1. Field of Invention
The present invention generally relates to a heating device for a fluid line, in particular for a crankcase venting system in an internal combustion engine, with a heating element and with a holding device, through which the heating element can be mounted on the fluid line. The invention also relates to a fluid line for the accommodation of the said heating device and to a heating module with a fluid line and a heating device fitted to it. Finally, the invention also relates to a method for the manufacture of the heating device mentioned above.
2. Description of the Related Art
In modern internal combustion engines, vents are provided for the crankcase which houses the crank mechanism with the crankshaft, the connecting rods and the pistons as well as the cylinders. The crankcase is sealed on the cylinder side by one or more cylinder heads and underneath a sump pan is normally joined to the crankcase.
When the internal combustion engine is operated, the crankcase fills up to the cylinder head with oil vapours and gases which leak out of the combustion chamber in the cylinders past the piston rings. These oil vapours and gases are also known as blow-by gases. Due to the pumping motion of the pistons, the blow-by gases are subjected to pressure. Since the oil vapours and gases in the crankcase contain large quantities of ecologically harmful hydrocarbons, measures have to be taken to prevent the escape of the oil vapours and gases from the crankcase.
For this purpose it is known that crankcase vents can be provided which connect the internal space of the crankcase to the air intake lines of the internal combustion engine, so that the blow-by gases are sucked out of the crankcase, together with the fresh air and are burnt.
If the fresh air and the blow-by gases from the crankcase exhibit however substantially different temperatures, condensation and precipitation can take place in the mixing section, which blocks the crankcase vents.
In particular with car engines, high temperature differences arise in winter between the cold intake air on one hand and the blow-by gases from the crankcase which heat up quickly with the engine block. In some cases this can even lead to the icing up or blockage of the opening of the fluid line of the crankcase vent. With a blockage of the crankcase vent a high pressure builds up in the crankcase which can press the lubricating oil out of the seals on the crankshaft, sump pan or out of the opening for the oil dipstick. In addition, the pistons are subjected to increased work against the high pressure in the crankcase, leading to a reduction in the efficiency of the internal combustion engine.
The condensation of the gases and the precipitation of mixture constituents at low outside temperatures is avoided in the state of the art by heating devices in the lines to the crankcase vent. These types of heating devices are for example known from DE-A-2432782, U.S. Pat. No. 4,922,882, U.S. Pat. No. 5,970,962, U.S. Pat. No. 6,062,206, JP-AA-10231543, JP-M-10121937 and EP-A-1164264.
With the crankcase vent of DE-A-2432782 the opening of the venting line on the intake system can be heated electrically. For this, a heating device is used which consists of a metal tubular piece with an electrical heating conductor arranged coaxially on its jacket surface. For heating, a winding of resistance wire located on a coil bobbin is used. A disadvantage with the heating device of DE-A-2432782 is primarily the large space requirement which renders its use with modern engines almost impossible. In addition, the heating device in DE-A-2432782 is difficult to install and difficult to replace should damage occur.
U.S. Pat. No. 4,922,882 deals with a crankcase venting system which is heated via the cooling system of the internal combustion engine. For this, a ring pipe is provided surrounding the intake line and being located in the region of the feed line of the crankcase gases into the engine intake line. With very cold outside temperatures, the ring pipe is heated by the cooling system.
With the further developed heating devices of U.S. Pat. No. 5,970,962 and U.S. Pat. No. 6,062,206 a PTC (Positive Temperature Coefficient) heating element is used instead of the resistance wire. The heating element is connected for thermal conduction with a heatsink which surrounds the opening of the crankcase vent. The heatsink and the heating element are integrated into a plug which simultaneously forms the opening of the crankcase vent. Although the space requirement with the devices of U.S. Pat. No. 5,970,962 and U.S. Pat. No. 6,062,206 is less than with the heating device of DE-A-2432782, their complicated manufacture and their poor accessibility on the internal combustion engine are disadvantages during servicing.
