Heating device for complexly formed surfaces

Information

  • Patent Grant
  • 9468045
  • Patent Number
    9,468,045
  • Date Filed
    Wednesday, March 28, 2012
    12 years ago
  • Date Issued
    Tuesday, October 11, 2016
    7 years ago
Abstract
The present invention relates to an electrical temperature control for controlling the temperature of surfaces. It is envisaged that the temperature control has at least one heat distribution device which covers at least parts of the surface to be temperature controlled.
Description
CLAIM OF PRIORITY

The present application claims the benefit of the priority of the tiling dates of German Applications DE 10 2011 016 254.2, filed on Apr. 6, 2011; DE 10 2011 102 719.3, filed on May 20, 2011; DE 10 2011 121 147.4, filed on Dec. 15, 2011; DE 10 2011 122 134.8, filed on Dec. 23, 2011; and DE 10 2012 000 977.1, filed on Jan. 20, 2012, the contents of which are hereby incorporated by reference in their entirety.


BACKGROUND

Temperature controls, in particular electrical heating elements and heating conductors, are frequently subjected to high mechanical loads. At the same time, it must be possible to install them quickly and easily.


For that reason, technical solutions are required that can meet either one or several of these requirements appropriately.


SUBJECT

In view of this background, a technical concept with the features of: an electrical temperature control for controlling temperature of surfaces, wherein the electric temperature control has at least one heat distribution device which covers at least parts of a surface to be temperature controlled is proposed. Further advantageous embodiments can be found in the further Claims and the subsequent description. The present teachings further include a method for producing a temperature control comprising the following steps: a) providing a flat carrier and/or a heat distribution device; b) at least partially arranging an adhesive substance on the flat carrier and/or the heat distribution device; c) arranging at least one heater resistor element on the flat carrier and/or the heat distribution device; d) covering the flat carrier and/or the heater resistor element with a further carrier and/or a heat distribution device; e) punching an outer contour of the temperature control.


The invention simplifies particularly the installation of temperature control devices on devices with more complex surfaces.


The invention is suited particularly for use with any curved or contoured surfaces, in particular automobile seats, steering wheels, seat cushions, trim finishes in passenger compartments, armchairs or office equipment, for example, battery heating, aircraft wings, tanks, lines for liquids, gas, and other fluids (e.g. foods, chemicals).


FIGURES

The details of the invention are explained below. These explanations are intended to make it easier to understand the invention. They should only be regarded as examples, however, within the scope of the invention defined by the independent claims, it is obviously also possible to omit, change, or supplement individual or several of the features described. The features of different embodiments can obviously also be combined among one another. What is important is that the concept of the invention is essentially implemented. If one feature must be accomplished at least partially, then this includes moreover that this feature is accomplished completely or is essentially accomplished completely. In this context, “essentially” means in particular that the implementation permits that the desirable benefit is accomplished to an identifiable extent. This can particularly signify that a respective feature is accomplished to the extent of at least 50%, 90%, 95%, or 99%. Where a minimum amount is stated, then obviously also more than this minimum amount can be used. If the quantity of a component is stated to be at least one, then this includes particularly also embodiments with two, three or any other plurality of components. Anything that is described for an object can also be used for the major part or the entirety of all other similar objects. Unless stated otherwise, all intervals also include their end points.





In the following, the Figures show:



FIG. 1 Is a partial cross-section of an automobile



FIG. 2 Is a horizontal projection onto an electrical flat temperature control with a heater resistor element and a heat distribution device



FIG. 3 Is a cross-section through a steering gear with a temperature control according to FIG. 2.





DETAILED DESCRIPTION


FIG. 1 shows a vehicle 100. This can involve, for example an aircraft, a railroad car, a ship, or like in this instance, an automobile.


The vehicle 100 has at least one item 110 to be temperature controlled. This particularly involves any components that can be contacted by a user in the passenger compartment, such as a steering gear for vehicles, a steering wheel, an instrument panel, an armrest, door trim, a seat cushion, a thermal blanket, the inside roof lining, padding, a cover, or a seat.


But this can also involve a battery, a fluid line, a mirror, a tank, a reservoir, or similar things.


The item to be temperature controlled 110 will preferably have at least one temperature control 10. A temperature control is defined as any unit that can be specifically used to change the temperature in its environment, e.g. any devices with at least one electrical heater resistor, a heat pump, a Peltier element and/or air moving means, such as a blower.



