This patent application is based on and claims priority pursuant to 35 U.S.C. § 119(a) to Japanese Patent Applications No. 2021-038166, filed on Mar. 10, 2021 and No. 2021-148789, filed on Sep. 13, 2021 in the Japan Patent Office, the entire disclosure of each of which is incorporated by reference herein.
Embodiments of the present disclosure generally relate to a heating device, a fixing device, and an image forming apparatus. In particular, the embodiments of the present disclosure relate to a heating device, a fixing device with the heating device for fixing a toner image on a recording medium, and an image forming apparatus with the fixing device for forming an image on a recording medium.
One type of fixing device includes a fixing belt as a rotator and a planar heater including resistive heat generators on a base as a heating device heating the fixing belt. In such a fixing device, it is important to uniform a temperature distribution of the fixing belt in a longitudinal direction of the fixing belt (that is an arrangement direction of the plurality of resistive heat generators) and uniformly heat toner on a recording medium.
This specification describes an improved heating device that includes a rotator, a heater, a heater holder, and a first high thermal conduction member. The heater includes a base and a plurality of heat generators being arranged on the base and including neighboring heat generators. The heater has a gap area between the neighboring heat generators. The first high thermal conduction member has a higher thermal conductivity than the base and faces the gap area.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The accompanying drawings are intended to depict embodiments of the present disclosure and should not be interpreted to limit the scope thereof. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted. Also, identical or similar reference numerals designate identical or similar components throughout the several views.
In describing embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve similar results.
Referring now to the drawings, embodiments of the present disclosure are described below. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
With reference to drawings attached, a description is given below of the present disclosure. In the drawings for illustrating embodiments of the present disclosure, identical reference numerals are assigned to elements such as members and parts that have an identical function or an identical shape as long as differentiation is possible, and descriptions of such elements may be omitted once the description is provided.
The image forming apparatus 100 illustrated in
The image forming apparatus 100 includes an exposure device 6, a sheet feeder 7, a transfer device 8, a fixing device 9 as a heating device, and a sheet ejection device 10. The exposure device 6 exposes the surface of the photoconductor 2 to form an electrostatic latent image on the surface of the photoconductor 2. The sheet feeder 7 supplies a sheet P as a recording medium to a sheet conveyance path 14. The transfer device 8 transfers the toner images formed on the photoconductors 2 onto the sheet P. The fixing device 9 fixes the toner image transferred onto the sheet P to the surface of the sheet P. The sheet ejection device 10 ejects the sheet P outside the image forming apparatus 100. The image forming units 1Y, 1M, 1C, and 1Bk including photoconductors 2 and the charging devices 3, the exposure devices 6, the transfer device 8, and the like configures an image forming device that forms an image on the sheet P.
The transfer device 8 includes an intermediate transfer belt 11 having an endless form and serving as an intermediate transferor, four primary transfer rollers 12 serving as primary transferors, a secondary transfer roller 13 serving as a secondary transferor. The intermediate transfer belt 11 is stretched by a plurality of rollers. Each of the four primary transfer rollers 12 transfers the toner image on each of the photoconductors 2 onto the intermediate transfer belt 11. The secondary transfer roller 13 transfers the toner image transferred onto the intermediate transfer belt 11 onto the sheet P. The four primary transfer rollers 12 are in contact with the respective photoconductors 2 via the intermediate transfer belt 11. Thus, the intermediate transfer belt 11 contacts each of the photoconductors 2, forming a primary transfer nip therebetween. On the other hand, the secondary transfer roller 13 contacts, via the intermediate transfer belt 11, one of the plurality of rollers around which the intermediate transfer belt 11 is stretched. Thus, the secondary transfer nip is formed between the secondary transfer roller 13 and the intermediate transfer belt 11.
A timing roller pair 15 is disposed between the sheet feeder 7 and the secondary transfer nip defined by the secondary transfer roller 13 in the sheet conveyance path 14.
Next, a description is given of a series of print operations of the image forming apparatus 100 with reference to
When the image forming apparatus 100 receives an instruction to start printing, a driver drives and rotates the photoconductor 2 clockwise in
The toner image formed on each of the photoconductors 2 reaches the primary transfer nip at each of the primary transfer rollers 12 in accordance with rotation of each of the photoconductors 2. The toner images are sequentially transferred and superimposed onto the intermediate transfer belt 11 that is driven to rotate counterclockwise in
After the full color toner image is transferred onto the sheet P, the sheet P is conveyed to the fixing device 9 to fix the toner image on the sheet P. Subsequently, the sheet ejection device 10 ejects the sheet P outside the image forming apparatus 100, and the series of print operations are completed.
