Heating apparatus having refrigeration cycle

Information

  • Patent Grant
  • 6405551
  • Patent Number
    6,405,551
  • Date Filed
    Friday, May 19, 2000
    24 years ago
  • Date Issued
    Tuesday, June 18, 2002
    22 years ago
Abstract
A heating apparatus having a refrigeration cycle includes a compressor, a condenser and an evaporator. The heating apparatus has a first heat exchanger and a second heat exchanger, where the first heat exchanger is selected as a heat source, and the second heat exchanger is selected as either a cooling or heating source. The first heat exchanger and the second heat exchanger are connected in series with each other in a refrigerant circuit. A heating medium is circulated in a heat transfer device which is connected to the first heat exchanger. Bathwater of a bathtub and water of a hot-water storage tank are heated through the heat transfer device indirectly by the first heat exchanger.
Description




FIELD OF THE INVENTION




The present invention relates to a heating apparatus having a refrigeration cycle which includes a compressor, a condenser and an evaporator, and more particularly to a heating apparatus having a refrigeration cycle, which is capable of cooling and heating as well as supplying hot water.




BACKGROUND OF THE INVENTION




A heating apparatus comprising a compressor, a condenser, an expansion valve, an evaporator and the like having a refrigeration cycle is well known. In addition, heat pumps are also well known. In a heating apparatus, upon activating the compressor, a refrigerant through the condenser, the expansion valve, the evaporator and the like, which allows the refrigerant to be changed in its state from liquid to gas at the condenser and from gas to liquid at the evaporator. The generated heat is then released outside by the condenser, while an external heat is absorbed by the evaporator. Thus, the condenser and the evaporator can serve as a heat source and a heat sink, respectively. A cooling/heating/hot-water supply apparatus applying such a refrigeration cycle has been widely known. As exemplarily shown in

FIG. 9

, this apparatus comprises a compressor


200


for compressing a refrigerant, a condenser or hot-water supply heat exchanger


201


for preparing hot water with a high-temperature refrigerant transferred from the compressor


200


, and a cooling/heating heat exchanger


202


acting as a condenser for heating and as an evaporator for cooling, and a heat source heat exchanger


203


acting as a condenser for heating and as an evaporator for cooling. In

FIG. 9

, reference numbers


204


,


205


,


206


,


207


and


208


indicate a cooling fan, a four-way switching valve, an expansion valve, a check valve, and a room heat exchanger, respectively. Thus, heating, cooling, and both hot water supply and cooling can be achieved by controlling the flow direction of the refrigerant as follows. In heating use, the four-way switching valve


205


is switched to allow the refrigerant to flow from the compressor


200


to the cooling/heating heat exchanger


202


. The refrigerant then flows through the hot-water supply heat exchanger


201


into the cooling/heating heat exchanger


202


. Water serving as the refrigerant is heated by the cooling/heating heat exchanger


202


, acting as a condenser, and is then supplied into the room heat exchangers


208


,


208


to provide indoor heating, as is widely known. In cooling use, the four-way switching valve


205


is switched to allow the refrigerant going out of the compressor


200


to flow to the heat source heat exchanger


203


. The refrigerant passes through the hot-water supply heat exchanger


201


and then flows from the heat source heat exchanger


203


into the cooling/heating heat exchanger


202


. In this case, the cooling/heating heat exchanger


202


acts as an evaporator so that the water refrigerated by the cooling/heating heat exchanger


202


is supplied into the room heat exchanger


208


to provide indoor cooling.




In hot-water supply use, the four-way switching valve


205


is switched to allow the refrigerant to flow to the hot-water supply heat exchanger


201


. The refrigerant is then condensed at the hot-water supply heat exchanger


201


. When cold water is supplied from a city water pipe


210


to the hot-water supply heat exchanger


201


, the water is heated by the hot-water supply heat exchanger


201


and is then discharged from a tapping-water pipe


211


. When cooling is performed in parallel with hot water supply, the four-way switching valve


205


is switched to allow the refrigerant to flow from compressor


200


to both the hot-water supply heat exchanger


201


and the heat source heat exchanger


203


. The refrigerant is then condensed at the hot-water supply heat exchanger


201


so that hot water may be supplied as described above, and the refrigerant is simultaneously evaporated at the hot-water supply heat exchanger


201


so that indoor cooling may be provided as described above.




Thus, the conventional refrigeration cycle or heat pump is capable of providing both cooling/heating and hot water supply by a single unit. In addition, the conventional refrigeration cycle is economical as compared with hot water supplies using other heat sources, such as electricity or gas fuel. However, the conventional cooling/heating/hot-water supply apparatus is only available for cooling/heating and hot water supply. Moreover, it is only difficult to determine if the potential efficiency of the refrigeration cycle is fully brought out and utilized in the conventional apparatus. There is also the problem that the water temperature obtained from the conventional heat pump is less than 55° C. which is insufficient for tap water. It is expected that the tap water temperature could be raised in some measure by increasing the condensing pressure of the heat pump, for example, up to 2.2MPa or more. However, when the condensing pressure is increased, the compressor is imposed to operate under severe conditions, and pressure differential between lower and upper pressures in operation is disadvantageously large. In addition, a safety device is applied to most machines in order to prevent an operation under high pressure. Thus, the operating pressure is limited, for example not more than 2.75MPa, resulting in tap water 55° C. In a conventional heat pump capable of preparing hot water instantaneously, tap of 60° C. or more can be obtained. However, the temperature of the water supplied to the hot-water supply heat exchanger ranges from 0-35° C., thus the heat pump is inefficient because such a heat pump cannot reheat the water to 55° C. right after use. Under the reasons described above, regardless of system types, such as an instantaneous system and a circulating system, the conventional cooling/heating/hot water supply apparatus has a problem with difficulty of use as a heat source for air conditioning and floor heating, or a heat source for drying and the like.




A water purifying apparatus for making it possible to enjoy taking a bath at pleasure on a 24-hour basis has proposed in various patent applications by the present applicant, such as Japanese Utility Model Laid-Open Publication No. Hei 6-48893, and Japanese Patent Laid-Open Publication No. Hei 7-185574. Such a purifying apparatus of bathwater comprises: a filtering device for removing a solid matter, such as hair of a person taking a bath; a water pump for compulsorily circulating the bathwater; an activating device containing an active stone, such as ceramics, shell fossil and Bakahan-stone; an ozone gas generator, or ozonizer, for generating ozone gas for sterilization, deodorization and the like; a heater for heating up the bathwater to a predetermined temperature; and a control device for controlling the ozone gas, the heater and the like. Thus, when the bathwater is passed through the activating device, an organic matter, such as ammonia which leads to purification of the bathwater, is decomposed by bacteria which propagates itself in the active stone and has heteronomy, so that the bathwater may be purified. In addition, ion exchange is taken place in the bathwater, and active ingredients, such as magnesium, zinc, calcium and sodium, are dissolved into the bathwater, so that hydrogen-ion concentration of the bathwater may be controlled in an alkalescent state. As described above, this apparatus has various advantages, but is not economical with regard to heating, because the bathwater is required to be maintained at a predetermined temperature on a 24-hour basis and the heater is formed of an electrical resistive element or the like.




SUMMARY OF THE INVENTION




The present invention has been devised in view of the foregoing conventional circumstances. It is an object of the present invention to provide a heating apparatus having a refrigeration cycle, which is capable of heating efficiently and sanitarily a relatively high temperature hot water supply, bathwater and the like or any combination thereof, without a particular increase in size of the refrigeration cycle, and without any interflow between the bathwater and the water of a hot-water storage tank.




In addition to the aforementioned object, it is another object of the present invention to provide a heating apparatus having a refrigeration cycle, which is capable of heating or drying a bathroom so as to achieve a secure bathroom even for seniors.




It is a further object of the present invention to provide a heating apparatus having a refrigeration cycle, which is capable of enjoying bath healthfully at pleasure on a 24-hour basis.




It is still a further object of the present invention to provide a heating apparatus having a refrigeration cycle, in which the condensing pressure is low and the tapping water temperature is high.




It is yet a further object of the present invention to provide a heating apparatus having a refrigeration cycle, which is capable of supplying high temperature tapping water as well as circulating and heating relatively high temperature water in a hot-water storage tank.




It is still another object of the present invention to provide a heating apparatus having a refrigeration cycle, which is capable of circulating and heating the water in a hot-water storage tank as well as utilizing the water in the hot-water storage tank for increasing the temperature of bathwater, a heat source for floor heating and a heat source for drying.




In order to achieve the aforementioned objects, in a first aspect of the present invention, there is provided a cooling/heating/hot-water supply apparatus, having a refrigeration cycle which includes a compressor, a condenser, an evaporator, the heating apparatus comprising: a first heat exchanger and a second heat exchanger, wherein the first heat exchanger is selected as a heat source, the second heat exchanger being selected as either a cooling or heating source, the first heat exchanger and second heat exchanger being connected in series with each other in a refrigerant circuit; a heat transfer device in which a heating medium is circulated and which is connected to the first heat exchanger; wherein bathwater of a bathtub and water of a hot-water storage tank are heated through the heat transfer device indirectly by the first heat exchanger.




In a second aspect including the first aspect of the present invention, the heating apparatus may further include a bathroom heating device connected to the heat transfer device which is connected to the first heat exchanger, and a cooling/heating device and a floor heating device which are connected to the second heat exchanger.




According to the first and second aspects of the present invention, there is provided the benefits of heating efficiently and sanitarily a relatively high temperature water supply, bathwater and the like and any combinations thereof, without any interflow between the bathwater and the water of the hot-water storage tank.