FIG. 2 shows an embodiment of a temperature control 10. Here, it is designed as a flat, flexible heating element. The temperature control 10 can be integrated as an insert in the padding of an interior trim item, such as a seat or a steering wheel.


The temperature control 10 and/or the item to be temperature controlled 110 has at least one carrier 102. This should preferably be flat and be at least partially made of textile, fabric, knitted fabric, woven material, nonwoven fabric, flexible thermoplastics, air-permeable material and/or punched or napped sheeting. A textile is a flat entity made of filaments or fibers.


Preferably, at least one carrier 102 has a tape-like core section 103. A plurality of blade sections 104 is arranged on the core section 103. These are preferably formed as one piece with the core section. They can also be added subsequently, however. The blade sections 104 are preferably arranged in the same plane as the core section 103, but they can also be arranged in a plane that runs parallel thereto, however. A stabilizing center ridge facilitates easy operation of the temperature control 10. This moreover permits a heater resistor element 114 to be supported, even if same is curved.


The blade sections 104 can all be arranged on the same side of the core section 103. This permits easier assembly, since all blade sections 104 can be removed in the same direction. The core section 103 is preferably provided with blade sections 104 on both of its longitudinal edges, however. Preferably, several blade sections 104 are provided in at least one section A, B, C of the carrier 102 in an alternating configuration. This particularly means an asymmetric configuration with respect to the longitudinal axis of the core section 103. A configuration of the tips of the blade sections 104 and/or the attachment points of the blade sections 104 which is alternately offset is particularly suitable, for example.


The core section 103 has at least one section D, E, in which at least one part of the blade sections 104 is configured opposite.


An opposite configuration means in particular that the blade sections 104 are arranged symmetrical at least in sections on the core section 103 of the carrier 102. Particularly suitable is a reciprocal symmetrical configuration of attachment points or tips 104 of blade sections, for example. This permits adequate cover in a steering wheel web area, for example.


Preferably, at least one blade section 104 has a cutout 105. This is preferably located in a central area of the blade section 104. This permits the blade section 104 to be bent around a bend axis even if a core section 103 is bent around a further bend axis, without creasing.


Preferably the carrier 102 consists at least partially of a material which has pores, mesh openings, perforations, or similar things. This accomplishes low weight, good thermal transmittance, and at the same time high tensile strength of the carrier 102. Perforated sheeting or reticulated textile fabrics are particularly suitable.


The carrier 102 is made preferably, at least in sections, of an electrically insulating material. This permits the use of non-insulated heater resistor elements and economical materials.


The temperature control 10 in particular has at least one heater resistor element 114 that is arranged at, on and/or in the carrier 102. Preferably, a multicore heater resistor element 114 is provided in the form of a heating section where the cores are preferably arranged reciprocally twisted and electrically parallel. At least one heater resistor element 114 is attached on carrier 102 partially or across the entire surface with an adhesive, for example. The heater resistor element 114 has an electrical resistance of between 100 Ω/m and 1000 Ω/m, better 100 and 800 Ω/m, better 300 and 500 Ω/m. The heater resistor element is preferably formed at least pro rata from a material with PTC characteristics. This will preferably involve stranded wire. If the heater resistor element forms a conductor loop or phase winding with an outgoing lead and a return wire which are short-circuited on their one end, then the heater resistor element will require a contact only on a single position of the steering wheel.


The heater resistor element 114 is preferably arranged at least in sections along the central axis of the carrier 102. This aims at using as little material as possible and to have minimum mechanical deformation.


The heater resistor element 114 is preferably arranged meandering. Preferably it also extends at least in sections into the blade sections 104. Preferably it is arranged so that the distance to the edge of the carrier 102 is constant. It therefore follows the outside contour of the carrier 102 at least in sections. This is useful with an alternating configuration of the blade sections 104, for example. Here, it is possible that the meandering course of the heater resistor element 114 is harmonically congruent with the alternating configuration of the blade sections 104. The heater resistor element 114 can also be arranged at least in sections such that it does not follow the outside contour of the carrier 102. This can be useful with an alternating configuration of the blade sections 104, for example, so that all blade sections 104 are covered with one heating section.


