Heating devices can be used to cook food or perform various industrial processes (e.g., drying, baking, setting paint, etc.). Heating devices can be relatively small for residential uses or relatively large for commercial or industrial uses.
One exemplary embodiment relates to a heating device including a heating device chamber, a heating element for heating air in the heating device chamber, and a condensing counter-flow heat exchanger including a first flow path that receives outgoing air from the heating device chamber and a second flow path for providing incoming air to the heating device chamber. The first flow path and the second flow path are configured in a counter-flow heat exchange relationship such that the outgoing air flows in a direction opposite the incoming air and the latent heat of evaporated water in the outgoing air is transferred to the incoming air thereby condensing liquid water from the outgoing air.
Another exemplary embodiment relates to a method of operating a heating device including heating air in a heating device chamber, exhausting outgoing air from the heating device chamber via a first flow path through which the outgoing air flows in a first direction, supplying incoming air to the heating device chamber via a second flow path through which the incoming air flows in a second direction opposite to the first direction, and transferring the latent heat of evaporated water in the outgoing air in the first flow path to the incoming air in the second flow path thereby condensing liquid water from the outgoing air.
Another exemplary embodiment relates to a heating device including a heating device chamber, a heating element for heating air in the heating device chamber, and a condensing counter-flow heat exchanger in which latent heat from outgoing air exiting the heating device chamber is transferred to incoming air entering the heating device chamber so that liquid water condenses from the outgoing air.
Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
As food cooks in a heating device, water evaporates from the food. Much of the energy supplied to food in a heating device does not raise the temperature of the food, but rather provides the energy necessary to evaporate water from the food as the food cooks. The energy efficiency of a heating device can be improved by recovering the latent heat of the evaporated water in a condensing heat exchanger and using the recovered energy to heat incoming air prior to the incoming air entering the heating device chamber.
Referring to
Condensing counter-flow heat exchanger 115 is an air-to-air heat exchanger and includes first or outgoing air flow path 120 and second or incoming air flow path 125. Outgoing air from the heating device chamber 105 passes through first flow path 120 and incoming air passes through second air flow path 125 before entering heating device chamber 105. The outgoing air is relatively hot and contains evaporated water. The incoming air is relatively cool (i.e., cooler than outgoing air). First flow path 120 and second flow path 125 are positioned in a counter-flow arrangement so that the direction of flow of the outgoing air is opposite the direction of flow of the incoming air. First flow path 120 and second flow path 125 are also arranged in a condensing heat exchange relationship so that the latent heat of the evaporated water in the outgoing air is transferred to the incoming air thereby condensing liquid water from the outgoing air. In this way, the outgoing air is dried and cooled as it passes through first flow path 120 and the incoming air is heated as it passes through second flow path 125 so that it reaches heating device chamber 105 already above the ambient temperature outside heating device 100. In some embodiments, first flow path 120 and/or second flow path 125 can be formed with microchannels to improve heat transfer therebetween. The use of microchannels results in laminar flow through the flow path. In some embodiments, fins, heat pipes, heat-transfer-fluid loops, or other means for local heat transfer between first flow path 120 and second flow path 125 extend into first flow path 120 and/or second flow path 125 to improve heat transfer therebetween. In some embodiments, the outgoing air in first flow path 120 and/or the incoming air in the second flow path 125 is fully enclosed (e.g., in a tube or conduit). In other embodiments, the outgoing air in first flow path 120 and/or the incoming air in the second flow path 125 is partially enclosed (e.g., in a channel having at least one open side). In other embodiments, the air flows through the condensing counter-flow heat exchanger 115 are separated by a heat exchange surface (i.e., not enclosed). Drain 130 collects the condensed water from first flow path 120 and discharges the condensed water from heating device 100. In some embodiments, drain 130 is positioned at or near the outlet of first flow path 120. In some embodiments, as shown in
As illustrated in
Referring to
Referring to
Referring to
Referring to
Control unit 180 can also be configured to control other functions of heating device 100. In an exemplary embodiment, control unit 180 includes a processor and memory device. Processor can be implemented as a general purpose processor, an application specific integrated circuit (ASIC), one or more field programmable gate arrays (FPGAs), a group of processing components, or other suitable electronic processing components. Memory device (e.g., memory, memory unit, storage device, etc.) is one or more devices (e.g., RAM, ROM, Flash memory, hard disk storage, etc.) for storing data and/or computer code for completing or facilitating the various processes, layers and modules described in the present application. Memory device may be or include volatile memory or non-volatile memory. Memory device may include database components, object code components, script components, or any other type of information structure for supporting the various activities and information structures described in the present application. According to an exemplary embodiment, memory device is communicably connected to processor via processing circuit and includes computer code for executing (e.g., by processing circuit and/or processor) one or more processes described herein.