In JP-AA-10231543, a heating device is shown with which a cylindrical, metal thermal radiator element is inserted into a through opening of a pipe. At the other end of the thermal radiator element a mounting seat is attached water-tight to a mounting seat on the pipe end. The cylindrical thermal radiator element protrudes into a flow and transfers heat from the heating device directly into the fluid in the pipe.
JP-AA-10121937 relates to a heater for blow-by gases using a PCV valve. The housing of the PCV valve is heated by a heater hose via a leaf-spring clip.
In EP-A-1164264 the PTC elements are stuck onto the fluid line for the crankcase venting by an electrically non-conducting silicone adhesive and sprayed with plastic after mounting. In this way a compact construction is achieved irrespective of the design of the fluid line. However, the heating device of EP-A-1164264 can be improved with respect to its service friendliness.
Considering the disadvantages of the state of the art of known heating devices, it is desirable to improve a heating device for fluid lines, in particular for crankcase vents of internal combustion engines, such that with a compact construction they are more convenient for servicing and are easier to install.
According to the present invention, a holding device exhibits a protrusion in which a heating element can be held and which is designed so that it can be inserted into a radially parallel running well of an outer wall of a fluid line.
This solution is constructively simple and facilitates the space-saving fitting of the heating device on the fluid line in that the heating element is simply inserted into the well of the outer wall. This solution also simplifies installation and maintenance, because the heating element only has to be inserted into the pocket or taken out of it complete with the holding device.
A secure mounting of the heating device on the fluid line, but one that can be repeatedly released for service purposes, is achieved in an exemplary embodiment of the present invention in which the holding device exhibits an elastic clamping section, which, at least partially, is designed for fitting or contracting on the outer wall of the fluid line. Furthermore, between the projection and the clamping section, a recess can be formed, in which, at least partially, the outer wall of the fluid line can be accommodated. This recess enables the heating device to be fitted to the fluid line in a space-saving manner.
In another embodiment, the well itself can be provided with a projection or a recess which provides latching with the holding device.
Any fluid-transporting element, such as a piece of pipe or a valve through which fluid flows, can be used as a fluid line.
The cross-section of the well in the direction perpendicular to the insertion direction of the projection can be designed in the form of a polygon, such as a rectangle. For a thermal transition through a large area, a flat side of the polygon can point in the direction of the inner space of the fluid line. The projection can exhibit a cross-section corresponding to the well. In addition, the well, the projection, or both can exhibit coding elements, which only allow the insertion of the projection into the well in the installation orientation.
In yet another embodiment, the projection can also be formed directly by at least one contact plate, whereby, on the projection, the heating element is held by the contact plate and is at the same time supplied with electrical power. In this respect, the contact plate is extended appropriately and extends from the holding device into the well.
In still another embodiment, the heating element can be premounted in the holding device so that the holding device is formed as a module unit. Such a premounted module unit can be substantially more easily handled during installation than separate components which are assembled only in the well. Also, the replacement of the heating device during inspections is simplified.
A compact design with a long service life can be achieved through the use of a PTC element. The PTC heating element can be arranged between two electrically conducting contact plates which are connected to the poles of a power source. The contact plates can continue in a single piece in connecting contacts to a plug connector, so that the complicated routing of intervening electrical leads can be omitted. An external power source, for example a car battery, can be connected via such a plug connector to supply the heating element.
The plug connector can be integrally formed by the holding device. Additionally or alternatively, the holding device can be manufactured as an injection molded part. Costly additional insulation of the electrical leads from the plug connector to the heating element can be omitted, if the holding device is produced of an electrically insulating material, for example plastic. In this way the leads can be routed directly in the holding device from the heating element to the plug connector without an insulating protective layer.
In yet another embodiment, in order to simplify the installation of the heating device on the fluid line and to avoid damage during the installation process, the holding device can exhibit at least one guiding element, through which the holding device is guided into the well in the insertion direction during insertion.