In a third aspect including the first or second aspect of the present invention, the heating apparatus may further include a bathtub device which is interposed between the heat transfer device and which has a filtering/purifying device for the bathwater.




In a fourth aspect of the present invention, there is provided a cooling/heating/hot-water supply apparatus, having a refrigeration cycle which includes a compressor, a condenser and an evaporator, the heating apparatus comprising: a first heat exchanger, a second heat exchanger, and a third heat exchanger, wherein the first and second heat exchangers are respectively selected as a heat source, the third heat exchanger being selected as either a cooling or heating source, the first and second heat exchangers being connected in series with the third heat exchanger in a refrigerant circuit; a heat transfer device in which a heating medium is circulated and which is connected respectively to the first heat exchanger and the second heat exchanger; wherein bathwater of a bathtub and water of a hot-water storage tank are independently heated through the heat transfer device indirectly by the first heat exchanger and the second heat exchanger respectively.




According to the third and fourth aspects of the present invention, in addition to the aforementioned benefits, there is provided the benefit of maintaining a bathroom at a predetermined temperature, and of achieving a secure bathroom even for seniors. There is also provided the benefits of heating and filtering/purifying the bathwater to enjoy a bath healthfully at ones pleasure on a 24-hour basis.




In a fifth aspect including the fourth aspect of the present invention, the heating apparatus may further include a bathroom heating device connected to the heat transfer device which is connected to the second heat exchanger, and a cooling/heating device and a floor heating device which are connected to the third heat exchanger.




According to the fifth aspect of the present invention, there is provided the benefits of heating the bathroom and cooling/heating a floor.




In order to achieve the aforementioned object, in a sixth aspect of the present invention, there is provided a hot-water supply apparatus, or a heating apparatus, having a refrigeration cycle which includes a compressor, a condenser and an evaporator, wherein the condenser is selected as a hot-water supply heat exchanger to which a feed water pipe and a tapping water pipe are connected, the heating apparatus comprising a flow regulating valve interposed in either one of the feed water pipe and the tapping water pipe, wherein the heating apparatus is adapted to obtain the tapping water of 60° C. or more with a condensing pressure of an allowable pressure or less by determining a parameter of the refrigeration cycle including the feed water flow rate depending on the flow regulating valve, a heating area and size of the hot-water supply heat exchanger and a supercooling rate.




In a seventh aspect of the present invention, there is provided a hot-water supply apparatus, or a heating apparatus, having a refrigeration cycle which includes a compressor, a condenser and an evaporator, wherein the condenser is selected as a hot-water supply heat exchanger to which a feed water pipe and a tapping water pipe are connected, the heating apparatus comprising a flow regulating valve interposed in either one of the feed water pipe and the tapping water supply pipe, wherein the heating apparatus is adapted to allow the feed water of 35° C. or more to be supplied to the hot-water supply heat exchanger with a condensing pressure of an allowable pressure or less, and to obtain the tapping water of 60° C. or more, by determining a parameter of the refrigeration cycle including the feed water flow rate depending on the flow regulating valve, a heating area and size of the hot-water supply heat exchanger and a supercooling temperature.




In a eighth aspect of the present invention, there is provided a hot-water supply apparatus, or a heating apparatus, having a refrigeration cycle which includes a compressor, a condenser and an evaporator, wherein the condenser is selected as a hot-water supply heat exchanger to which a hot-water storage tank is connected through a feed water pipe and a tapping water pipe, hot water in the hot-water storage tank being circulated between the hot-water storage tank and the hot-water supply heat exchanger so as to be heated when a water temperature detected in the hot-water storage tank drops to a predetermined temperature or less, the heating apparatus comprising a flow regulating valve interposed in either one of the feed water pipe and the tapping water pipe, wherein the heating apparatus is adapted to allow the hot water in the hot-water storage tank to be circulated between the hot-water storage tank and the hot-water supply heat exchanger when the water temperature detected in the hot-water storage tank drops to the predetermined temperature or less, and to obtain and store a hot water of 60° C. or more with a condensing pressure of an allowable pressure or less by determining a parameter of the refrigeration cycle including the feed water flow rate depending on the flow regulating valve, a heating area and size of the hot-water supply heat exchanger and a supercooling temperature.




According to the sixth, seventh, and eighth aspects of the present invention, there is provided a particular effect of obtaining a high temperature water of 60° C. or more with the condensing pressure of the allowable pressure or less, and also of allowing hot-water of 35° C. or more to be supplied to the hot-water supply heat exchanger. In addition, since hot water of 35° C. or more can be supplied to the hot-water supply heat exchanger, a high temperature water of 55° C. or more can be stored in the hot-water storage tank by circulating and heating the high temperature water in the storage tank. Thus, circulating and heating the high temperature water allows the hot water in the hot-water storage tank to be utilized as heat sources for heating of bathwater, air/floor heating, drying and the like.




In a ninth aspect including the eighth aspect of the present invention, the heating apparatus may further include a heat load device which serves uses including bathwater, heating, and drying.




In the tenth aspect including one of the sixth to ninth aspects of the present invention, the flow regulating valve may be a pressure type temperature regulating valve for controlling the feed water flow rate by sensing a pressure of the refrigerant in the refrigeration cycle.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a circuit diagram showing a heating apparatus according to the first embodiment of the present invention.





FIG. 2

is a circuit diagram showing a heating apparatus according to the second embodiment of the present invention.





FIG. 3

is a circuit diagram showing a heating apparatus according to the third embodiment of the present invention.





FIG. 4

is a schematic perspective view showing an embodiment of a bathtub device, wherein a part of the device is shown in section.





FIG. 5

is a schematic front view showing a fourth embodiment of the present invention.





FIG. 6

is a perspective view showing a hot-water supply heat exchanger shown in

FIG. 5

, wherein a part of the heat exchanger is show in section.





FIG. 7

is a schematic front view showing a fifth embodiment of the present invention.





FIG. 8

is a Mollier chart showing a refrigerant flow in the fourth and fifth embodiments of the present invention; and





FIG. 9

is a circuit diagram showing a conventional heating apparatus.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Embodiments of the present invention will be described hereinafter.

FIG. 1

is a schematic diagram showing a first embodiment of the present invention. As shown in

FIG. 1

, a cooling/heating/hot-water supply apparatus, according to the first embodiment is configured as a unit


1


which includes a compressor


2


, a first heat exchanger


3


, a second heat exchanger


13


, and a heat source heat exchanger


10


that acts as either an evaporator or a condenser. A feed water/bathwater heating device


20


and a cooling/heating device


30


are provided in association with the unit


1


.




In the present embodiment, the first heat exchanger


3


is selected as a heat source for heating a heating medium for use in feed water, bathwater and bathroom heating and thereby acts as a condenser, while the second heat exchanger


13


is selected as either a heating or cooling source, and thereby acts selectively as a condenser or an evaporator, respectively, by adequately switching refrigerant ducts.




The first heat exchanger


3


comprises a first heat exchange portion


5


through which a refrigerant, such as ammonia as an alternative to CFC, is passed, and a second heat exchange portion


21


through which the heating medium, such as water, is passed. While fins of the first and second heat exchange portions


5


,


21


are separately shown in

FIG. 1

, they are practically integrated and contained within a heat insulating housing. The first heat exchange portion


5


of the first heat exchanger


3


is connected to a discharge port of the compressor


2


through a refrigerant liquid duct “a”. An outlet port of the first heat exchange portion


5


is connected to an inlet port of the heat source heat exchanger


10


through refrigerant ducts “b” and “c” respectively, and an outlet port of the heat source heat exchanger


10


is connected to a suction port of the compressor


2


through refrigerant gas duct “d” and “e”. A first solenoid control valve


6


is interposed in the refrigerant liquid duct “a”, and a second and third solenoid control valves


7


,


8


are interposed in the refrigerant gas ducts “b” and “c”, respectively. A four-way switching valve


11


is provided between the refrigerant ducts “d” and “e”, and a fourth solenoid control valve


12


is interposed in a duct “f” connecting one port of the four-way switching valve


11


and the refrigerant liquid duct “a”. Thus, a heat cycle for acting as a heat source is composed of the compressor


2


, the first heat exchanger


3


, the heat source heat exchanger


10


and the like. A cooling fan F is additionally provided in association with the heat source heat exchanger


10


.




The second heat exchanger


13


includes a first heat exchange portion


15


through which the refrigerant is passed and a second heat exchange portion


31


through which a heating medium, such as water, is passed. Fins of the first and second heat exchange portions


15


,


31


are also integrated and contained within a heat insulating housing. A refrigerant duct “g” branched from the refrigerant duct “b” and a refrigerant duct “h” are connected to inlet port and outlet ports of the first heat exchange portion


15


, respectively. The refrigerant duct “h” is connected to the refrigerant duct “c” between the second and third solenoid control valves


7


,


8


. A fourth solenoid control valve


16


is interposed in the refrigerant duct “g”. A refrigerant duct “I” is branched from the refrigerant duct “g” at the downstream of the fourth solenoid control valve


16


and is connected to one port of the four-way switching valve


11


. In the refrigerant duct “h”, an expansion valve


17


and a check valve


18


are provided in parallel. Thus, a heat cycle or refrigeration cycle is composed of the compressor


2


, the second heat exchanger


13


, the heat source heat exchanger


10


and the like.




