This patent application claims priority from Italian patent application no. 102021000001871 filed on Jan. 29, 2021, the entire disclosure of which is incorporated herein by reference.
The invention relates to a heating device an exhaust system of an internal combustion engine.
An exhaust system of an internal combustion engine comprises an exhaust duct, along which there is installed at least one device for the treatment of the exhaust gases coming from the internal combustion engine; in particular, there always is a catalytic converter (either an oxidation catalytic converter or a reduction catalytic converter), to which a particulate filter can be added. The catalytic converter, in order to work (namely, in order to carry out a catalytic conversion), needs to operate at a relatively high operating temperature (a modern catalytic converter works at temperatures even close to 800° C.), since the chemical reactions for the conversion of unburnt hydrocarbons, nitrogen oxides and carbon monoxide into carbon dioxide, water and nitrogen take place only once the work temperature has been reached.
During a cold start phase (i.e. when the internal combustion engine is turned on after having been turned off for a long time, thus causing the temperature of the different components of the internal combustion engine to reach ambient temperature), the temperature of the catalytic converter remains, for a relatively long amount of time (even some minutes in winter and during a city travel, along which the internal combustion engine idles or runs very slow), significantly below the operating temperature. As a consequence, during the cold start phase, namely for the amount of time in which the catalytic converter has not reached its operating temperature yet, polluting emissions are very high, since the purification effect of the catalytic converter is close to zero or, anyway, is scarcely effective.
In order to speed up the reaching of the operating temperature of the catalytic converter, patent documents EP0631039A1, WO2012139801A1, U.S. Pat. No. 8,006,487B2, EP0590699A1, JP2005180371A1 and EP1939419A suggest installing, along the exhaust duct, a heating device, which, by burning fuel, generates a (very) hot air flow, which flows through the catalytic converter. In particular, the heating device comprises a combustion chamber, which is connected, at the outlet, to the exhaust duct (immediately upstream of the catalytic converter) and is connected, at the inlet, to a fan, which generates an air flow flowing through the combustion chamber; in the combustion chamber there also are a fuel injector, which injects fuel to be mixed with air, and a spark plug, which cyclically produces sparks to ignite the air-fuel mixture in order to obtain the combustion that heats the air.
In known heating devices, the combustion of fuel is not always complete in all operating conditions and, therefore, it can happen (especially when a large quantity of fuel is injected in order to develop a large quantity of heat) that unburnt fuel reaches the exhaust duct and burns inside the exhaust duct, thus locally determining sudden, unexpected and undesired temperature rises.
The object of the invention is to provide a heating device for an exhaust system of an internal combustion engine, said heating device permitting a complete fuel combustion (namely without introducing unburnt fuel into the exhaust duct) and, furthermore, being simple and economic to be manufactured.
According to the invention, there is provided a heating device for an exhaust system of an internal combustion engine according to the appended claims.
The appended claims describe preferred embodiments of the invention and form an integral part of the description.
The invention will now be described with reference to the accompanying drawings, which show some non-limiting embodiments thereof, wherein:
In
The exhaust system 1 comprises an exhaust duct 3, which originates from an exhaust manifold of the internal combustion engine 2 and ends with a silencer 4, from which exhaust gases are released into the atmosphere. Along the exhaust duct 3 there is installed at least one device 5 for the treatment of the exhaust gases coming from the internal combustion engine; in particular, there always is a catalytic converter (either an oxidation catalytic converter or a reduction catalytic converter), to which a particulate filter can be added. The catalytic converter, in order to work (namely, in order to carry out a catalytic conversion), needs to operate at a relatively high operating temperature (a modern catalytic converter works at temperatures even close to 800° C.), since the chemical reactions for the conversion of unburnt hydrocarbons, nitrogen oxides and carbon monoxide into carbon dioxide, water and nitrogen take place only once the work temperature has been reached.
In order to speed up the heating of the treatment device 5, namely in order to allow the treatment device 5 to reach its operating temperature more quickly, the exhaust system comprises a heating device 6, which, by burning fuel, generates a (very) hot air flow, which flows through the treatment device 5.