Next, a configuration of the fixing device 9 is described.
As illustrated in
The fixing belt 20 includes, for example, a tubular base made of polyimide (PI), and the tubular base has an outer diameter of 25 mm and a thickness of from 40 to 120 μm. The fixing belt 20 further includes a release layer serving as an outermost surface layer. The release layer is made of fluororesin, such as tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA) or polytetrafluoroethylene (PTFE), and has a thickness in a range of from 5 μm to 50 μm to enhance durability of the fixing belt 20 and facilitate separation of the sheet P and a foreign substance from the fixing belt 20. An elastic layer made of rubber having a thickness of from 50 to 500 μm may be interposed between the base and the release layer. The base of the fixing belt 20 may be made of heat resistant resin such as polyetheretherketone (PEEK) or metal such as nickel (Ni) and steel use stainless (SUS), instead of polyimide. The inner circumferential surface of the fixing belt 20 may be coated with polyimide or polytetrafluoroethylene (PTFE) as a slide layer.
The pressure roller 21 having, for example, an outer diameter of 25 mm, includes a solid iron cored bar 21a, an elastic layer 21b on the surface of the cored bar 21a, and a release layer 21c formed on the outside of the elastic layer 21b. The elastic layer 21b is made of silicone rubber and has a thickness of 3.5 mm, for example. Preferably, the release layer 21c is formed by a fluororesin layer having, for example, a thickness of approximately 40 μm on the surface of the elastic layer 21b to improve releasability.
A biasing member presses the pressure roller 21 against the fixing belt 20, and the pressure roller 21 presses against the heater 22 via the fixing belt 20 to form the fixing nip N between the fixing belt 20 and the pressure roller 21. A driver drives and rotates the pressure roller 21 in a direction indicated by arrow in
The heater 22 is a planar heater extending in the longitudinal direction thereof parallel to the width direction of the fixing belt 20. The heater 22 includes a planar base 30, resistive heat generators 31 disposed on the base 30, and an insulation layer 32 covering the resistive heat generators 31. The insulation layer 32 of the heater 22 contacts the inner circumferential surface of the fixing belt 20, and the heat generated from the resistive heat generators 31 is transmitted to the fixing belt 20 through the insulation layer 32. Although the resistive heat generators 31 and the insulation layer 32 is disposed on the side of the base 30 facing the fixing belt 20 (that is, the fixing nip N) in the present embodiment, the resistive heat generators 31 and the insulation layer 32 may be disposed on the opposite side of the base 30, that is, the side facing the heater holder 23. In this case, since the heat of the resistive heat generator 31 is transmitted to the fixing belt 20 through the base 30, it is preferable that the base 30 be made of a material with high thermal conductivity such as aluminum nitride. Making the base 30 with a material having a high thermal conductivity enables to sufficiently heat the fixing belt 20 even if the resistive heat generators 31 are disposed on the side of the base 30 opposite to the side facing the fixing belt 20.
The heater holder 23 and the stay 24 are disposed inside a loop of the fixing belt 20. The stay 24 is configured by a channeled metallic member, and both side plates of the fixing device 9 support both end portions of the stay 24. Since the stay 24 supports the heater holder 23 and the heater 22, the heater 22 reliably receives a pressing force of the pressure roller 21 pressed against the fixing belt 20. Thus, the fixing nip N is stably formed between the fixing belt 20 and the pressure roller 21. In the present embodiment, the thermal conductivity of the heater holder 23 is set to be smaller than the thermal conductivity of the base 30.
When the stay 24 supports the heater holder 23, a surface of the heater holder 23 opposite the pressure roller 21 that is a left surface of the heater holder 23 in
Since the heater holder 23 is subject to temperature increase by heat from the heater 22, the heater holder 23 is preferably made of a heat resistant material. The heater holder 23 made of heat-resistant resin having low thermal conduction, such as a liquid crystal polymer (LCP), reduces heat transfer from the heater 22 to the heater holder 23. Thus, the heater 22 can effectively heat the fixing belt 20.