In the present embodiment, the feed water/bathwater heating device


20


includes the heat exchange portion


21


, a heat exchanger


24


located within a hot-water storage tank


25


, inflow and outflow ducts


22


,


26


, and the like. The inflow and outflow ducts


22


,


26


are filled with a heating medium, such as water. A three-way switching valve


23


is interposed in the inflow duct


22


, and a solenoid control valve


26


′ and a pump


27


are interposed in the outflow duct


26


. Thus, when the pump


27


is activated, the heating medium is circulated between the heat exchange portion


21


and the heat exchanger


24


so that the water in the hot-water storage tank


25


may be heated. The hot-water storage tank


25


is a push-up type and a feed water pipe


28


is connected to a pressurized source, such as a city water pipe. Thus, hot water can be served by turning on a tap J of a tapping water pipe


29


located at an upper side of the hot-water storage tank


25


.




In order to heat bathwater in a bathtub Y and to provide drying or heating of a bathroom YR, a heating duct


41


is extended from one port of the three-way valve


23


in the inflow duct


22


, and a return duct


42


is branched from the outflow duct


26


. The outflow duct


26


and heating duct


41


are connected in parallel with each other by a connecting duct


41


′ in which a solenoid control valve


44


is interposed. The heating duct


41


and return duct


42


are connected to a bathtub device


50


, and the bathtub device


50


and the bathtub Y are connected through circulation ducts A, K. The heating duct


41


and return duct


42


are also connected to a radiator


43


of the bathroom YR in parallel with each other. The bathtub device


50


interposed in the heating duct


41


and return duct


42


will be described later.




As shown in

FIG. 1

, the cooling/heating device


30


for cooling and heating a plurality of indoors and floors by the second heat exchanger


13


includes ducts


32


,


33


. An outlet port and inlet port of the second heat exchanger


31


are connected to the duct


32


and duct


33


, respectively. A plurality of cooling/heating heat exchangers


34


,


34


, . . . ,


34


are provided in parallel with the ducts


32


,


33


, and a floor heating heat exchanger


35


is provided in series with the ducts


32


,


33


. Solenoid control valves


37


,


38


are interposed in the ducts


32


,


33


, respectively.




By virtue of the construction as described above, the cooling/heating/hot-water supply apparatus according to the first embodiment can provide various patterns of heating or cooling. A typical method for cooling/heating and hot water supply will be described hereinafter. This cooling/heating/hot-water supply apparatus having a refrigeration cycle is also provided with a control device, and thereby can be automatically operated by setting up a control temperature, time and the like. However, in order to make the description clear, the following example will be described as an apparatus which is manually operated. While the first to fourth solenoid control valves


6


,


7


,


8


and


16


are properly controlled, the open/close states of these valves will not be described in each case. The bathtub device


50


is adapted to be automatically operated to allow users to take a bath on a 24-hours basis by a control device having a timer, preferably a weekly timer, a temperature sensor and the like.




In the following description, heating of bathwater in the bathtub Y is referred to as “bathtub heating”, and heating of water in the hot-water storage tank


25


is referred to as “feed water heating”.




A. Bathtub Heating




When it is detected that a bathwater temperature drops to a predetermined temperature or less, for example, by a temperature sensor provided in the bathtub device


50


, the refrigeration cycle is activated. Then, the refrigerant is circulated through the compressor


2


, the first solenoid control valve


6


, the first heat exchanger


3


, the second and third solenoid control valves


7


,


8


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the first heat exchanger


3


as a condenser is heated and the second heat exchange portion


21


is thereby heated. The pump


27


of the feed water/bathwater heating device


20


is activated and the heating medium, such as water, is circulated through the second heat exchange portion


21


, the three-way switching valve


23


, a heat exchanger


90


of the bathtub device


50


and the second heat exchange portion


21


, in this order. Thus, the bathwater in the bathtub Y is heated. The details will be described later in conjunction with components of the bathtub device


50


.




B. Feed water Heating




The refrigerant is circulated through the compressor


2


, the first solenoid control valve


6


, the first heat exchanger


3


, the second and third solenoid control valves


7


,


8


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the first heat exchanger


3


as a condenser is heated and the second heat exchange portion


21


is thereby heated. The pump


27


is activated and the heating medium of water is circulated through the second heat exchange portion


21


of the first heat exchanger


3


, the three-way switching valve


23


, the heat exchanger


24


of the hot-water storage tank


25


, the solenoid control valve


26


′, the pump


27


, and the second heat exchange portion


21


, in this order. Thus, the water in the hot-water storage tank


25


is heated and stored. Hot water can be served by turning on a tap J, as is widely known.




C. Bathtub/Feed water Heating




The refrigerant is circulated as the aforementioned A and B and the first heat exchanger


3


is thereby heated. The pump


27


is activated, and the heating medium is circulated through the second heat exchange portion


21


of the first heat exchanger


3


, the three-way switching valve


23


, the heat exchanger


24


of the hot-water storage tank


25


, the solenoid control valve


44


, the heat exchanger


90


of the bathtub device


50


, the pump


27


and the second heat exchange portion


21


, in this order. Thus, the water in the hot-water storage tank


25


and the bathwater in the bathtub Y are heated respectively.




D. Bathtub Heating plus Space/Floor Heating




The refrigerant is circulated through the compressor


2


, the first solenoid control valve


6


, the first heat exchange portion


5


of the first heat exchanger


3


, the fourth solenoid control valve


16


, the first heat exchange portion


15


of the second heat exchanger


13


, the check valve


18


, the third control valve


8


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the first heat exchanger


3


as a condenser is heated and the second heat exchange portion


21


is thereby heated. The pump


27


of the feed water/bathwater heating device


20


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


21


, the tree-way switching valve


23


, the heat exchanger


90


of the bathtub device


50


, and the second heat exchange portion


21


, in this order. Thus, the bathtub heating can be performed. The second heat exchanger


13


acts as a condenser and is thereby heated. A pump


36


of the cooling/heating device


30


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


31


, the cooling/heating heat exchanger


34


and the floor heating heat exchanger


35


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the heated water, the cooling/heating heat exchanger


34


can provide a space heating, such as indoor heating, and the floor heating heat exchanger


35


can provide a floor heating. In parallel with these operations, the feed water heating can be performed as described in the aforementioned C. Thus, according to the present embodiment, the bathtub and feed water heating plus the space and floor heating can be achieved.




E. Bathtub Heating plus Space/Floor Cooling




The refrigerant is circulated through the compressor


2


, the first solenoid control valve


6


, the first heat exchange portion


5


of the first heat exchanger


3


, the second solenoid control valve


7


, the expansion valve


17


, the first heat exchange portion


15


of the second heat exchanger


13


, the four-way switching valve


11


, and the compressor


2


, in this order. The pump


27


of the feed water/bathwater heating device


20


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


21


, the three-way switching valve


23


, the heat exchanger


90


of the bathtub device


50


, and the second heat exchange portion


21


, in this order. Thus, the bathtub heating can be performed. The second heat exchanger


13


acts as an evaporator and is thereby cooled. The pump


36


of the cooling/heating device


30


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


21


, the cooling/heating heat exchanger


34


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the cooled water, the cooling/heating heat exchanger


34


can provide a space cooling, such as indoor cooling. During this time, circulating the cooled water through the floor heating heat exchanger


35


can provide a floor cooling. The feed water heating can be performed in parallel with the aforementioned operations as described above. Thus, the bathtub and feed water heating plus the space and floor cooling can be achieved.




F. Feed water Heating plus Space/Floor Heating




The refrigerant is circulated through the compressor


2


, the first solenoid control valve


6


, the first heat exchange portion


5


of the first heat exchanger


3


, the fourth solenoid control valve


16


, the first heat exchange portion


15


of the second heat exchanger


13


, the check valve


18


, the third control valve


8


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the first heat exchanger


3


as a condenser is heated and the second heat exchange portion


21


is thereby heated. The pump


27


of the feed water/bathwater heating device


20


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


21


, the three-way switching valve


23


, the heat exchanger


24


of the hot-water storage tank


25


, the pump


27


, and the second heat exchange portion


21


, in this order. Thus, the water in the hot-water storage tank


25


is heated. The second heat exchanger


13


also acts as a condenser and is thereby heated. The pump


36


of the cooling/heating device


30


is activated, and the heating medium, such as water, is circulated through the second heat exchanger


31


, the cooling/heating heat exchanger


34


and the floor heating heat exchanger


35


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the heated water, the cooling/heating heat exchanger


34


can provide a space heating, such as indoor heating, and the floor heating heat exchanger


35


can provide a floor heating.




G. Feed water Heating plus Space/Floor Cooling




The refrigerant is circulated through the compressor


2


, the first solenoid control valve


6


, the first heat exchange portion


5


of the first heat exchanger


3


, the second solenoid control valve


7


, the expansion valve


17


, the first heat exchange portion


15


of the second heat exchanger


13


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the first heat exchanger


3


as a condenser is heated and the second heat exchange portion


21


is thereby heated. The pump


27


is activated and the heating medium of water is circulated through the second heat exchange portion


21


, the three-way switching valve


23


, the heat exchanger


24


of the hot-water storage tank


25


, the pump


27


, and the second heat exchange portion


21


, in this order. Thus, the water in the hot-water storage tank


25


is heated and stored. Hot water can be served by turning on a tap J, as is widely known. The pump


36


of the cooling/heating device


30


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


31


, the cooling/heating heat exchanger


34


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the cooled water, the cooling/heating heat exchanger


34


can provide a space cooling, such as indoor cooling.