According to still another embodiment of the invention, the fluid line is adapted to the use of the heating device through constructive measures in line with one of the above arrangements. For this, the fluid line can be provided with a tubular line section, which is surrounded by an outer wall. To accommodate the projection of the holding device and the heating element of the heating device, a well is provided, which has at least one well wall adjacent to the inner space of the fluid line and in which a heating element and a holding device can be accommodated. The well can extend in the outer wall radially parallel or in the longitudinal direction of the fluid line. Complicated sealing of the well with respect to the inner space of the fluid line can be omitted if the well is separated from the inner space of the fluid line by the outer wall.
The well can be formed between an inner surface facing the inner space of the fluid line and an outer surface of the outer wall facing outwards. Due to the reduced wall thickness, improved thermal conduction is achieved from the well to the inner space of the fluid line.
The well walls can form a projection, which protrudes into the inner space of the fluid line and has fluid flowing around it in operation. In this way a thermal transfer into the fluid takes place on both sides of the heating element inserted into the well.
Additionally or alternatively, the projection can be extended to form a partition so that the inner space of the fluid line is subdivided into two separate flow regions which run to both sides of the well. Also with this arrangement, flow around the well walls is achieved.
To avoid weakening the outer wall of the fluid line by the well and at the same time to keep the size small, the inner surface of the outer wall facing the inner space of the fluid line can exhibit a flat section. In the region of the flat section, the thickness of the outer wall of a fluid line with otherwise circular flow cross-section is increased without the outer diameter of the fluid line being enlarged.
In yet another embodiment, the outer wall can exhibit at least one guide element by which the heating device is guided in an insertion direction during installation or during removal. The guide element prevents the heating device from slipping or shifting on the fluid line. At least one guide element can be provided on the heating device to interact with the at least one guide element on the fluid line on the device. A groove extending in the direction of the well is possible, for example, as the guide element.
In order to achieve a good heat transfer between the heating element and the outer wall of the fluid line, it is advantageous if a contact, as good and with a contact area as large as possible, is present between the heating element and the outer wall of the fluid line. This contact can, for example, be achieved by a spring element which presses the heating element against the outer wall. The spring element can be accommodated by the holding device and be supported on it in the installed state. If designed as a module unit the spring element can also be premounted.
Alternatively or additionally, to pressing the heating element using the spring element, the heating element can also be pressed against the outer wall by a plastic deformation of the fluid line and the well. Weakened regions in the outer wall in which the mechanical strength is reduced compared to the surrounding vicinity can achieve a controlled and locally limited plastic deformation. Such a weakened region leads to a concentration of the deformation in its vicinity.
The effect of the plastic deformation can in particular be limited on the well if the weakened region is arranged in the region of the well, in particular overlapping radially with the well.
Additionally or alternatively, the guide elements are used in a double function simultaneously as weakened regions.
In one embodiment, in order to distribute the thermal energy radiated from the heating element over the complete flow cross-section of the fluid line, the fluid line can be made from a thermally conducting metallic material, for example from aluminum or copper pipes or from pipes consisting of aluminum alloys or copper alloys.
In another embodiment, a thermally conducting body can be provided which is designed for insertion into the fluid line and is in contact with the well. The heat conducting body can be made from a thermally conducting metallic material and can surround the inner space of the fluid line, whereby the contact surface of the thermally conducting body with the fluid is as large as possible. In particular, the thermally conducting body can exhibit passages through which the fluid is guided and the contact area is increased.
Additionally or alternatively, the thermally conducting body is designed for mounting in the fluid line. Its outer contours can be matched to the inner contours of the fluid line.
According to one embodiment of the invention, the heating device and the adapted fluid line can be provided as a kit for retrofitting internal combustion engines.
According to yet another embodiment, in the assembled state the heating device and the fluid line form a heating module which can be built into a crankcase venting system.