The heating device 6 comprises a combustion chamber 7, which is connected, at the outlet, to the exhaust duct 3 (immediately upstream of the treatment device 5) and is connected, at the inlet, to a fan 8 (namely, to an air pump), which generates an air flow flowing through the combustion chamber 7; in the combustion chamber 7 there also are a fuel injector 9, which injects fuel to be mixed with air, and a spark plug 10, which cyclically produces sparks to ignite the air-fuel mixture in order to obtain the combustion that heats the air. The combustion chamber 7 of the heating device 6 ends with an outlet duct 11, which leads into the exhaust duct 3 (immediately upstream of the treatment device 5).
According to
Similarly, the base wall 15 is perforated at the centre so as to be fitted onto the outlet duct 11, which ends in the exhaust duct 3; namely, the base wall 15 has an outlet opening 17 to let hot air out of the combustion chamber 7 from which the outlet duct 11 originates.
According to
According to a possible, though non-binding embodiment shown in
According to
The spark plug 10 is mounted through the side wall 16 of the tubular body 12 in order to trigger the combustion of an air and fuel mixture, which is obtained because of the mixing of air, which flows into the tubular body 12 from the inlet opening 18 and is introduced into the combustion chamber 7 by the nozzle 22 of the feeding channel 21, and fuel, which is injected into the combustion chamber 7 by the fuel injector 9. In particular, the side wall 16 of the tubular body 12 has a through hole, which is oriented radially (namely, perpendicularly to the longitudinal axis 13) and accommodates, on the inside (screwed into it), the spark plug 10 (which is obviously oriented radially).
The heating device 6 comprises a static mixer 23 (namely, without moving parts), which has the shape of an annulus, is arranged along the feeding channel 21 and around the fuel injector 9 and is configured to generate turbulences, in particular a swirling motion, in the air flowing towards the nozzle 22.
According to a preferred, though non-binding embodiment shown in the accompanying figures, downstream of the static mixer 23, the feeding channel 21 has a progressive reduction of the area of the cross section, so as to determine an increase in the air speed. In particular, downstream of the static mixer 23, the feeding channel 21 has an initial portion having a constant cross section area, an intermediate portion having a progressively decreasing cross section area and an end portion having a cross section area that is constant up to the nozzle 22.
The feeding channel 21 is delimited, on the outside, by an (at least partially conical) outer tubular body 24 and is delimited, on the inside, by an (at least partially conical) inner tubular body 25, which surrounds the fuel injector 9 and contains, on the inside, the fuel injector 9 (namely, serves as container for the end part of the fuel injector 9). Namely, the feeding channel 21 is defined between the inner tubular body 25 and the outer tubular body 24. In particular, the two tubular bodies 24 and 25 alternate conical portions (i.e. having a converging shape that progressively decreases its size) with cylindrical portions (i.e. having a shape with a constant size); preferably, the end part of the inner tubular body 25 has a converging taper (namely, which progressively reduces its size towards the nozzle 22), whereas the end part of the outer tubular body 24 has a cylindrical shape.
According to a preferred embodiment, air flows into the feeding channel 21 with a tangentially oriented flow so as to have a swirling motion (subsequently increased by the action of the static mixer 23), which helps it get mixed with the fuel injected by the fuel injector 9; in other words, the introduction of oxidizing air into the combustion chamber 7 through a duct oriented tangentially to the combustion chamber 7 allows the oxidizing air flow to gain a circular motion (further enhanced by the presence of the static mixer 23) so as to optimize the mixing of air and fuel inside the combustion chamber 7.
According to
According to a preferred embodiment, the fuel injector 9 is configured to emit a fuel jet 27 having a centrally hollow conical shape, namely having a cross section shaped like an annulus, in which fuel gathers in the periphery; in particular, according to the embodiment shown in
It should be pointed out that when we say that the fuel jet 27 generated by the fuel injector 9 has the shape of a conical shell (namely, has an internally hollow conical shape) we mean that the large majority of the fuel flowing out of the fuel injector 9 spreads in the space within a conical shell, but a very small (residual) part of the fuel can spread differently. Furthermore, depending on the how the fuel outlet opening is made, the fuel jet 27 flowing out of the fuel injector 9 can have a more symmetrical distribution around the longitudinal axis 13 (as shown in
According to a preferred embodiment, the fuel injector 9 is of the “swirl” type, namely imparts a rotary swirling motion to the injected fuel (namely, a swirling motion in which fuel rotates around the longitudinal axis 13 of the tubular body 12).