It can be provided that at least two heater resistor elements 114 are arranged on the carrier 102. This will achieve increased reliability, the supply of respectively one of the two edge sections of the temperature control element with one inherent heater resistor element 114 and a varying temperature control in different zones by means of individual adjustment of the heating capacity in a specific zone.


It can be provided that at least two heater resistor elements 114 are arranged reciprocally parallel along the core section 103 of the carrier 102.


The temperature control 10 preferably has at least one flat heat distribution device 6. For this purpose, particularly layers with metallic constituents, such as aluminum, foils or sheets are suitable. Preferably, one heat distribution device 6, 6′ each is arranged on the upper and the underside of the heater resistor element 114, such as in the form of a heat conducting layer, such as from aluminum foil, in the thickness between 0.01 and 0.5 mm, for example, preferably from 0.1 to 0.2 mm. The distribution devices 6 protrude beyond the heater resistor element 114 and are attached to each other in projecting areas with an adhesive or an adhesive tape, for example. This results in an especially good heat transfer from the heater resistor element to the heat distribution devices 6.


Preferably at least one heat distribution device 6 has a tape-like core section 103′. A plurality of blade sections 104′ is arranged on the core section 103′. These are preferably formed as one piece with the core section 103′. They can also be adjoined subsequently, however. The blade sections 104′ are preferably arranged in the same plane as the core section 103′, but they can also be arranged in a plane that runs parallel thereto, however. This permits easy operation of the heating element by means of a stabilizing center ridge.


The blade sections 104′ can all be arranged on the same side of the core section 103′. The core section 103′ is preferably provided with blade sections 104′ on both of its longitudinal edges, however. This permits improved heat distribution because of the smaller distance between the heater resistor element 114 and a tip of a blade section 104′.


In other respects, the previous comments made with respect to the carrier are applicable analogously for the structure of the heat distribution device 6, 6′.


The heat distribution device 6 is preferably made at least partially of a material which has good thermal conductance. Perforated sheeting or reticulated textile fabrics are particularly suitable:


Preferably at least one heat distribution device 6 is connected to ground, in order to shield against electromagnetic fields and provide users additional protection in the event of electrical circuit faults.


Preferably at least one heat distribution device 6 is arranged identical with the carrier 102 or congruent with it. All heat distribution devices 6 are preferably arranged reciprocally congruent. Advantageously, at least one textile carrier and at least one metallic heat distribution device with at least one embedded heating conductor in between form a sandwich, wherein the textile carrier is arranged closer to the surface to be temperature controlled than the heat distribution device, in order to achieve a cushioning effect. But it can also be provided, that the textile carrier points to the steering wheel core and the heat distribution device points to the surface of the steering wheel, to accomplish improved heat transfer to the steering wheel surface. To ensure high haptic comfort it is also possible to arrange a heat distribution device between two textile layers or two carriers 102.


It can be provided that one heat distribution device 6′ has at least one blade section 104′ where its distance from the central axis of the blade section 104′ is shorter than that of at least one second heat distribution device 6 which is arranged congruent with respect to its longitudinal axis. This permits material savings while at the same time having sufficient thermal exchange with areas at a distance from the heater resistor elements 114.


For logical reasons, the temperature control 10 has a temperature sensor which interrupts the current supply to at least part of the heater resistor elements 114 when the temperature exceeds 60° C., for example. The temperature sensor can be a thermostat, for example. In addition or as an alternative to the heater resistor element 114, one or several Peltier elements can be provided which assist in cooling the heat distribution device 6.


The temperature control 10 preferably has at least one heat distribution device 6, which encloses at least sections of heater resistor element 114 and at least in sections and does so at least partially. When looking at a cross-section, preferably at least 50% of the circumference of the heater resistor element 114 of the heat distribution device 6 is enclosed, preferably particularly 70%, preferably 90%.


A heater resistor element 114 is arranged preferably between at least two heat distribution devices 6, 6′. Because of the large contact area, this results in a high heat transfer between the heater resistor element 114 and the heat distribution devices 6, 6′. Preferably at least one insulation is arranged between the heater resistor element 114 and at least one heat distribution device 6. This can be provided as an insulation coating on the heater resistor element 114, for example. Also at least one heat distribution device 6, 6′ can be coated with an insulation layer. Preferably, at least two heat distribution devices 6, 6′ are connected to each other with at least one bonding material that is arranged in between them. Double-sided adhesive tapes or spray adhesives are particularly suitable.