In addition, the heater holder 23 includes guides 26 configured to guide the fixing belt 20. The guides 26 include upstream guides upstream from the heater 22 (that is under the heater 22 in
The heater holder 23 has a plurality of openings 23a arranged in the longitudinal direction. The openings 23a extend through the heater holder 23 in the thickness direction thereof. The thermistor 25 and a thermostat which is described later are disposed in the openings 23a. The spring 29 presses the thermistor 25 and the thermostat against the back surface of the first high thermal conduction member 28. However, the first high thermal conduction member 28 (and a second high thermal conduction member described later) may have openings similar to the openings 23a to press the thermistor 25 and the thermostat against the back surface of the base 30.
The first high thermal conduction member 28 is made of a material having a thermal conductivity higher than a thermal conductivity of the base 30. In the present embodiment, the first high thermal conduction member 28 is a plate made of aluminum. Alternatively, the first high thermal conduction member 28 may be made of copper, silver, graphene, or graphite, for example. The first high thermal conduction member 28 that is the plate can improve accuracy of positioning of the heater 22 with respect to the heater holder 23 and the first high thermal conduction member 28.
Next, a method of calculating the thermal conductivity is described. In order to calculate the thermal conductivity, the thermal diffusivity of a target object is firstly measured. Using the thermal diffusivity, the thermal conductivity is calculated.
The thermal diffusivity is measured using a thermal diffusivity/conductivity measuring device (trade name: ai-Phase Mobile 1u, manufactured by Ai-Phase co., ltd.).
In order to convert the thermal diffusivity into thermal conductivity, values of density and specific heat capacity are necessary.
The density is measured by a dry automatic densitometer (trade name: Accupyc 1330 manufactured by Shimadzu Corporation).
The specific heat capacity is measured by a differential scanning calorimeter (trade name: DSC-60 manufactured by Shimadzu Corporation), and sapphire is used as a reference material in which the specific heat capacity is known. In the present embodiment, the specific heat capacity is measured five times, and an average value at 50° C. is used. The thermal conductivity λ is obtained by the following formula (1).
λ=ρ×C×α (1)
where ρ is the density, C is the specific heat capacity, and a is the thermal diffusivity obtained by the thermal diffusivity measurement described above.
When printing starts in the fixing device 9 according to the present embodiment, the pressure roller 21 is driven to rotate, and the fixing belt 20 starts to be rotated. The belt facing surface 260 of the guide 26 contacts and guides the inner circumferential surface of the fixing belt 20 to stably and smoothly rotates the fixing belt 20. As power is supplied to the resistive heat generators 31 of the heater 22, the heater 22 heats the fixing belt 20. When the temperature of the fixing belt 20 reaches a predetermined target temperature which is called a fixing temperature, as illustrated in
As illustrated in
In the present embodiment, the longitudinal direction of the heater 22 and the like (that is the direction perpendicular to the surface of the paper on which
The plurality of resistive heat generators 31 configure a plurality of heat generation portions 35 divided in the arrangement direction. The resistive heat generators 31 are electrically coupled in parallel to a pair of electrodes 34A and 34B disposed on one end of the base 30 in the arrangement direction (that is a left end of the base 30 in
The resistive heat generator 31 is made of a material having a positive temperature coefficient (PTC) of resistance that is a characteristic that the resistance value increases (the heater output decreases) as the temperature T increases.
Dividing the heat generation portion 35 configured by the resistive heat generators 31 having the PTC characteristic in the arrangement direction prevents overheating of the fixing belt 20 when small sheets pass through the fixing device 9. When the small sheets each having a width smaller than the entire width of the heat generation portion 35 pass through the fixing device 9, the temperature of a region of the resistive heat generator 31 corresponding to a region of the fixing belt 20 outside the small sheet increases because the small sheet does not absorb heat of the fixing belt 20 in the region outside the small sheet that is the region outside the width of the small sheet. The region outside the small sheet is referred to as a non-sheet passing region. Since a constant voltage is applied to the resistive heat generators 31, the increase in resistance values of the resistive heat generators 31 caused by the temperature increase in the regions outside the width of the small sheets relatively reduces outputs (heat generation amounts) of the resistive heat generators 31 in the regions, thus restraining an increase in temperature in the regions that are end portions of the fixing belt outside the small sheets. Electrically coupling the plurality of resistive heat generators 31 in parallel can restrain temperature rise in the non-sheet passing region while maintaining the print speed. The heat generator that configures the heat generation portion 35 may not be the resistive heat generator having the PTC characteristic. The resistive heat generators may be arranged in a plurality of rows in the direction intersecting the arrangement direction in the heaters 22.