H. Drying or Heating of Bathroom




The refrigerant is circulated through the compressor


2


, the first solenoid control valve


6


, the first heat exchanger


3


, the second and third solenoid control valves


7


,


8


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the first heat exchanger


3


as a condenser is heated and the second heat exchange portion


21


is thereby heated. The pump


27


of the feed water/bathwater heating device


20


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


21


, the tree-way switching valve


23


, the radiator


43


of the bathroom YR, the pump


27


, and the second heat exchange portion


21


, in this order. Thus, a space heating and drying of the bathroom can be performed.




I. Space/Floor Heating




The refrigerant is circulated through the compressor


2


, the fourth solenoid control valve


12


, the four-way switching valve


11


, the first heat exchange portion


15


of the second heat exchanger


13


, the check valve


18


, the third solenoid control valve


8


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the heat source exchanger


10


acts as an evaporator, while the second heat exchanger


13


acts as a condenser and is thereby heated. The pump


36


of the cooling/heating device


30


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


31


, the cooling/heating heat exchanger


34


and the floor heating heat exchanger


35


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the heated water, the cooling/heating heat exchanger


34


can provide a space heating, such as indoor heating, and the floor heating heat exchanger


35


can provide a floor heating.




J. Space/Floor Cooling




The refrigerant is circulated through the compressor


2


, the fourth solenoid control valve


12


, the four-way switching valve


11


, the heat source heat exchanger


10


, the third solenoid control valve


8


, the expansion valve


17


, the first heat exchange portion


15


of the second heat exchanger


13


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the heat source exchanger


10


acts as a condenser, while the second heat exchanger


13


acts as an evaporator and is thereby cooled. The pump


36


of the cooling/heating device


30


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


21


, the cooling/heating heat exchanger


34


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the cooled water, the cooling/heating heat exchanger


34


can provide a space cooling, such as indoor cooling. During this time, circulating the cooled water through the floor heating heat exchanger


35


can provide a floor cooling, as described above.




With reference to

FIG. 2

, a second embodiment of the present invention will be described. In the drawing, the same elements of structure as those of the first embodiment shown in

FIG. 1

are identified by the same reference numerals, the similar elements being identified by adding dash ′ or double dash ″ to the same reference numerals, and their description will be omitted. In

FIG. 2

, the symbol “r” indicates a refrigerant duct, the reference numbers


44




a


,


44




b


,


44




c


, —,


44




j


indicating solenoid control valves, the reference numbers


45




a


,


45




b


,


45




c


,


45




d


indicating check valves. In the second embodiment, while a feed-water heat exchanger


3


′ and bathtub heat exchanger


3


″ are separated from each other so that the feed water and bathwater will not be mixed even if some duct or the like is broken, the bathtub heating and heating/cooling function in the same manner in the first embodiment. This example will be described hereinafter. The second embodiment is also described on condition that the solenoid control valves


44




a


,


44




b


,


44




c


, —,


44




j


are properly opened and closed.




A′. Bathtub Heating




When it is detected that a bathwater temperature drops to a predetermined temperature or less, for example, by a temperature sensor provided in the bathtub device


50


, the refrigeration cycle is activated. Then, the refrigerant is circulated through the compressor


2


, the solenoid control valve


44




j


, the bathtub heat exchanger


3


″, the check valve


45




d


, the solenoid control valves


44




e


,


44




g


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the bathtub heat exchanger


3


″ as a condenser is heated and its second heat exchange portion


21


″ is thereby heated. A pump


27


″ of a bathwater heating device


20


″ is activated and the heating medium, such as water, is circulated through the second heat exchange portion


21


″, the heat exchanger


90


of the bathtub device


50


, the second heat exchange portion


21


″, and the pump


27


″, in this order. Thus, the bathwater in the bathtub Y is heated as described above.




B′. Feed water Heating




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




a


, a first heat exchange portion


5


′ of a feed-water heat exchanger


3


′, the solenoid control valve


44




c


, the check valve


45




b


, the solenoid control valves


44




e


,


44




g


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the feed-water heat exchanger


3


′ as a condenser is heated and the second heat exchange portion


21


′ is thereby heated. A pump


27


′ is activated and the heating medium of water is circulated through the second heat exchange portion


21


′ of the feed-water heat exchanger


3


′, the three-way switching valve


23


′, the heat exchanger


24


of the hot-water storage tank


25


, the check valve


45




c


, the pump


27


′, and the second heat exchange portion


21


′, in this order. Thus, the water in the hot-water storage tank


25


is heated and stored. Hot water can be served by turning on a tap J, as is widely known.




C′. Bathtub/Feed water Heating




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




a


, the first heat exchange portion


5


′ of the feed-water heat exchanger


3


′, the solenoid control valve


44




b


, the check valve


45




a


, a first heat exchange portion


5


″ of the bathtub heat exchanger


3


″, the check valve


45




d


, the solenoid control valves


44




e


,


44




g


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the feed-water heat exchanger


3


′ and bathtub heat exchanger


3


″ as condensers are heated. The pump


27


″ of the bathwater heating device


20


″ is activated, and the heating medium is circulated through the second heat exchange portion


21


″, the heat exchanger


90


of the bathtub device


50


, the second heat exchange portion


21


″, and the pump


27


″, in this order. Thus, the water in the bathtub Y is heated. Simultaneously, the pump


27


′ of the feed-water heating device


20


′ is activated, and the heating medium is circulated through the second heat exchange portion


21


′ of the feed-water heat exchanger


3


′, the three-way switching valve


23


′, the heat exchanger


24


of the hot-water storage tank


25


, the check valve


45




c


, the pump


27


′, and the second heat exchange portion


21


′, in this order. Thus, the water in the hot-water storage tank


25


is heated and stored.




D′. Bathtub Heating plus Space/Floor Heating




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




j


, the first heat exchange portion


5


″ of the bathtub heat exchanger


3


″, the check valve


45




d


, the solenoid control valve


44




d


, the first heat exchange portion


15


of the second heat exchanger


13


, the check valve


18


, the solenoid control valves


44




f


and


44




g


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the bathtub heat exchanger


3


″ as a condenser is heated and the second heat exchange portion


21


″ is thereby heated. The pump


27


″ of the bathwater heating device


20


″ is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


21


″, the heat exchanger


90


of the bathtub device


50


, and the second heat exchange portion


21


″, in this order. Thus, the bathtub heating can be performed. The second heat exchanger


13


acts as a condenser and is thereby heated. The pump


36


of the cooling/heating device


30


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


31


, the cooling/heating heat exchanger


34


and the floor heating heat exchanger


35


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the heated water, the cooling/heating heat exchanger


34


can provide a space heating, such as indoor heating, and the floor heating heat exchanger


35


can provide a floor heating.




E′. Bathtub Heating plus Space/Floor Cooling




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




j


, the first heat exchange portion


5


″ of the bathtub heat exchanger


3


″, the check valve


45




d


, the solenoid control valves


44




e


and


44




f


, the expansion valve


17


, the first heat exchange portion


15


of the second heat exchanger


13


, the four-way switching valve


11


, and the compressor


2


, in this order. The pump


27


″ of the bathwater heating device


20


″ is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


21


″, the heat exchanger


90


of the bathtub device


50


, and the second heat exchange portion


21


″, in this order. Thus, the bathtub heating can be performed. The second heat exchanger


13


acts as an evaporator and is thereby cooled. The pump


36


of the cooling/heating device


30


is activated, and the heating medium which is cooled is circulated through the second heat exchange portion


21


, the cooling/heating heat exchanger


34


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the cooled water, the cooling/heating heat exchanger


34


can provide a space cooling, such as indoor cooling. During this time, circulating the cooled water through the floor heating heat exchanger


35


can provide a floor cooling.




F′. Feed water Heating plus Space/Floor Heating




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




a


, the first heat exchange portion


5


′ of the feed-water heat exchanger


3


′, the solenoid control valve


44




c


, the check valve


45




b


, solenoid control valve


44




d


, the first heat exchange portion


15


of the second heat exchanger


13


, the check valve


18


, the solenoid control valves


44




f


and


44




g


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the feed-water heat exchanger


3


′ as a condenser is heated and the second heat exchange portion


21


′ is thereby heated. The pump


27


′ of the feed-water heating device


20


′ is activated, and the heating medium is circulated through the second heat exchange portion


21


′, the three-way switching valve


23


′, the heat exchanger


24


of the hot-water storage tank


25


, the pump


27


′, and the second heat exchange portion


21


′, in this order. Thus, the water in the hot-water storage tank


25


is heated. The second heat exchanger


13


also acts as a condenser and is thereby heated. The pump


36


of the cooling/heating device


30


is activated, and the heating medium, such as water, is circulated through the second heat exchanger


31


, the cooling/heating heat exchanger


34


and the floor heating heat exchanger


35


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the heated water, the cooling/heating heat exchanger


34


can provide a space heating, such as indoor heating, and the floor heating heat exchanger


35


can provide a floor heating.




G′. Feed water Heating plus Space/Floor Cooling




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




a


, the first heat exchange portion


5


′ of the feed-water heat exchanger


3


′, the solenoid control valve


44




c


, the check valve


45




b


, the solenoid control valves


44




e


and


44




f


, the expansion valve


17


, the first heat exchange portion


15


of the second heat exchanger


13


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the feed-water heat exchanger


3


′ as a condenser is heated and the second heat exchange portion


21


′ is thereby heated. The pump


27


′ is activated and the heating medium of water is circulated through the second heat exchange portion


21


′, the three-way switching valve


23


′, the heat exchanger


24


of the hot-water storage tank


25


, the pump


27


′, and the second heat exchange portion


21


′, in this order. Thus, the water in the hot-water storage tank


25


is heated and stored. The pump


36


of the cooling/heating device


30


is activated, and the heating medium, such as water, is circulated through the second heat exchange portion


31


, the cooling/heating heat exchanger


34


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the cooled water, the cooling/heating heat exchanger


34


can provide a space cooling, such as indoor cooling.