It can also be provided that at least two heat distribution devices 6, 6′ are connected to each other non-positively and/or positively, at least in sections. This can have been done by means of embossing of knops and cutouts or by reciprocal compression. In such areas it can be advantageous if no adhesive is used, especially when high temperatures are present there.


The temperature control 10 is preferably produced using the following steps:

    • a) Provision of a flat carrier 102 and/or a heat distribution device 6.
    • b) At least the partial arrangement of an adhesive substance on the carrier 102/ of the heat distribution device 6.
    • c) Arranging at least one heater resistor element 114 on the carrier 102.
    • d) Covering the heater resistor element 114 with a further carrier 102 and/or a heat distribution device 6.
    • e) Punching of the outer contour of the temperature control 10.


But it is also possible to interchange the production steps and to install the heater resistor elements 114 on the carrier 102, for example, the outer contour of which has already been trimmed.


The temperature control 10 can now be arranged so that the surface to be heated is brought up to temperature as uniformly as possible. For this purpose it can be advantageous that the surface be contoured such that a heater resistor element 114, a heat distribution device, a flat carrier or other components with a greater thickness can be flush-mounted into corresponding recesses 107 to achieve a uniform surface contour of a cover 50, for example. Preferably the depth and width of such recesses 107 are sized a little bit larger than the respective thickness and width dimensions of the components to be flush-mounted.


During heating or cooling, it is not necessary for the entire surface to be temperature controlled and to be covered with a heater resistor element 114 or cooling element. It is rather feasible to do the respective heating/cooling at suitable positions and to apply the heat fed into or taken out of the heat distribution device 6 uniformly onto the surface to be temperature controlled via the heat distribution device 6.