For example, the resistive heat generators 31 are produced as below. Silver-palladium (AgPd), glass powder, and the like are mixed to make paste. The paste is coated to the base 30 by screen printing or the like. Thereafter, the base 30 is subject to firing. Then, the resistive heat generators 31 are produced. The resistive heat generators 31 each have a resistance value of 80Ω at room temperature, in the present embodiment. The material of the resistive heat generators 31 may contain a resistance material, such as silver alloy (AgPt) or ruthenium oxide (RuO2), other than the above material. Silver (Ag), silver palladium (AgPd) or the like may be used as a material of the power supply lines 33 and the electrodes 34. Screen-printing such a material forms the power supply lines 33 and the electrodes 34. The power supply lines 33 are made of conductors having an electrical resistance value smaller than the electrical resistance value of the resistive heat generators 31.
The material of the base 30 is preferably a nonmetallic material having excellent thermal resistance and insulating properties, such as glass, mica, or ceramic such as alumina or aluminum nitride. The heater 22 according to the present embodiment uses an alumina base having a thickness of 1.0 mm, a width of 270 mm in the arrangement direction, and a width of 8 mm in the direction intersecting the arrangement direction. The base 30 may be made by layering the insulation material on conductive material such as metal. Low-cost aluminum or stainless steel is favorable as the metal material of the base 30. The base 30 made of stainless steel plate is resistant to cracking due to thermal stress. To improve thermal uniformity of the heater 22 and image quality, the base 30 may be made of a material having high thermal conductivity, such as copper, graphite, or graphene.
The insulation layer 32 may be, for example, a thermal resistance glass having a thickness of 75 μm. The insulation layer 32 covers, insulates, and protects the resistive heat generators 31 and the power supply lines 33, and additionally retains slidability with the fixing belt 20.
As illustrated in
In the present embodiment, one thermistor 25 is disposed in the central region in the arrangement direction of the heaters 22 that is the region inside a sheet conveyance span for the smallest sheet, and the other thermistor 25 is disposed in one end portion of the heater 22 in the arrangement direction. The thermostat 27 as a power cut-off device is disposed in the one end portion of the heater 22 in the arrangement direction and cuts off power supply to the resistive heat generators 31 when the temperature of the resistive heat generator 31 becomes a predetermined temperature or higher. The thermistors 25 and the thermostat 27 contact the first high thermal conduction member 28 to detect the temperature of the first high thermal conduction member 28.
The first electrode 34A and the second electrode 34B are disposed on the same end portion of the base 30 in the arrangement direction in the present embodiment but may be disposed on both end portions of the base 30 in the arrangement direction. The shape of resistive heat generator 31 is not limited to the shape in the present embodiment. For example, as illustrated in
As illustrated in
As illustrated in
The fixing device 9 in the present embodiment includes the first high thermal conduction member 28 described above in order to reduce the temperature drop on the separation area B as described above and reduce the temperature unevenness in the arrangement direction of the fixing belt 20. Next, a detailed description is given of the first high thermal conduction member 28.
As illustrated in
The stay 24 has two rectangular portions 24a extending in a thickness direction of the heater 22 and each having a contact surface 24a1 that contacts the back side of the heater holder 23 to support the heater holder 23, the first high thermal conduction member 28, and the heater 22. In the direction intersecting the arrangement direction that is the vertical direction in
As illustrated in
The first high thermal conduction member 28 is fitted into the recessed portion 23b of the heater holder 23, and the heater 22 is mounted thereon. Thus, the first high thermal conduction member 28 is sandwiched and held between the heater holder 23 and the heater 22. In the present embodiment, the length of the first high thermal conduction member 28 in the arrangement direction is substantially the same as the length of the heater 22 in the arrangement direction. Both side walls 23b1 forming the recessed portion 23b in the arrangement direction restrict movement of the heater 22 and movement of the first high thermal conduction member 28 in the arrangement direction and work as arrangement direction regulators. Reducing the positional deviation of the first high thermal conduction member 28 in the arrangement direction in the fixing device 9 improves the thermal conductivity efficiency with respect to a target range in the arrangement direction. In addition, both side walls 23b2 forming the recessed portion 23b in the direction intersecting the arrangement direction restricts movement of the heater 22 and movement of the first high thermal conduction member 28 in the direction intersecting the arrangement direction.