H′. Drying or Heating of Bathroom




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




a


, the feed-water heat exchanger


3


′, the solenoid control valve


44




c


, the check valve


45




b


, the solenoid control valves


44




e


and


44




g


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the feed-water heat exchanger


3


′ as a condenser is heated and the second heat exchange portion


21


′ is thereby heated. The pump


27


′ of the feed-water heating device


20


′ is activated, and the heating medium is circulated through the second heat exchange portion


21


′, the tree-way switching valve


23


′, the radiator


43


of the bathroom YR, the pump


27


′, and the second heat exchange portion


21


′, in this order. Thus, a space heating and drying of the bathroom can be performed.




I′. Space/Floor Heating




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




h


, the four-way switching valve


11


, the first heat exchange portion


15


of the second heat exchanger


13


, the check valve


18


, the solenoid control valve


44




f


, the solenoid control valve


44




g


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the heat source exchanger


10


acts as an evaporator, while the second heat exchanger


13


acts as a condenser and is thereby heated. The pump


36


of the cooling/heating device


30


is activated, and the heating medium is circulated through the second heat exchange portion


31


, the cooling/heating heat exchanger


34


and the floor heating heat exchanger


35


, the pump


36


, and the second heat exchange portion


31


, in this order. By this circulation of the heated water, the cooling/heating heat exchanger


34


can provide a space heating, such as indoor heating, and the floor heating heat exchanger


35


can provide a floor heating.




J′. Space/Floor Cooling




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




h


, the four-way switching valve


11


, the heat source heat exchanger


10


, the solenoid control valve


44




g


, the solenoid control valve


44




f


, the expansion valve


17


, the first heat exchange portion


15


of the second heat exchanger


13


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the heat source exchanger


10


acts as a condenser, while the second heat exchanger


13


acts as an evaporator and is thereby cooled. The pump


36


of the cooling/heating device


30


is activated, and the space/floor cooling can be provided as described above.




K′. Bathtub/Feed water Heating plus Space/Floor Heating




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




a


, the first heat exchange portion


5


′ of the feed-water heat exchanger


3


′, the solenoid control valve


44




b


, the check valve


45




a


, the first heat exchange portion


5


″ of the bathtub heat exchanger


3


″, the check valve


45




d


, the solenoid control valve


44




d


, the first heat exchange portion


15


of the second heat exchanger


13


, the check valve


18


, the solenoid control valves


44




f


and


44




g


, the heat source heat exchanger


10


, the four-way switching valve


11


, and the compressor


2


, in this order. Thus, the feed-water heat exchanger


3


′ and bathtub heat exchanger


3


″ as condensers are heated. The second heat exchanger


13


is also heated. As described above, the bathtub and feed water heating can be provided as well as the space and floor heating.




L′. Bathtub/Hot-Water Heating plus Space/Floor Cooling




The refrigerant is circulated through the compressor


2


, the solenoid control valve


44




a


, the first heat exchange portion


5


′ of the feed-water heat exchanger


3


′, the solenoid control valve


44




b


, the check valve


45




a


, the first heat exchange portion


5


″ of the bathtub heat exchanger


3


″, the check valve


45




d


, the solenoid control valves


44




e


and


44




f


, the expansion valve


17


, the first heat exchange portion


15


of the second heat exchanger


13


, the four-way switching valve


11


, and the compressor


2


, in this order. The feed-water heat exchanger


3


′ and bathtub heat exchanger


3


″ as condensers are heated. The second heat exchanger


13


acts as an evaporator. Thus, in addition to the bathtub and feed water heating, the space and floor cooling can be provided as described above.





FIG. 3

shows a third embodiment of the present invention. This embodiment is one example in which the feed-water heating device


20


′ of the second embodiment shown in

FIG. 2

is modified to allow the water in the hot-water storage tank


25


′ to be directly heated. According to the third embodiment, the hot-water storage tank


25


′ is adapted to make the water thereof flow in the opposite direction with respect to the flow of the refrigerant, within the feed-water heat exchanger


3


′. A gate valve


23




a


is interposed in a water circulation duct R, and a particular spring bias and a refrigerant pressure are loaded on the gate valve


23




a


. The feed-water heat exchanger


3


′ has about a doublewide heating area, or heating surface area, compared with regular heat exchangers. The feed-water heat exchanger


3


′ also has narrowed heat exchange portions for exchanging heat between refrigerant and water.




According to the third embodiment, the following effects can be obtained.




Whereas the first and second embodiments shown in

FIG. 1 and 2

, respectively, provide about 50° C. of relatively low tapping water temperature with 21 Kg/cm2 of heating medium pressure and about 54° C. of condensing temperature, the present embodiment can sufficiently condense the refrigerant and can increase supercooling because the heating area is selected to be about twice as large as regular heat exchangers and the heat exchange portions for heat exchanging between refrigerant and water are narrowed, or positioned closely to each other. Thus, according to the present embodiment, about 70° C. of high temperature water can be obtained. In addition, since the gate valve


23




a


is provided in the feed-water heating device, stable performances in each operation mode can be assured. When the feed water heating and the space/floor heating are simultaneously operated, the water is not passed through the feed-water heating device if it is required to operate the space/floor heating with 100% load. If it is required to operate the space/floor heating with 50% load, the feed-water heating device allows gaining 50% of heat quantity from the refrigerant. The feed-water heat exchanger is operated under 50% load with its 100% machine ability and the heating area of the feed-water heat exchanger is twice as wide as regular heat exchangers. That is, the heat exchange would be practically performed with fourfold heating area to the 50% of heat quantity, and the feed water may thereby be given a sufficient high temperature closed to that of the refrigerant at discharge port of the compressor. Since the feed water heating is independently performed by priority as with the bathtub heating, the feed-water heat exchanger may provide sufficient high temperature to the feed-water heating device. Even in changing the operation mode, a continuous operation can also be performed without any usual operations in which the user is required to stop the machine and to wait for more than three minutes, resulting in longer machine's life. In the present embodiment, since the heating is performed with adjusting the condensing pressure of the refrigerant to a constant value, a stable operation can be performed. In addition, the feed water heating can be stably performed under a low condensing pressure even in the coldest season due to the constant condensing pressure. Thus, it is difficult for the heat exchanger to be frosted, and a possible frost can be defrosted in a matter of minutes by applying a reverse cycle. It will be understood to variously modify the first and second embodiments described above. For example, in cooling use, since the heat source heat exchanger


10


acts as a condenser and releases heat, the released heat may be utilized for the heating of the bathroom YR. In space/floor heating or bathtub/feed water heating use, the heat source heat exchanger


10


acts as an evaporator. In the case where a heat medium, such as outside air or water, which is heat exchanged in the heat source heat exchanger


10


, has a low temperature, the heat medium may be obtained from the ground so that the refrigeration cycle can be operated by using ground heat even in winter season.





FIG. 4

shows one embodiment of the bathtub device


50


shown in FIG.


2


. The bathtub device


50


according to the present embodiment schematically comprises a hair catcher


51


, a circulating pump


54


, a filtering device


55


, an antibacterial container


60


, a silver ion generator


70


, an ozone gas generator


80


, a cascade pump


85


, and a heat exchanger


90


. The hair catcher


51


comprises a container


52


, a cap


53


detachably attached to the container


52


, and a filter contained in the container


52


. The hair catcher


51


is interposed in a circulation duct K upstream of the filtering device


55


, and the circulation duct K is connected to the bathtub Y. Since the bathtub device


50


according to the present embodiment is intended to be installed in business equipments having relatively large throughput capacity, such as a factory, a hospital, and a nursing home, the hair catcher


51


is located upstream of the filtering device


55


to remove typically hair from the bathwater.




The filtering device


55


has a filter tank


56


as is widely know. A plurality of tubular filters


57


,


57


, —,


57


is replaceably contained within the filtering device


56


. A filtering-water supply pipe B and a filtered-water discharge pipe C are connected to the upper portion and lower portion of the filter tank


56


, respectively. The filtered-water discharge pipe C is connected to the bottom portion of the antibacterial container


60


described later. While the filtering device


55


will not be further described in detail, any prior arts including Japanese Utility Model Laid-Open Publication No. Hei 6-48893, and Japanese Patent Laid-Open Publication No. Hei 9-142999, which have been proposed by the present applicant, may be applied.




The antibacterial container


60


has a tank


61


in which an antibacterial material or agent


63


and an active stone


62


is appropriately contained, in the present embodiment. The antibacterial agent


63


includes, but not limited to, Zeomix (trade mark). As the result of a verification test with respect to the effect of Zeomix by Mitsubishi Kagaku Bio-Clinical Laboratories, Inc., it has been proved that both minimum inhibitory concentration (i.e. minimum concentration of antibiotic substance or other antibacterial substance for blocking growth of microorganism) and minimal killing concentration (i.e. minimum concentration of antibacterial agent for showing antimicrobial activity) was equal to 125 ppm against Q252 strain of the common coliform bacteria and O157 strain of the Escherichia coliform bacteria. A specific amount of such an antibacterial agent


63


having an excellent antimicrobial activity is put into a net and then contained in the tank


61


together with the net, for example, in an upper internal space of the tank


61


.