LIST OF REFERENCE SYMBOLS




  • 6, 6′ Heat distribution device


  • 10 Temperature control


  • 50 Cover


  • 100 Vehicle


  • 102 Carrier


  • 103, 103′ Core section


  • 104, 104′ Blade section


  • 105 Cutout


  • 107 Recess


  • 110 Item to be temperature controlled


  • 114 Heater resistor element


  • 116 Cooling element


Claims
  • 1. An electric temperature control device for controlling a temperature of a surface, the temperature control device comprising: at least one heat distribution device covering at least part of the surface to be temperature controlled, the at least one heat distribution device having metal layers,at lease one carrier comprising: i. an elongated tape-like core section extending along a longitudinal axis,ii. a plurality of blade sections, each of the blade sections are projections that project and extend from opposing longitudinal edges of the core section, andiii. at least one heater resistor element,wherein the at least one heater resistor element is arranged between two flexible metal layers of the heat distribution device that project at least partially beyond sides of the at least one heater resistor element to cover a larger area than a base area of the at least one heater resistor element,wherein in a first portion of the core section, the at least one heater resistor element extends generally along the longitudinal axis and is free from extending into the blade sections, and in a second portion of the core section, the at least one heater resistor element extends into the blade sections, andwherein the at least one heater resistor element is a standard wire that forms a conductor loop, phase winding, or both with an outgoing lead and a return wire.
  • 2. The electric temperature control device according to claim 1, wherein at least one blade section of the plurality of blade sections has a cutout.
  • 3. The electric temperature control device according to claim 2, wherein the at least one carrier is comprised at least partially of a material which has pores, mesh openings, perforations, the like, or a combination thereof.
  • 4. The electric temperature control device according to claim 3, wherein the at least one heat distribution device is arranged between two textile layers or two carriers.
  • 5. The electric temperature control device according to claim 4, wherein the electric temperature control is integrated as a: insert into padding of a seat or a steering wheel.
  • 6. The electric temperature control device according to claim 1, wherein the electric temperature control device has at least one electrical cooling element.
  • 7. The electric temperature control device according to claim 1, wherein the electric temperature control device includes a heat pump, a Peltier element, an air moving means, or a combination thereof.
  • 8. The electric temperature control device according to claim 1, wherein the at least one carrier is comprised at least partially of a material which has pores, mesh openings, perforations, the like, or a combination thereof.
  • 9. The electric temperature control device according to claim 1, wherein the at least one heat distribution device is arranged between two textile layers or two carriers.
  • 10. The electric temperature control device according to claim 1, wherein the electric temperature control device is integrated as art insert into padding of a seat.
  • 11. The electric temperature control device according to claim 1, wherein the plurality of blade sections are arranged in asymmetrical sections relative to a longitudinal axis of the at least one carrier.
  • 12. The electric temperature control device according to claim 1, wherein the plurality of blade sections are arranged in sections relative to the longitudinal axis of the at least one carrier, wherein at least some of the sections are symmetrically arranged relative to the longitudinal axis and at least some of the sections are asymmetrically arranged relative to the longitudinal axis.
  • 13. The electric temperature control device according to claim 1, wherein the at least one heater resistor element has an electrical resistance between 100 Ω/m and 1000 Ω/m.