In the following the invention is explained by way of examples and based on embodiments with reference to the drawings. The same reference symbols are used for the same or similar components. The elements which are different for the individual embodiments can be combined together as required.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details. In other instances, well known structures associated with heating devices or fluid lines have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments of the invention.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Firstly, the construction of a first embodiment of a heating module according to one embodiment of the invention is explained for a crankcase venting system of an internal combustion engine based on the exploded representation of
In the embodiment according to
The holding device 4 exhibits a nose-shaped projection 9, in which (not seen in
In the embodiment of
Moreover, the holding device 4 exhibits a plug connector section 13, which can be connected to a plug connector (not illustrated in
As can be seen in
The fluid line 5 is of a tubular shape and has an outer wall 14 surrounding an inner space or interior 15 in which the gases, for example from a crankcase, flow. A mounting section 16, via which the fluid line piece 5 can be connected to an internal combustion engine, is arranged on each of the two ends of the fluid line piece 5 in the longitudinal direction.
An inner surface of the outer wall 14 facing the inner space 15 forms a flat surface 18 in one region so that a region of greater wall thickness arises between the surface 18 and the outer surface 19 of the outer wall 14.
A well 20, which is dimensioned such that it accommodates the projection 9 of the holding device 4 with the inserted heating element 3, extends in the outer wall 14 between the flat surface 18 and the round, cylindrical outer surface 19. In the embodiment of
In the direction transverse to the mounting direction M, the well 20 exhibits a polygonal cross-section, whereby a flat side of the polygon is turned towards the inner space 15. The plate-shaped heating element 3 abuts this flat side. The projection 9 exhibits a cross-section corresponding to the cross-section of the well 20, for example a rectangular cross-section as in the embodiments of
As can be seen in
In the radial direction overlapping with the well 20, at least one weakened region 21 is provided in the outer surface 19 of the outer wall 14. As can be seen in
The two weakened regions 21 are arranged such that they interact with the guide elements 12 of the holding device 4 and guide the holding device 4 on insertion of the projection 9 into the well 20. Thus, the weakened regions 21 of the embodiment of
In one embodiment, the fluid line 5 is produced from a thermally conducting material, such as for example aluminum, copper, an aluminum alloy or a copper alloy.
In the following the arrangement of the heating device 2 and the fluid line 5 in the assembled heating module 1 is explained based on
In order to assemble the heating module, first the heating element 3 is inserted into a recess on the projection 9 so that the heating element 3 and the holding device 4 form a module unit, which is pushed into the well 20 (shown in
The mounting direction M, in which the heating device 2 is inserted into the fluid line 5, runs in the direction of the well 20 (shown in
In the assembled heating module 1, the clamping section 10 abuts the outer surface 19 of the fluid line piece 5 with its surface facing the projection 9, as can be seen in
In
This can be better seen based on the sectional view of
Furthermore, it can be seen in
In the sectional illustration of
Since the well terminates in the outer wall 14 and is separated from the inner space 15 of the fluid line 5 by the outer wall 14, measures for sealing the plug connector section 13 with respect to the inner space 15 are omitted.
Due to the integral single-piece formation, the holding device 4 forms a housing both for the heating element 3 and for the plug connector section 13.
Although, in the embodiment explained above, the plug connector section 13 extends perpendicular to the mounting direction M, in another embodiment, a plug connector section 13 can also be provided which extends in the mounting direction M. However, in this case the tensile force for removing the plug connector acts in the mounting direction M, which can lead to the loosening or even release of the heating device 2.
In yet another embodiment, a spring element (not illustrated) can be provided, through which the heating element 3 in the well 20 is pressed against the outer wall 14 in the direction of the inner space 15, instead of or in addition to the plastic deformation of the outer wall 14 in the region of the well 20. Such a spring can, for example, be positioned between the heating element 3 and the projection 9. In order to save additional components, the spring element can be formed by the contact plate 6b arranged between the PTC heating element 7 and the projection 9.