The range in which the first high thermal conduction member 28 is disposed in the arrangement direction is not limited to the above. For example, as illustrated in
Due to the pressing force of the pressure roller 21, the first high thermal conduction member 28 is sandwiched between the heater 22 and the heater holder 23 and is brought into close contact with the heater 22 and the heater holder 23. Bringing the first high thermal conduction member 28 into contact with the heaters 22 improves the heat conduction efficiency in the arrangement direction of the heaters 22. The first high thermal conduction member 28 disposed opposite the separation area B improve the heat conduction efficiency of a part of the heater 22 facing the separation area B in the arrangement direction, transmits heat to the part of the heater 22 facing the separation area B, and raise the temperature of the part of the heater 22 facing the separation area B. As a result, the first high thermal conduction member 28 reduces the temperature unevenness in the arrangement direction of the heaters 22. Thus, temperature unevenness in the arrangement direction of the fixing belt 20 is reduced. Therefore, the above-described structure prevents fixing unevenness and gloss unevenness in the image fixed on the sheet. Since the heater 22 does not need to generate additional heat to secure sufficient fixing performance in the part of the heater 22 facing the separation area B, energy consumption of the fixing device 9 can be saved. The first high thermal conduction member 28 disposed over the entire area of the heat generation portion 35 in the arrangement direction improves the heat transfer efficiency of the heater 22 over the entire area of a main heating region of the heater 22 (that is, an area facing an image formation area of the sheet passing through the fixing device) and reduces the temperature unevenness of the heater 22 and the temperature unevenness of the fixing belt 20 in the arrangement direction.
In the present embodiment, the combination of the first high thermal conduction member 28 and the resistive heat generator 31 having the PTC characteristic described above effectively prevents the overheating of a non-sheet passing region (that is the region of the fixing belt outside the small sheet) of the fixing belt 20 when small sheets pass through the fixing device 9. Specifically, the PTC characteristic reduces the amount of heat generated by the resistive heat generator 31 in the non-sheet passing region, and the first high thermal conduction member effectively transfers heat from the non-sheet passing region in which the temperature rises to a sheet passing region that is a region of the fixing belt contacting the sheet. As a result, the overheating of the non-sheet passing region is effectively prevented.
The first high thermal conduction member 28 may be disposed opposite an area around the separation area B because the small heat generation amount in the separation area B decreases the temperature in the area around the separation area B. For example, the first high thermal conduction member 28 facing the enlarged separation area C as illustrated in
Next, different embodiments of the fixing device is described.
As illustrated in
The second high thermal conduction member 36 is made of a material having thermal conductivity higher than the thermal conductivity of the base 30, for example, graphene or graphite. In the present embodiment, the second high thermal conduction member 36 is made of a graphite sheet having a thickness of 1 mm. Alternatively, the second high thermal conduction member 36 may be a plate made of aluminum, copper, silver, or the like.
As illustrated in
As illustrated in
The fixing device 9 according to the present embodiment includes the second high thermal conduction member 36 disposed at a position corresponding to the separation area B in the arrangement direction and a position at which at least a part of each of the neighboring resistive heat generators 31 faces the second high thermal conduction member 36 in addition to the first high thermal conduction member 28. The above-described structure particularly improves the heat transfer efficiency in the separation area B in the arrangement direction and further reduce the temperature unevenness of the heater 22 in the arrangement direction. As illustrated in
In one embodiment different from the embodiments described above, the first high thermal conduction member 28 and the second high thermal conduction member 36 are made of a graphene sheet. The first high thermal conduction member 28 and the second high thermal conduction member 36 made of the graphene sheet have high thermal conductivity in a predetermined direction along the plane of the graphene, that is, not in the thickness direction but in the arrangement direction. Accordingly, the above-described structure can effectively reduce the temperature unevenness of the fixing belt 20 in the arrangement direction and the temperature unevenness of the heater 22 in the arrangement direction.