The active stone includes shell fossil and Bakuhan-stone. Such an active stone


62


includes: a natural mineral ore containing silic acid, aluminum oxide and the like as primary components, iron, manganese, magnesium, potassium, phosphor, titanium, and the like; or ceramics made from these materials. Active ingredients are dissolved from the active stone into the bathwater, so that hydrogen-ion concentration of the bathwater is controlled in alkalescent state. This provides a particular bath effect to the bathwater. Such an active stone is also put into a net and then contained in a lower inner space of the tank


61


. An antibacterial-water discharge pipe D′ is connected near the top of the tank


61


, and is blanched into a main duct D and a sterilization bypass pipe E. A radium ore may be contained in the antibacterial container


60


to obtain the same effect as hot spring containing radium.




The silver ion generator


70


includes a silver ion electrode casing


71


and an electrode or cover


72


which fluid-tightly closes an opening portion of the silver ion electrode casing


71


. The silver ion electrode casing


71


has a shape similar to a T or three-way joint, and is coupled to the antibacterial-water bypass pipe E by using two joint portions. An electrode of the silver ion generator


70


described later is replaceably located in an opening


71


′ corresponding to the remaining third joint portion. Since the silver ion electrode casing


71


is coupled with the antibacterial-water bypass pipe E, the bathwater may be flowed through the silver ion electrode casing


71


so as to mix silver ion into the bathwater only when the cascade pump


85


described later is operated. A silver pole of anode


73


is insulatively mounted to a back face, or a portion facing to the silver ion electrode casing


71


, of the cover


72


, and a net-like cathode


74


is insulatively mounted to the back face of the cover


72


with surrounding the anode


73


. A pair of electrodes


73


′,


74


′ are mounted to a front face of the cover


72


, and are electrically connected to the anode


73


and cathode


74


, respectively. Positive and negative current sources of, for example, electrical equipment, are connected to one electrode


73


′ and another electrode


74


′, respectively.




The opening portion of the silver ion electrode casing


71


has an internal thread, but not shown, while the back face of the cover


72


has an external thread which is engaged with the internal thread of the silver ion electrode casing


71


. Thus, the electrodes


73


′,


74


′ can be mounted to the silver ion electrode casing


71


only by screwing the external thread of the cover


72


into the internal thread of the casing


71


, and can also be easily replaced together with the cover


72


.




The cascade pump


85


comprises a centrifugal pump having numbers of vanes and is rotatably driven by a motor


86


, as is widely known. A suction pipe H is connected to a suction port of the cascade pump


85


. A discharge pipe


3


is connected to a discharge port of the cascade pump


85


.




The ozone gas generator


80


is widely known. A check valve


82


is interposed in a gas supply pipe


81


which is opened at approximately central portion of the cascade pump


85


. Thus, when the ozone gas generator


80


and the solenoid valve


84


are turned on during the operation of the cascade pump


85


, an air supplied from an air supply pipe


83


and an ozone gas which is created by ozonizing part of the supplied air are sucked into a negative pressure area within the cascade pump


85


.




The heat exchanger


90


is disposed in a return pipe K to which both the main duct D and the sterilization bypass pipe E are connected. The heat exchanger


90


of the present embodiment is configured as a heat-transfer tube type in which a plurality of heat-transfer tubes are, for example, provided between first and second headers


91


,


92


. A supply pipe


95


is connected to the first header


91


to supply a heating medium having a high temperature, and a discharge pipe


96


is connected to the second header


92


to discharge the heating medium the temperature of which is lowered by heat exchanging with the bathwater. The supply pipe


95


and discharge pipe


96


are connected with each other through a bypass pipe


98


, and a three-way valve


97


is provided in the supply pipe


95


, wherein the high temperature heat medium of the supply pipe


95


can be flowed directly to the discharge pipe


96


without passing through the heat exchanger


90


. This allows only the bathroom YR to be heated.




According to the bathtub device


50


constructed as described above, the heat medium of water heated by the first heat exchanger


3


shown in

FIG. 1

or by the bathtub heat exchanger


3


″ shown in

FIG. 2

is provided to the heat exchanger


90


of the bathtub device


50


in the bathtub heating use. Then, the pump


54


of the bathtub device


50


is actuated. Thus, the bathwater in the bathtub Y is passed through a solenoid valve “v”, the hair catcher


51


, the filter tank


56


, the antibacterial container


61


, the main duct D and the heat exchanger


90


, and then returned to the bathtub Y through the return pipe K. Subsequently, the bathwater will be circulated in the same way. Since the sterilization bypass pipe E has a relatively large flow resistance due to the presence of the silver ion generator


70


, the cascade pump


85


, and the like, the bathwater is directed to flow toward the main duct D having a small flow resistance. In the heat exchanger


90


, a high-temperature heating medium is supplied to the first header


91


through the three-way valve


97


. The high-temperature heating medium is flowed from the first header


91


to the second header


92


through the plurality of heat-transfer tubes. Hereat, the bathwater is flowed in the opposite direction with respect to the high-temperature heating medium and is thereby heated. The heating medium is lowered in temperature by heat exchanging, and then returned to the first heat exchanger


3


through the discharge pipe


96


. Subsequently, the bathwater is heated up to a predetermined temperature by the heat exchanger


90


.




During the circulation of the bathwater as described above, the hair catcher


51


removes relatively large foreign materials, such as hair, and the filter tank


56


removes relatively small solid materials. The antibacterial material


63


in the antibacterial container


60


sterilizes various bacteria, such as O157 strain of the Escherichia coliform bacteria. The active ingredients, such as magnesium, zinc, calcium and sodium, are dissolved from the active stone


62


into the bathwater as is widely known, so that hydrogen-ion concentration of the bathwater is controlled in an alkalescent state. This provides a particular bath effect to the bathwater. An organic matter in the bathwater is decomposed by bacteria which propagates itself in the active stone


62


and has heteronomy, so that the bathwater may be purified.




When the control device provided in the bathtub device


50


detects a predetermined sterilization time, the cascade pump


85


is activated. Simultaneously, switches of the silver ion generator


70


and ozone gas generator


80


, the solenoid valve


84


and the like are turned on. In a predetermined ozone time, the pump


54


is also activated. Thus, when the bathwater is circulated as described above, a part of the bathwater is flowed into the main duct D and the remaining bathwater is flown into the sterilization bypass pipe E. In the silver ion generator


70


, silver ion is mixed in the bathwater, so that various bacteria are sterilized. An ozone gas is sucked into the negative pressure area of the cascade pump


85


with air. The ozone gas including air is strongly mixed into the bathwater by an impeller of the cascade pump


85


. While this ozone gas itself has a sterilizing effect, a synergy effect cased by the combination with the silver ion, which has been mixed into the bathwater in advance, enables more complete sufficient sterilization than that only by the ozone gas. The required amount of the silver ion can be reduced by virtue of the synergy effect on sterilization.




According to the present embodiment, the cathode


74


is configured in the form of a net or mesh to provide a wider area thereof, so that the efficiency of generating silver ion is enhanced. The net-like cathode


74


can also prevent a possible short circuit when the bathwater is passed through the silver ion electrode casing


71


. A used-up electrode is replaced together with the cover


22


.




The bathtub device


50


may be embodied in various forms or configuration without being limited to the illustrated embodiments. For example, it will be understood that the present invention can be equally implemented by using other arrangements of, for example, the circulating pump


54


, the filtering device


55


, the antibacterial container


60


, the silver ion generator


70


, the ozone gas generator


80


, the cascade pump


85


, and the heat exchanger


90


, in a different manner from the illustrated embodiment. It is also apparent that the silver ion generator


20


, the ozone gas generator


30


, and the like may be manually switched.




With reference to

FIGS. 5

to


8


, fourth and fifth embodiments will be described hereinafter.

FIG. 5

is a schematic front view showing the fourth embodiment of the present invention, and

FIG. 6

is a perspective view of a feed-water heat exchanger. As shown in these drawings, a hot-water supply apparatus or heating apparatus having a refrigeration cycle according to the fourth embodiment includes a refrigeration cycle section


101


and a hot-water supply section


120


. As is widely known, the refrigeration cycle section


101


includes a compressor


102


, a hot-water supply heat exchanger


110


acting as a condenser, an expansion valve


103


, an evaporator


104


, and the like, which are connected by ducts


106


,


107


,


108


, and


109


to make up a closed cycle. After going out of the compressor


102


, a refrigerant, such as ammonia as an alternative to CFC, enters in the hot-water supply exchanger


110


through an inlet pipe


111


located on an upper region of one side of the hot-water supply exchanger


110


, and then goes out of an outlet pipe


112


located on a lower region of the one side of the hot-water supply exchanger


110


, followed by entering in the expansion valve


103


through a duct


107


, whereafter the refrigerant passes through the evaporator


104


and the compressor


102


, wherein the water or hot water is heated by latent heat of the refrigerant in the hot-water supply heat exchanger


110


. A cooling fan


105


is additionally provided in association with the evaporator


104


.




In the present embodiment, the hot-water supply heat exchanger


110


is a plate type heat exchanger. As shown in

FIG. 6

, the hot-water supply heat exchanger


110


has an approximately longitudinal cubic shape as a whole, and a plurality of plates are provided therein. A heating area and capacity of the hot-water supply heat exchanger


110


is appropriately selected by arranging parameters, such as area and number of the plates. The inlet pipe


111


for the refrigerant and an outlet pipe


122


′ for water or hot-water are located on an upper region of the hot-water supply exchanger


110


, while the outlet pipe


112


for the refrigerant and an inlet pipe


121


′ for the water or hot-water are located on a lower region thereof. The structure of the hot-water supply heat exchanger


110


will not be further described in detail because it is common knowledge.