In still another embodiment, the contact sheet 6a abutting the fluid line 5 can be omitted if the fluid line 5 acts as a contact for the PTC heating element.
The fluid line 5 can exhibit any flow cross-section and any outer cross-sectional shape.
In
In contrast to the embodiment of
The mounting of the heating device 2 on the fluid line 5 can take place in a way similar to the embodiment of
Otherwise, the construction of the heating module of
In
In contrast to the previous embodiments, the fluid line 5 in the embodiment of
Furthermore, as shown in
As can be seen, particularly from
As shown in
The fluid line 5 is also provided with a collar 39, which, as shown in
In
Furthermore, it can be seen in
The inlet surface 47 running diagonally with respect to the longitudinal direction L simplifies the insertion of the fluid line 5 into the line 41.
In the two embodiments of
Due to the well-shaped formation, the internal region of the well 20 is not connected for fluid flow to the flow cross-section of the fluid line 5 so that complicated sealing of the heating device 2 with respect to the flow cross-section of the fluid line 5 can be omitted.
One difference of the embodiment of
As shown in
A section 4b of at least one contact plate 6a, 6b is formed as a spring element which is elastically deformed as the projection 9 is pushed into the well 20, thus pressing the contact plates 6a, 6b against the walls of the well 20 (shown in
The projection 9 can either be formed by both contact platelets 6a, 6b, which are guided to the holding device 4 electrically isolated from one another, or by just one contact platelet 6a. In the latter case, an electrical connection between the plug connector section 13 and the contact platelet, which is not part of the projection 9, can be formed via the well wall.
Furthermore, in the embodiment of
With the embodiment of
The installation body 9′ is produced from non-conducting material. The contact plates 6a, 6b together with the contact elements 8a, 8b are fitted captively to the installation body 9′ and continue through openings in the installation body 9′ to the plug connector section 13.
In
The valve 50 is designed in the form of an essentially tubular fluid line element which exhibits in its central region an inner space 15, which has fluid flowing through it, and the diaphragm has been omitted for clarity. In the embodiment of
The holding device 4 is accommodated in a receptacle 52 so that the holding device 4 is essentially formed as a plug element. The latching grooves here latch in corresponding recesses 53 of the receptacle 52 and secure the heating device 2 against unintentional removal. Through the introduction of the projection 9 into the well 20, the projections 12 are automatically centered. Projections 9 and 12 are shown in
Of course, the design of the holding device 4 can also be used according to one of the previous embodiments.
In
In
As is also clear from
All the embodiments shown are intended particularly for crankcase venting systems in which the blow-by gases from the crankcase are for example passed to an air intake line on the internal combustion engine. The illustrated and described embodiments can however basically be used anywhere where flowing fluids are to be heated. Such fluids may be gases or liquids.
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
02014325 | Jun 2002 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/06814 | 6/27/2003 | WO | 00 | 10/13/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/003420 | 1/8/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2355693 | Aldrich | Aug 1944 | A |
3176115 | Balis | Mar 1965 | A |
4255646 | Dragoy et al. | Mar 1981 | A |
4312121 | Tweed | Jan 1982 | A |
4371777 | Roller et al. | Feb 1983 | A |
4512324 | Neary | Apr 1985 | A |
4922882 | Töpfer | May 1990 | A |
5970962 | Nelson et al. | Oct 1999 | A |
6062206 | Nelson et al. | May 2000 | A |
6442341 | Wu | Aug 2002 | B1 |
6493508 | Roesgen | Dec 2002 | B1 |
6804459 | Raghavan et al. | Oct 2004 | B2 |
20030039474 | Eller et al. | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
24 32 782 | Jan 1976 | DE |
1 164 264 | Dec 2001 | EP |
10-121937 | May 1998 | JP |
10-231543 | Sep 1998 | JP |
2001-220776 | Aug 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20060144376 A1 | Jul 2006 | US |