Graphene is a flaky powder. Graphene has a planar hexagonal lattice structure of carbon atoms, as illustrated in
Graphene sheets are artificially made by, for example, a chemical vapor deposition (CVD) method.
The graphene sheet is commercially available. The size and thickness of the graphene sheet or the number of layers of the graphite sheet described later are measured by, for example, a transmission electron microscope (TEM).
Graphite obtained by multilayering graphene has a large thermal conduction anisotropy. As illustrated in
The physical properties and dimensions of the graphite sheet may be appropriately changed according to the function required for the first high thermal conduction member 28 or the second high thermal conduction member 36. For example, the anisotropy of the thermal conduction can be increased by using high-purity graphite or single-crystal graphite or increasing the thickness of the graphite sheet. Using a thin graphite sheet can reduce the thermal capacity of the fixing device 9 so that the fixing device 9 can perform high speed printing. A width of the first high thermal conduction member 28 or a width of the second high thermal conduction member 36 in the direction intersecting the arrangement direction may be increased in response to a large width of the fixing nip N or a large width of the heater 22.
From the viewpoint of increasing mechanical strength, the number of layers of the graphite sheet is preferably 11 or more. The graphite sheet may partially include a single layer and a multilayer portion.
As long as the second high thermal conduction member 36 faces a part of each of neighboring resistive heat generators 31 and at least a part of the gap area between the neighboring resistive heat generators 31, the configuration of the second high thermal conduction member 36 is not limited to the configuration illustrated in
As illustrated in
In particular, the fixing device 9 according to the present embodiment has the gap 23c facing the entire area of the resistive heat generators 31 in the direction intersecting the arrangement direction that is the vertical direction in
In the above description, the second high thermal conduction member 36 is a member different from the first high thermal conduction member 28, but the present embodiment is not limited to this. For example, the first high thermal conduction member 28 may have a thicker portion than the other portion so that the thicker portion faces the separation area B.
The above-described embodiments are illustrative and do not limit the present disclosure. It is therefore to be understood that within the scope of the appended claims, numerous additional modifications and variations are possible to this disclosure otherwise than as specifically described herein.
The embodiments of the present disclosure are also applicable to fixing devices as illustrated in
First, the fixing device 9 illustrated in
Next, the fixing device 9 illustrated in
Finally, the fixing device 9 illustrated in
The above-described fixing devices in
A heating device according to the present disclosure is not limited to the fixing device described in the above embodiments. The heating device according to the present disclosure is also applicable to, for example, a heating device such as a dryer to dry ink applied to the sheet, a coating device (a laminator) that heats, under pressure, a film serving as a covering member onto the surface of the sheet such as paper, and a thermocompression device such as a heat sealer that seals a seal portion of a packaging material with heat and pressure. Applying the present disclosure to the above heating device can reduce the temperature unevenness of the rotator and the heating member in the arrangement direction.
The image forming apparatus according to the present embodiments of the present disclosure is applicable not only to a color image forming apparatus 100 illustrated in
For example, as illustrated in
The reading device 51 reads an image of a document Q. The reading device 51 generates image data from the read image. The sheet feeder 7 stores a plurality of sheets P and feeds the sheet P to a conveyance path. The timing roller pair 15 conveys the sheet P on the conveyance path to the image forming unit 50.
The image forming unit 50 forms a toner image on the sheet P. Specifically, the image forming unit 50 includes the photoconductor drum, a charging roller, an exposure device, a developing device, a supply device, a transfer roller, a cleaning device, and a discharger. The toner image is, for example, an image of the document Q. The fixing device 9 heats and presses the toner image to fix the toner image on the sheet P. Conveyance rollers convey the sheet P on which the toner image has been fixed to the sheet ejection device 10. The sheet ejection device 10 ejects the sheet P to the outside of the image forming apparatus 100.
Next, the fixing device 9 of the present embodiment is described. Description of configurations common to those of the fixing device of the above-described embodiment is omitted as appropriate.
As illustrated in
A fixing nip N is formed between the fixing belt 20 and the pressure roller 21. The nip width of the fixing nip N is 10 mm, and the linear velocity of the fixing device 9 is 240 mm/s.
The fixing belt 20 includes a polyimide base and a release layer and does not include an elastic layer. The release layer is made of a heat-resistant film material made of, for example, a fluororesin. The outer loop diameter of the fixing belt 20 is about 24 mm.