The hot-water supply section


120


comprises a feed water pipe


121


connected to, for example, a city water pipe, and a tapping water pipe


122


. The feed water pipe


121


and tapping water pipe


122


are connected to the inlet pipe


121


′ and outlet pipe


122


′ of the hot-water supply heat exchanger


110


, respectively. A pressure-type temperature regulating valve


130


is provided in the feed water pipe


121


. The pressure-type temperature regulating valve


130


is electrically connected to a pressure sensor


6


′ attached in a discharge duct


106


of the compressor


102


, by a signal line “b”. This allows an opening of the pressure-type temperature regulating valve


130


to be controlled in response to a pressure of the refrigerant during operation. In other words, the amount of supply water or tapping water is controlled in response to pressure fluctuation of the machine or refrigerant depending on boundary conditions, such as outside air temperature.




Operations of the fourth embodiment will be described hereinafter. The refrigeration cycle section


101


is activated. Then, the refrigerant is circulated through the compressor


102


, the hot-water supply heat exchanger


110


, the expansion valve


103


, the evaporator


104


, and the compressor


102


, in this order. During this time, the refrigerant is changed in its state from gas to liquid at the hot-water supply heat exchanger


110


wherein the refrigerant releases a latent heat. Since parameters, such as heating area and size, of the hot-water supply heat exchanger


110


are appropriately selected, hot water or tapping water of 70° C. or more can be obtained with about relatively low condensing pressure of 2.15MPa and a supercooling temperature of 30° C. or more which is very high as compared with 5° C. in conventional refrigeration cycles when the feed water in is supplied to the hot-water supply heat exchanger


110


after the flow rate of the feed water is adjusted by the pressure-type temperature regulating valve


130


.




According to the present embodiment, the obtained hot water has a high temperature, such as 70° C. or more. Thus, the obtained high temperature water may be stored in a hot-water storage tank T and may, as needed, be used by turning on a tap J to mix with cold water, as shown by the chain line in FIG.


5


. In this case, the hot-water storage tank T may be advantageously small in volume due to the stored high temperature water. While the pressure-type temperature regulating valve


130


is interposed in the feed water pipe


121


in the present embodiment, it may be provided in the tapping water pipe


122


. It will be understood that hot water having a similar high temperature can be obtained if the pressure-type temperature regulating valve


130


is provided in the tapping water pipe


122


. Since the pressure-type temperature regulating valve


130


is provided to control the amount of the tap water in response to pressure fluctuation of the machine or refrigerant depending on boundary conditions, such as outside air temperature, it will also be understood that any flow control valve capable of regulating the amount of the supply water or tap water manually or in response to outside air temperature may, for example, be in substitution for the pressure-type temperature regulating valve


130


. The reason for obtaining such high temperature water is unknown.




However, it is believed that broadening the heating area and enlarging the capacity, or volume, of the hot-water supply heat exchanger


110


allows the hot-water supply heat exchanger


110


to have a longer period for heat exchanging with gaseous refrigerant, and thereby allows the refrigerant to be sufficiently condensed to obtain larger supercooling, which enables to obtain high temperature water, such as 70° C. or more with low condensing pressure, such as 2.15MPa. Another assumable theory will be described as follows.

FIG. 8

is a Mollier chart showing a refrigerant flow. In the conventional apparatuses, when it is required to obtain hot water of 70° C. by supplying supply water of 65° C. to the hot-water supply heat exchanger, the refrigerant flow is represented as “a”, “b”, “c”, “d”, “a” in

FIG. 8

, and the condensing pressure comes to about 2.94MPa (30 kg/cm2). This pressure value exceeds an allowable withstand pressure of the machine which is usually stopped for safety's sake at 2.7 MPa (28 kg/cm2). Thus, it cannot actually obtain hot water of 70° C. In contrast, according to the present embodiment, the condensing pressure may be lowered to about 2.15MPa and water of 70° C. may be obtain by enlarging the supercooling temperature K and broadening the heating area of the hot-water supply heat exchanger, more than that required for regular condensers, for example twice, as shown in FIG.


8


. This refrigerant flow is indicated by “A”, “B”, “C”, “D”, “A”. The supercooling may be increased by various fashions, for example, bay making the refrigerant pass through the condenser twice.




With reference to

FIG. 7

, a fifth embodiment will be described hereinafter. In

FIG. 7

, the same elements of structure as those of the fourth embodiment shown in

FIG. 5

are identified by the same reference numerals, the similar elements being identified by adding dash to the same reference numerals, and their description will be omitted. According to the fifth embodiment, a hot-water supply apparatus comprises the refrigeration cycle section


101


, a hot-water supply section


120


′, and a heat load section


140


. The hot-water supply section


120


′ includes a hot-water storage tank


125


. A lower region of the hot-water storage tank


125


and the feed water pipe


121


are connected with each other through a duct


126


in which the first control valve


127


is interposed. A second control valve


128


and a pump


129


are interposed in the feed water pipe


121


. The feed water pipe is then extended as a secondary feed water pipe


121


″ which is connected to an inlet pipe


121


′. A branch pipe


124


branched from the tapping water pipe


122


is connected to an upper region of the hot-water storage tank


125


. A temperature sensor S is attached in the lower region of the hot-water storage tank


125


. The temperature sensor S and the pump


129


are electrically connected with each other through a signal line “a” so that the pump


129


may be activated and the hot water in the hot-water storage tank


125


may be circulated to be heated when the temperature sensor S detects that a water temperature in the hot-water storage tank


125


decreases to a predetermined temperature or less. The heat load section


140


comprises a heat exchanger


141


, and a heat consumption part


142


, such as a bathtub, a heater, and a dryer. The heat exchanger


141


and the hot-water storage tank


125


are connected to each other through a primary hot-water supply pipe


143


and a primary hot-water return pipe


144


. The heat exchanger


141


and the heat consumption part


142


are connected to each other through a secondary hot-water supply pipe


146


and a secondary hot-water return pipe


147


. Thus, when a first pump


145


, interposed in the primary hot-water return pipe


144


is activated the hot-water having a relative high temperature in the hot-water storage tank


125


is circulated between the hot-water storage tank


125


and the heat exchanger


141


. When a second pump


148


interposed in the secondary hot-water return pipe


147


is activated, a heating medium, such as water or hot water, filled in the secondary hot-water supply pipe


146


and the secondary hot-water return pipe


147


is circulated between the heat exchanger


141


and the heat consumption part


142


.




The fifth embodiment configured as described above can perform the following various heating.




(a) Case for Obtaining Hot Water Directly.




Assuming that the hot-water storage tank


125


, the primary hot-water supply pipe


143


, the primary hot-water return pipe


144


, and the like are filled with hot water. The refrigeration cycle is activated. The first control valve of the duct


126


is closed, while the second control valve


128


of the feed water pipe


121


is opened, and a tap


123


of the tapping water pipe


122


is opened. The pressure-type temperature regulating valve


130


is adjusted. Then, the pump


129


is activated. Consequently, a cold water supplied from the feed water pipe


121


is adjusted in an adequate flow rate by the pressure-type temperature regulating valve


130


, and then provided to the hot-water supply heat exchanger


110


. In the hot-water supply heat exchanger


110


, the provided water is heat exchanged with the refrigerant of the refrigeration cycle section


101


to heat up to high temperature, such as 70° C., and then discharged to the tapping water pipe


122


, as described above. Since the hot-water storage tank


125


, the primary hot-water supply pipe


143


, the primary hot-water return pipe


144


, and the like has a fluid resistance due to the filled hot water therein, the heated water is discharged from the tap


123


. Thus, a high temperature tapping water can be obtained directly. In cases where a control valve is provided in the branch pipe


124


, the primary hot-water supply pipe


143


, or the like, it is apparent that the control valve may be closed when the tapping water is supplied directly.




(b) Case for Taking a Tapping Water from the Hot-water Storage Tank


125


.




The feed water tank


125


is now filled with hot water. The first control valve


127


of the duct


126


is adjusted in an adequate opening, and the second control valve


128


of the feed water pipe


121


is closed. Then, a cold water is supplied from the feed water pipe


121


to the hot-water storage tank


125


. Thus, the hot water in the hot-water storage tank


125


is pushed up by the supplied cold water. Since the primary hot-water supply pipe


143


, the primary hot-water return pipe


144


, and the like has a fluid resistance due to the filled hot water therein, the forced high temperature water in the hot-water storage tank


125


may be discharged from the tap


123


.




(c) Case for Circulating and Heating the Hot Water in the Hot-water Storage Tank


125


.




When the temperature sensor S detects that a water temperature in the hot-water storage tank


125


decreases to a predetermined temperature, for example 50° C. or less, the pump


129


is activated. The lower hot water in the hot-water storage tank


125


is passed through the first and second control valves


127


,


128


, and adjusted by the pressure-type temperature regulating valve


130


. Then, the hot water is provided to the hot-water supply heat exchanger


110


. The provided hot water is heat exchanged with the refrigerant of the refrigeration cycle section


101


to heat up to a high temperature at the hot-water supply heat exchanger


110


as described above, and the heated water is returned from the branch pipe


124


to the hot-water storage tank


125


so that the heated high temperature water may be stored in turn from the upper side of the hot-water storage tank


125


. Subsequently, the hot water in the hot-water storage tank


125


is circulated and heated in the same way. When the temperature sensor S detects that the water temperature in the hot-water storage tank


125


reaches the predetermined temperature, the pump


129


is stopped.




