mar. 13, 2020, Wolas et al.
Feher, S., “Thermoelectric Air Conditioned Variable Temperature Seat (VTS) & Effect Upon Vehicle Occupant Comfort, Vehicle Energy Efficiency, and Vehicle Environment Compatibility”, SAE Technical Paper, Apr. 1993, pp. 341-349.
Lofy, J., et al., “Thermoelectrics for Environmental Control in Automobiles”, Proceeding of Twenty-First International Conference on Thermoelectrics (ICT 2002), 2002, pp. 471-476.
Luo, Z., “A Simple Method to Estimate the Physical Characteristics of a Thermoelectric Cooler from Vendor Datasheets”, Electronics Cooling, Aug. 2008, in 17 pages from https://www.electronics- cooling.com/2008/08/a-simple-method-to-estimate-the-physical-characteristics-of-a-thermoelectric-cooler-from-vendor-datasheets/.
Photographs and accompanying description of climate control seat assembly system components publicly disclosed as early as Jan. 1998.
Photographs and accompanying description of a component of a climate control seat assembly system sold prior to Nov. 1, 2005.
Photographs and accompanying description of a component of a climate control seat assembly system sold prior to Dec. 20, 2003.
International Search Report and Written Opinion received in PCT Application No. PCT/US2015/060955, dated Feb. 2, 2016.
International Preliminary Report on Patentability received in PCT Application No. PCT/US2015/060955, dated May 26, 2017.
Geng, S. et al., Modern Family Practical Encyclopedia, Jilin Science and Technology Press, Sep. 1985, p. 679.
Zhou, Z et al., “Design features of the air-conditioner used for elevators and a comparison between techniques for eliminating condensation water”, Energy Research and Information, 2002, vol. 18, No. 3, pp. 156-161.
Chinese Office Action in Chinese Application No. 201811430679.2, dated Nov. 26, 2021.
Related Publications (1)
Number Date Country
20220000191 A1 Jan 2022 US
Provisional Applications (1)
Number Date Country
62080072 Nov 2014 US
Continuations (1)
Number Date Country
Parent 15526954 US
Child 17344184 US