As mentioned above, the feeding channel 21 is delimited, on the outside, by the outer tubular body 24 (having the inner surface 26 of the feeding channel 21) and is delimited, on the inside, by the inner tubular body 25, which surrounds the fuel injector 9 and contains, on the inside, the fuel injector 9.
According to
In the embodiment shown in the accompanying figures, the fuel injector 9 is configured to spray at least part of the fuel against the cylindrical portion 29 (or against the further conical portion) of the outer tubular body 24; in particular, the fuel injector 9 is configured to spray the largest part (almost the entirety) of the fuel against the cylindrical portion 29 (or against the further conical portion) of the outer tubular body 24. According to a different embodiment, the fuel injector 9 is configured to spray at least part of the fuel against the cylindrical portion 29 (or against the further conical portion) of the outer tubular body 24 and at least part of the fuel against the conical portion 28 of the outer tubular body 24; for example, the fuel injector 9 is configured to spray approximately half the fuel against the conical portion 28 of the outer tubular body 24 and approximately half the fuel against the cylindrical portion 29 (or against the further conical portion) of the outer tubular body 24. According to a further embodiment, the fuel injector 9 is configured to spray at least part of the fuel against the conical portion 28 of the outer tubular body 24; in particular, the fuel injector 9 is configured to spray the largest part (almost the entirety) of the fuel against the conical portion 28 of the outer tubular body 24.
According to
According to
According to
According to
According to
In the embodiments shown in
According to a preferred embodiment, the heating device 6 comprises a control unit 36 (schematically shown in
According to a possible embodiment shown in
The embodiments described herein can be combined with one another, without for this reason going beyond the scope of protection of the invention.
The heating device 6 described above has numerous advantages.
First of all, the heating device 6 described above ensures, in all operating conditions (especially when a large quantity of fuel is injected in order to develop a large quantity of heat), a complete fuel combustion (namely, without introducing unburnt fuel into the exhaust duct 3) thanks to an ideal mixing between the oxidizing air introduced by the nozzle 22 of the feeding channel 21 and the fuel injected by the fuel injector 9.
Furthermore, the heating device 6 described above has a high thermal power in relation to its overall dimensions; namely, even though it is relatively small, the heating device 6 described above generates a high thermal power.
Finally, the heating device 6 described above is simple and economic to be manufactured, since it consists of a few parts with a non-complicated shape and easy to be joined with standard welds and joints.
Number | Date | Country | Kind |
---|---|---|---|
102021000001871 | Jan 2021 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
3070150 | Hunter | Dec 1962 | A |
5284016 | Stark | Feb 1994 | A |
5320523 | Stark | Jun 1994 | A |
5353590 | Pettit | Oct 1994 | A |
5571484 | Pettit | Nov 1996 | A |
7980069 | Arellano | Jul 2011 | B2 |
8006487 | Gaiser | Aug 2011 | B2 |
8656708 | Morley | Feb 2014 | B2 |
8959902 | Olivier | Feb 2015 | B2 |
8991157 | Mastbergen | Mar 2015 | B2 |
9027331 | Olivier | May 2015 | B2 |
9027332 | Olivier | May 2015 | B2 |
11506136 | Harris | Nov 2022 | B1 |
20100319329 | Khadiya | Dec 2010 | A1 |
20110289906 | Morley et al. | Dec 2011 | A1 |
20120192551 | Morley | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
0590699 | Apr 1994 | EP |
0631039 | Dec 1994 | EP |
1939419 | Jul 2008 | EP |
2387656 | Nov 2011 | EP |
H07259535 | Mar 1994 | JP |
2005180371 | Jul 2005 | JP |
2012139801 | Oct 2012 | WO |
Entry |
---|
Search Report for Italian Patent Application No. 202100001871 dated Sep. 20, 2021. |
Number | Date | Country | |
---|---|---|---|
20220243633 A1 | Aug 2022 | US |