  • 14. An electrical temperature control device for controlling a temperature of a surface comprising: a carrier core extending along a longitudinal carrier axis, the carrier core having a plurality of carrier blade sections, each of the carrier blade sections are projections that project and laterally extend from opposing edges of the carrier core relative to the carrier axis, the carrier blade sections are arranged in carrier sections on the opposing edges of the carrier core that are asymmetric, symmetric, or a combination of both about the carrier axis,at least one heater resistor element arranged on the carrier core, anda heat distribution device arranged on an upper side of the at least one heater resistor element, an underside of the at least one heater resistor element, or both, the heat distribution device protrudes beyond the at least one heater resistor element, the heat distribution device includes a distribution core extending along a distribution axis with distribution blade sections that are projections laterally extending from opposing edges of the distribution core relative to the distribution axis, the distribution blade sections are arranged in distribution sections on opposing edges of the distribution device that are asymmetric, symmetric, or a combination of both about the distribution axis,wherein at least some of the carrier blade sections have a cutout, and at least some of the carrier blade sections are free of a cutout,wherein in at least one area of the carrier core, the at least one heater resistor element extends into one or more of the carrier blade sections that are free of a cutout and the at least one heater resistor element is generally free from extending along the carrier axis,wherein in at least one other area of the carrier core, the at least one heater resistor element is arranged generally along the carrier axis and the at least one heater resistor element does not extend into one or more of the carrier blade sections that have the cutout, andwherein the at least one heater resistor element is a standard wire that forms a conductor loop, phase winding, or both with an outgoing lead and a return wire which are short-circuited on their one end.
  • 15. The electrical temperature control device of claim 14, wherein the electrical temperature control device has at least one electrical cooling element assisting in cooling the heat distribution device.
  • 16. The electrical temperature control device of claim 14, wherein the carrier core and the heat distribution device include at least one heater resistor element therebetween forming a sandwich.
  • 17. The electrical temperature control device of claim 14, wherein the carrier core and the heat distribution device include at least one heater resistor element therebetween forming a sandwich, wherein the heat distribution device is arranged closer to the surface to be temperature controlled than the carrier core.
Priority Claims (5)
Number Date Country Kind
10 2011 016 254 Apr 2011 DE national
10 2011 102 719 May 2011 DE national
10 2011 121 147 Dec 2011 DE national
10 2011 122 134 Dec 2011 DE national
10 2012 000 977 Jan 2012 DE national
US Referenced Citations (237)
Number Name Date Kind
1475912 Williams Nov 1923 A
1553461 Negromanti Sep 1925 A
1615635 Kuno Jun 1927 A
2163450 Preble Jun 1939 A
2409421 Dufault Oct 1946 A
2835777 Gates et al. May 1958 A
2978972 Hake Apr 1961 A
3165620 Miller Jan 1965 A
3221145 Hager Nov 1965 A
3287684 Armbruster Nov 1966 A
3448246 Armbruster Jun 1969 A
3500014 Longo Mar 1970 A
3721799 Carlstrom Mar 1973 A
3876844 Scherenberg Apr 1975 A
3877788 Sprague et al. Apr 1975 A
3892946 Rimmi Jul 1975 A
4032752 Ohmura et al. Jun 1977 A
4043544 Ismer Aug 1977 A
4044221 Kuhn Aug 1977 A
4072344 Li Feb 1978 A
4149066 Niibe Apr 1979 A
4245149 Fairlie Jan 1981 A
4247756 Cucinotta et al. Jan 1981 A
4335725 Geldmacher Jun 1982 A
4399347 Schmitt Aug 1983 A
4410790 Berg et al. Oct 1983 A
4436986 Carlson Mar 1984 A
4509792 Wang Apr 1985 A
4523085 Grise Jun 1985 A
4533821 Sato Aug 1985 A
4539051 Hacias Sep 1985 A
4542285 Grise Sep 1985 A
4547655 Kurata et al. Oct 1985 A