(d) Case for Heating the Heat Consumption Part


142


.




The first and second pumps


145


,


148


of the primary and secondary hot-water return pipes


144


,


147


are activated. Then, the hot water in the hot-water storage tank


125


is circulated through the primary hot-water supply pipe


143


, the heat exchanger


141


, the primary hot-water return pipe


144


, and the hot-water storage tank


125


, in this order. For example, hot water as a heating medium where the heat consumption part is a floor heating device, or bathwater where the heat consumption part is a bathtub is circulated through the heat exchanger


141


, the secondary hot-water supply pipe


146


, the heat consumption part


142


, the secondary hot-water return pipe


147


, and the heat exchanger


141


, in this order. The hot water, or the bathwater, as a heating medium, or the bathwater is heated in the heat exchanger


141


and then its heat is dissapated in the heat consumption part


142


. This enables the heat consumption part


142


to be heated. When the temperature of the hot water in the hot-water storage tank


125


is decreased in connection with the heating of the heat consumption part


142


, the refrigeration cycle section


101


and the pump


129


are simultaneously activated so that the hot water in the hot-water storage tank


125


is circulated and heated as described above. A filtering device, an active stone, a sterilization device, and the like, described in Japanese Patent Laid-Open Publication No. Hei 7-21195 and Hei 10-314255, which are proposed by the present applicant, may be incorporated in such a bathwater circulation/heating arrangement.




It will be understood that the fifth embodiment may perform heating in various combinations other than the foregoing. For example, when the hot water in the hot-water storage tank


125


is supplied and decreased by a predetermined amount, the hot water may be heated directly. It is also apparent that the hot water of the hot-water storage tank


125


may be discharged to the tap


123


by supplying a cold water through the first control valve


127


to the hot-water storage tank


125


, when the hot water in the hot-water storage tank


125


is being circulated for heating. Further, it is apparent that the hot-water storage tank


125


may be an open type tank.




TEST EXAMPLE 1




A hot-water supply apparatus as shown in

FIG. 7

was put to the test, where the compressor capacity was 3 horsepower, the hot-water supply heat exchanger was a plate type (number of plate: 50) having 1.2 mm


2


of heating area (outside dimension: 103 mm width, 135 mm depth, 302 mm height) and 1.4 liter of volume. Tapping water of 70° C. could be obtained with the outside air temperature under 6° C. The amount of the feed water (tapping water) regulated by the pressure-type temperature regulating valve was 161 liter/hour. The condensing pressure was 2.1MPa. In the test where the temperature of the feed water was 51° C. or less, tapping water of 60° C. could be obtained without any problem.




TEST EXAMPLE 2




The same hot-water supply apparatus as Test Example 1 was put to the test, where the compressor capacity was 3 horsepower as same as Test Example 1, the hot-water supply heat exchanger was a plate type (number of plate: 30) having 1.76 mm


2


of heating area (outside dimension: 125 mm width, 85 mm depth, 532 mm height) and 2.0 liter of volume. Tapping water of 71° C. could be obtained with the outside air temperature under 10° C. and the feed water under 20° C. The amount of the feed water (tapping water) regulated by the pressure-type temperature regulating valve was 197 liter/hour. The condensing pressure was 2.15 MPa. In the test where the temperature of the feed water was 51° C. or less, there was no problem.




From the results of the above Test Examples 1, 2, it was inferable that the heating area or capacity of the hot-water supply heat exchanger and the amount of the water or hot water supplied to the hot-water supply heat exchanger had a strong relationship with the obtained water temperature, and the period for heat exchanging with the gaseous refrigerant at the hot-water supply heat exchanger, the condensing level of the refrigerant, the amount of supercooling, and the like had much effect on the obtained water temperature. Thus, it was proved that 60° C. or more hot water could be obtained without increased condensing pressure, by selecting the above relationship adequately. In addition, it was proved that the hot water of 51° C. or less could be supplied to the hot-water supply heat exchanger even if the water temperature supplied to the hot-water supply heat exchanger was raised in conjunction with the foregoing.



Claims
  • 1. A heating apparatus having a refrigeration cycle which includes a compressor, a condenser and an evaporator connected in a circuit for circulating a refrigerant, said heating apparatus comprising:a first heat exchanger and a second heat exchanger connected in heat transfer relation with said refrigerant in said refrigerant circulating circuit to operate selectively as a condenser or an evaporator, wherein said first heat exchanger is selected as a heat source, said second heat exchanger is selected as either a cooling or heating source, said first heat exchanger and second heat exchanger being connected in series with each other in the refrigerant circuit; and a heat transfer device in which a heating medium is circulated and which is connected in heat transfer relation to said first heat exchanger, wherein bathwater of a bathtub and water of a hot-water storage tank are heated through said heat transfer device indirectly by said first heat exchanger.
  • 2. A heating apparatus as defined in claim 1, further comprising a bathroom heating device connected in heat transfer relation to said refrigerant circuit in said heat transfer device, and a cooling/heating device and a floor heating device which are connected in heat transfer relation to said refrigerant circuit in said second heat exchanger.
  • 3. A heating apparatus as defined in claim 1 or 2, further comprising a bathtub device which is interposed between said heat transfer device and said bathtub, said bathtub device includes a filtering/purifying device for the bathwater, and a heat exchanger for exchanging heat between said heat transfer device and the bathwater.
  • 4. A heating apparatus having a refrigeration cycle which includes a compressor, a condenser and an evaporator connected in a circuit for circulating a refrigerant, said heating apparatus comprising:a first heat exchanger, a second heat exchanger, and a third heat exchanger connected in heat transfer relation with said refrigerant in said refrigerant circulating circuit to operate selectively as a condenser or an evaporator, wherein said first and second heat exchangers are respectively selected as a heat source, said third heat exchanger being selected as either a cooling or a heating source, said first and second heat exchangers being connected in series with said third heat exchanger in a refrigerant circuit; and a heat transfer device in which a heating medium is circulated and which is connected in heat transfer relation respectively to said first heat exchanger and said second heat exchanger, wherein bathwater of a bathtub and water of a hot-water storage tank are independently heated through said heat transfer device indirectly by said first heat exchanger and said second heat exchanger, respectively.
  • 5. A heating apparatus as defined in claim 4 further comprising a bathroom heating device connected in heat transfer relation to said refrigerant circuit in said heat transfer device, and a cooling/heating device and a floor heating device which are connected in heat transfer relation to said refrigerant circuit.
  • 6. A heating apparatus having a refrigeration cycle which includes a compressor, a condenser, and an evaporator, wherein a hot water supply heat exchanger to which a feed water pipe and a tapping water pipe are connected operates as said condenser, the heating apparatus comprising:a flow regulating valve interposed in either one of said feed water pipe and said tapping water pipe, wherein tap water of 60° C. or more is obtained with a condensing pressure of an allowable pressure or less by determining a parameter of the refrigeration cycle including the feed water flow rate depending on said flow regulating value, a heating area and size of said hot-water supply heat exchanger, and a supercooling rate.
  • 7. A heating apparatus having a refrigeration cycle which includes a compressor, a condenser and an evaporator, wherein a hot water supply heat exchanger to which a feed water pipe and a tapping water pipe are connected operates as said condenser, said heating apparatus comprising:a flow regulating valve interposed in either one of said feed water pipe and said tapping water pipe, wherein tap water of 35° C. or more is supplied to said hot-water supply heat exchanger with a condensing pressure of an allowable pressure or less, and tapping water of 60° C. or more is obtained by determining a parameter of the refrigeration cycle including the feed water flow rate depending on said flow regulating valve, a heating area and size of said hot-water supply heat exchanger and a supercooling temperature.
  • 8. A heating apparatus having a refrigeration cycle which includes a compressor, a condenser and an evaporator, wherein a hot-water supply heat exchanger to which a hot-water storage tank is connected through a feed water pipe and a tapping water pipe operates as said condenser, said heating apparatus comprising:a flow regulating valve interposed in either one of said feed water pipe and said tapping water pipe, wherein hot water in said hot-water storage tank is circulated between said hot-water storage tank and said hot-water supply heat exchanger when water temperature detected in said hot-water storage tank drops to a predetermined temperature or less, and hot water of 60° C. or more is obtained with a condensing pressure of an allowable pressure or less by determining a parameter of the refrigeration cycle including the feed water flow rate depending on said flow regulating valve, a heating area and size of said hot-water supply heat exchanger and a supercooling temperature.
  • 9. A heating apparatus as defined in claim 8 further comprising a heat load device which serves uses including bathwater, heating, and drying.
  • 10. A heating apparatus as defined in any one of claims 6 to 9, wherein said flow regulating valve is a pressure type temperature regulating valve for controlling the feed water flow rate by sensing a pressure of the refrigerant in the refrigeration cycle.
Priority Claims (2)
Number Date Country Kind
11-139409 May 1999 JP
11-321979 Nov 1999 JP
US Referenced Citations (9)
Number Name Date Kind
5207761 Ruff May 1993 A
5400619 Husseiny et al. Mar 1995 A
5517829 Michael May 1996 A
5536411 Blades Jul 1996 A
5553459 Harrison Sep 1996 A
5766453 Morellato et al. Jun 1998 A
6044903 Heilman et al. Apr 2000 A
6168723 Moody Jan 2001 B1
6207046 Yamashita et al. Mar 2001 B1
Foreign Referenced Citations (2)
Number Date Country
6-48893 Jul 1994 JP
7-185574 Jul 1995 JP