The pressure roller 21 includes a cored bar 21a, an elastic layer 21b, and a release layer 21c. The pressure roller 21 has an outer diameter of 24 to 30 mm, and the elastic layer 21b has a thickness of 3 to 4 mm.
The heater 22 includes a base, a thermal insulation layer, a conductor layer including a resistive heat generator and the like, and an insulating layer, and is formed to have a 1 mm as a whole. A width Y of the heater 22 in the direction intersecting the arrangement direction is 13 mm.
As illustrated in
As illustrated in
As illustrated in
The connector 60 is attached to the heater 22 and the heater holder 23 such that a front side of the heater 22 and the heater holder 23 and a back side of the heater 22 and the heater holder 23 are sandwiched by the connector 60. In this state, the contact terminals contact and press against the electrodes of the heater 22, respectively and the heat generation portions 35 are electrically connected to the power supply provided in the image forming apparatus via the connector 60. The above-described configuration enables the power supply to supply power to the heat generation portion 35. Note that at least part of each of the electrodes 34 is not coated by the insulation layer and therefore exposed to secure connection with the connector 60.
The flange 53 contacts the inner circumferential surface of the fixing belt 20 at each of both ends of the fixing belt 20 in the arrangement direction to hold the fixing belt 20. The flange 53 is fixed to a housing of the fixing device 9. The flanges 53 are inserted into both ends of the stay 24 (see a direction indicated by arrow from the flange 53 in
To attach to the heater 22 and the heater holder 23, the connector 60 is moved in the direction intersecting the arrangement direction (see a direction indicated by arrow from the connector 60 in
As illustrated in
As illustrated in
Flanges 53 are disposed at both ends of the fixing belt 20 in the arrangement direction and hold both ends of the fixing belt 20, respectively. The flange 53 is made of liquid crystal polymer (LCP).
As illustrated in
The above-described fixing device 9 including the first high thermal conduction member and the second high thermal conduction member facing the gap area between the neighboring resistive heat generators of the heater 22 also reduces the temperature unevenness of the heater 22 and the temperature unevenness of the fixing belt 20 in the arrangement direction. Therefore, the above-described structure prevents fixing unevenness and gloss unevenness in the image fixed on the sheet passing through the fixing device. Since the heater does not need to generate additional heat to secure sufficient fixing performance in the part of the heater facing the gap area between the resistive heat generators, energy consumption of the fixing device 9 can be saved.
The sheets P serving as recording media may be thick paper, postcards, envelopes, plain paper, thin paper, coated paper, art paper, tracing paper, overhead projector (OHP) transparencies, plastic film, prepreg, copper foil, and the like.
The above-described embodiments are illustrative and do not limit the present invention. Thus, numerous additional modifications and variations are possible in light of the above teachings. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2021-038166 | Mar 2021 | JP | national |
2021-148789 | Sep 2021 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20110062140 | Sakakibara | Mar 2011 | A1 |
20110129268 | Ishii et al. | Jun 2011 | A1 |
20110200368 | Yamaguchi et al. | Aug 2011 | A1 |
20110206427 | Iwaya et al. | Aug 2011 | A1 |
20110217095 | Ishii et al. | Sep 2011 | A1 |
20110229181 | Iwaya et al. | Sep 2011 | A1 |
20110229225 | Ishii et al. | Sep 2011 | A1 |
20120121306 | Shimura | May 2012 | A1 |
20120308280 | Tsuruya | Dec 2012 | A1 |
20130343791 | Shimura | Dec 2013 | A1 |
20140072353 | Kim | Mar 2014 | A1 |
20150093162 | Ishida | Apr 2015 | A1 |
20150139708 | Shimura | May 2015 | A1 |
20150331373 | Takagi | Nov 2015 | A1 |
20160085187 | Takagi | Mar 2016 | A1 |
20170363995 | Takagi | Dec 2017 | A1 |
20180253043 | Shimura | Sep 2018 | A1 |
20190179242 | Adachi et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
11-084919 | Mar 1999 | JP |
2014102429 | Jun 2014 | JP |
2019-105836 | Jun 2019 | JP |
2020-091391 | Jun 2020 | JP |
Number | Date | Country | |
---|---|---|---|
20220291615 A1 | Sep 2022 | US |