4549069 Oge Oct 1985 A
4589656 Baldwin May 1986 A
4626664 Grise Dec 1986 A
4628187 Sekiguchi et al. Dec 1986 A
4633068 Grise Dec 1986 A
4656339 Grise Apr 1987 A
4661689 Harrison Apr 1987 A
4665304 Spencer May 1987 A
4713531 Fennekels et al. Dec 1987 A
4719335 Batliwalla et al. Jan 1988 A
4725717 Harrison Feb 1988 A
4743741 Ramus May 1988 A
4752672 Grise Jun 1988 A
4761541 Batliwalla et al. Aug 1988 A
4777351 Batliwalla et al. Oct 1988 A
4777802 Feher Oct 1988 A
4845343 Aune et al. Jul 1989 A
4849255 Grise et al. Jul 1989 A
4857711 Watts Aug 1989 A
4868898 Seto Sep 1989 A
4888089 Marstiller et al. Dec 1989 A
4892998 Marstiller et al. Jan 1990 A
4912306 Grise et al. Mar 1990 A
4923248 Feher May 1990 A
4931627 Watts Jun 1990 A
4964674 Altmann et al. Oct 1990 A
5015824 Monter et al. May 1991 A
5019797 Marstiller et al. May 1991 A
5025136 Doege et al. Jun 1991 A
5034594 Beezhold et al. Jul 1991 A
5045673 Kelly Sep 1991 A
5057674 Smith-Johannsen Oct 1991 A
5081339 Stine Jan 1992 A
5111025 Barma et al. May 1992 A
5132840 Okada et al. Jul 1992 A
5155334 Marstiller et al. Oct 1992 A
5160517 Hicks et al. Nov 1992 A
5181006 Shafe et al. Jan 1993 A
5187350 Tsuchiya Feb 1993 A
5197595 Coultas Mar 1993 A
5198639 Smuckler Mar 1993 A
5206482 Smuckler Apr 1993 A
5335381 Chang Aug 1994 A
5344591 Smuckler Sep 1994 A
5354966 Sperbeck Oct 1994 A
5405178 Weingarten et al. Apr 1995 A
5414241 Oshashi et al. May 1995 A
5418025 Harmand et al. May 1995 A
5422462 Kishimoto Jun 1995 A
5432322 Ingram et al. Jul 1995 A
5451747 Sullivan et al. Sep 1995 A
5477033 Bergholtz Dec 1995 A
5516189 Ligeras May 1996 A
5543601 Bartrug et al. Aug 1996 A
5605643 Reece Feb 1997 A
5626021 Karunasiri et al. May 1997 A
5643480 Gustavsson et al. Jul 1997 A
5679277 Niibe et al. Oct 1997 A
5702565 Wu et al. Dec 1997 A
5716536 Yokoto et al. Feb 1998 A
5796044 Cobian et al. Aug 1998 A
5800483 Vought Sep 1998 A
5800595 Wright Sep 1998 A
5801914 Thrash Sep 1998 A
5824993 Chrysochoos et al. Oct 1998 A
5824994 Noda et al. Oct 1998 A
5824996 Kochman et al. Oct 1998 A
5847360 Lorenzen et al. Dec 1998 A
5851588 Uthoff, Jr. Dec 1998 A
5861610 Weiss Jan 1999 A
5897162 Humes et al. Apr 1999 A
5902505 Finley May 1999 A
5904874 Winter May 1999 A
5921314 Schuller et al. Jul 1999 A
5948297 Haubner et al. Sep 1999 A
5961869 Irgens Oct 1999 A
6031214 Bost et al. Feb 2000 A
6054690 Petit et al. Apr 2000 A
6057530 Gurevich May 2000 A
6064037 Weiss et al. May 2000 A
6068332 Faust et al. May 2000 A
6070115 Oestreicher et al. May 2000 A
6084217 Bulgajewski Jul 2000 A
6093908 Haag Jul 2000 A
6093910 McClintock et al. Jul 2000 A
6097009 Cole Aug 2000 A
6111234 Batliwalla et al. Aug 2000 A
6124577 Fristedt Sep 2000 A
6143206 Handa et al. Nov 2000 A
6147332 Holmberg et al. Nov 2000 A
6150642 Weiss et al. Nov 2000 A
6164719 Rauh Dec 2000 A
6172342 Khafagy et al. Jan 2001 B1
6172344 Gordon et al. Jan 2001 B1
6189487 Owen et al. Feb 2001 B1
6194692 Oberle Feb 2001 B1
6215111 Rock et al. Apr 2001 B1
6220659 McDowell et al. Apr 2001 B1
6229123 Kochman et al. May 2001 B1
6278090 Fristedt et al. Aug 2001 B1
6294758 Masao et al. Sep 2001 B1
6307188 Bulgajewski Oct 2001 B1
6369369 Kochman et al. Apr 2002 B2
6392195 Zhao et al. May 2002 B1
6414270 Sugiyama et al. Jul 2002 B1
6415501 Schlesselman et al. Jul 2002 B1
6423951 Elsasser Jul 2002 B1
6426485 Bulgajewski et al. Jul 2002 B1
6439658 Ganz et al. Aug 2002 B1
6452138 Kochman et al. Sep 2002 B1
6455823 Bulgajewski et al. Sep 2002 B1
6495809 Bulgajewski et al. Dec 2002 B2
6501055 Rock et al. Dec 2002 B2
6509552 Roske et al. Jan 2003 B1
6512202 Haag et al. Jan 2003 B2
6512203 Jones et al. Jan 2003 B2
6559422 Burt May 2003 B2
RE38128 Gallup et al. Jun 2003 E
6619736 Stowe et al. Sep 2003 B2
6629724 Ekern et al. Oct 2003 B2
6664512 Horey et al. Dec 2003 B2
6664518 Fristedt et al. Dec 2003 B2
6676207 Rauh et al. Jan 2004 B2
6686562 Weiss et al. Feb 2004 B1
6710303 Lorenzen Mar 2004 B1
6713733 Kochman et al. Mar 2004 B2
6727467 Hadzizukic et al. Apr 2004 B1
6838647 Nagele Jan 2005 B2
6840576 Ekern et al. Jan 2005 B2
6857697 Brennan et al. Feb 2005 B2
6869139 Brennan et al. Mar 2005 B2
6869140 White et al. Mar 2005 B2
6872882 Fritz Mar 2005 B2
6884965 Nelson et al. Apr 2005 B2
6892807 Fristedt et al. May 2005 B2
6893086 Bajic et al. May 2005 B2
6906293 Schmiz et al. Jun 2005 B2
6976734 Stoewe Dec 2005 B2
6977360 Weiss Dec 2005 B2
7019260 Degand et al. Mar 2006 B1
7019261 Worrell et al. Mar 2006 B2
7036283 Halas May 2006 B2
7040710 White et al. May 2006 B2
7052091 Bajic et al. May 2006 B2
7053344 Surjan et al. May 2006 B1
7083227 Brennan et al. Aug 2006 B2
7100978 Ekern et al. Sep 2006 B2
7131689 Brennan et al. Nov 2006 B2
7141760 Howick et al. Nov 2006 B2
7147279 Bevan et al. Dec 2006 B2
7154102 Poteet et al. Dec 2006 B2
7168758 Bevan et al. Jan 2007 B2
7202444 Bulgajewski Apr 2007 B2
7205510 Howick Apr 2007 B2
7213876 Stoewe May 2007 B2
7223948 Howick et al. May 2007 B2
7285748 Nelson et al. Oct 2007 B2
7301441 Inada et al. Nov 2007 B2
7306283 Howick et al. Dec 2007 B2
7338117 Iqbal et al. Mar 2008 B2
7356912 Iqbal et al. Apr 2008 B2
7370911 Bajic et al. May 2008 B2
7475938 Stoewe et al. Jan 2009 B2
7478869 Lazanja et al. Jan 2009 B2
7500536 Bulgajewski et al. Mar 2009 B2
7506938 Brennan et al. Mar 2009 B2
7510239 Stowe Mar 2009 B2
7560670 Lorenzen et al. Jul 2009 B2
7569795 Ferguson Aug 2009 B2
7587901 Petrovski Sep 2009 B2
7618089 Stoewe et al. Nov 2009 B2
7637569 Krobok et al. Dec 2009 B2
7714256 Weiss May 2010 B2
7741582 Howick et al. Jun 2010 B2
7838804 Krobok Nov 2010 B2
8015835 Lee et al. Sep 2011 B2
D661793 Spasojevic et al. Jun 2012 S
D661794 Spasojevic et al. Jun 2012 S
20020117495 Kochman et al. Aug 2002 A1
20040021346 Morinet et al. Feb 2004 A1
20040065656 Inagawa et al. Apr 2004 A1
20040100131 Howick et al. May 2004 A1
20050067862 Iqbal et al. Mar 2005 A1
20050093347 Bajic et al. May 2005 A1
20050115956 Wong Jun 2005 A1
20050242081 Howick Nov 2005 A1
20060015801 Suh et al. Jan 2006 A1
20060027552 Krobok et al. Feb 2006 A1
20060138810 Knoll et al. Jun 2006 A1
20060158011 Marlovits et al. Jul 2006 A1
20070176471 Knoll Aug 2007 A1
20080011732 Ito et al. Jan 2008 A1
20080210048 Yoneyama et al. Sep 2008 A1
20090026194 Bohlender et al. Jan 2009 A1
20090218855 Wolas Sep 2009 A1
20100035356 Shalyt et al. Feb 2010 A1
20100038356 Fukuda et al. Feb 2010 A1
20100038357 Fukuda et al. Feb 2010 A1
20100071502 Yasuda et al. Mar 2010 A1
20100219664 Howick et al. Sep 2010 A1
20100326976 Nakajima et al. Dec 2010 A1
20110049131 Sturgess Mar 2011 A1
20110226751 Lazanja et al. Sep 2011 A1
20110290775 Cubon et al. Dec 2011 A1
Foreign Referenced Citations (23)
Number Date Country
3513909 Oct 1986 DE
3938951 May 1990 DE
199 20 451 Dec 1999 DE
10027173 Dec 2001 DE
0202896 May 1986 EP
2010650 Jun 1979 GB
56093284 Jul 1981 JP
57134655 Aug 1982 JP
62109385 Jul 1987 JP
11-24493 Jan 1999 JP
11-218336 Aug 1999 JP
2000333781 Dec 2000 JP
2002050459 Feb 2002 JP
2004055219 Feb 2004 JP
8906480 Jul 1989 WO
9409684 May 1994 WO
9701549 Jan 1997 WO
0143507 Jun 2001 WO
0206914 Jan 2002 WO
03101777 Dec 2003 WO
2005047056 May 2005 WO
2010065411 Jun 2010 WO
2011149680 Dec 2011 WO
Non-Patent Literature Citations (10)
Entry
Automotive Heated Seats—Heated Steering Wheels, IGB Automotive Ltd., received by Assignee W.E.T. Automotive Systems, May 2003.
Automotive Seat Heating Systems, Bauerhin International, received by Assignee W.E.T. Automotive Systems, May 2002.
GMT 830 Heating & Ventilation System, IGB Automotive Ltd., received by Assignee W.E.T. Automotive Systems, Jun. 2003.
Co-pending Patent Application, U.S. Appl. No. 10/715,160, filed Nov. 17, 2003, U.S. Pat. No. 7,306,283.
Co-pending Patent Application, U.S. Appl. No. 11/923,091, filed Oct. 24, 2007, U.S. Pat. No. 7,741,582.
Co-pending Patent Application, U.S. Appl. No. 12/778,238, filed May 12, 2010, published as 2010/0219664.
Related Patent Application, U.S. Appl. No. 13/256,318, filed Sep. 13, 2011 PCT publication No. WO2011/149680.
Related Patent Application, U.S. Appl. No. 13/106,148, filed on May 12, 2011, publishes as 2011/0226751.
Related Design Patent Application, U.S. Appl. No. 29/402,183, filed Sep. 21, 2011, U.S. Pat. No. D661,794.
Related Design Patent Application, U.S. Appl. No. 29/402,182, filed Sep. 21, 2011, U.S. Pat. No. D661,793.
Related Publications (1)
Number Date Country
20120255944 A1 Oct 2012 US