Referring to
The flow of the outgoing air through the condensing counter-flow heat exchanger 115 can be controlled in other ways (e.g., varied in flow rate and/or volume) in order to control a state (e.g., temperature or humidity) of the outgoing air exiting first flow path 120, to control a state (e.g. temperature or humidity) of the air in heating device chamber 105, and/or to control the amount of heat transferred to the incoming air flowing through the second flow path 125.
For example, as shown in
As another example, as shown in
As another example, as shown in
Referring to
As illustrated in
As illustrated in
The construction and arrangement of the apparatus, systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, some elements shown as integrally formed may be constructed from multiple parts or elements, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a machine, the machine properly views the connection as a machine-readable medium. Thus, any such connection is properly termed a machine-readable medium. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures may show or the description may provide a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on various factors, including software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps and decision steps.
This application is a continuation of application Ser. No. 13/966,670, filed Aug. 14, 2013, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
821518 | Maslin et al. | May 1906 | A |
1487709 | Besser | Mar 1924 | A |
1558848 | Doble, Jr. | Oct 1925 | A |
1842180 | Laird | Jan 1932 | A |
1845581 | Coakley | Feb 1932 | A |
1953302 | Johnston | Apr 1934 | A |
1958440 | Miller | May 1934 | A |
2039429 | Lydon | May 1936 | A |
2048644 | Winder et al. | Jul 1936 | A |
2075896 | Harmon | Apr 1937 | A |
2280093 | Kleinschmidt | Apr 1942 | A |
2290465 | Crawford | Jul 1942 | A |
2343542 | Faunce | Mar 1944 | A |
2362940 | Skerritt | Nov 1944 | A |
2734578 | Walter | Feb 1956 | A |
2772954 | Jequier | Dec 1956 | A |
2785269 | Strader | Mar 1957 | A |
2854915 | Carr | Oct 1958 | A |
3169575 | Engalitcheff, Jr. | Feb 1965 | A |
3231015 | Koch | Jan 1966 | A |
3294160 | Siegfried | Dec 1966 | A |
3295605 | Sebald | Jan 1967 | A |
3446712 | Othmer | May 1969 | A |
3497312 | Bambenek | Feb 1970 | A |
3556207 | Piaskowski | Jan 1971 | A |
3583895 | Othmer | Jun 1971 | A |
3733777 | Huntington | May 1973 | A |
3739767 | Peters | Jun 1973 | A |
3791351 | Kent | Feb 1974 | A |
4044950 | Engeling et al. | Aug 1977 | A |
4072182 | Cheng | Feb 1978 | A |
4103735 | Warner | Aug 1978 | A |
4147303 | Talucci | Apr 1979 | A |
4148356 | Cramer | Apr 1979 | A |
4169583 | Cramer | Oct 1979 | A |
4178907 | Sweat, Jr. | Dec 1979 | A |
4189848 | Ko | Feb 1980 | A |
4199955 | Jonsson | Apr 1980 | A |
4239603 | Egosi | Dec 1980 | A |
4261326 | Ihlenfield | Apr 1981 | A |
4271789 | Black | Jun 1981 | A |
4275705 | Schaus et al. | Jun 1981 | A |
4280555 | Cieslak | Jul 1981 | A |
4312320 | Jennings | Jan 1982 | A |
4313399 | Black | Feb 1982 | A |
4318392 | Schreiber et al. | Mar 1982 | A |
4344386 | Black | Aug 1982 | A |
4391227 | Forster et al. | Jul 1983 | A |
4403572 | Gerstmann | Sep 1983 | A |
4412523 | Schreiber et al. | Nov 1983 | A |
4426923 | Ohata | Jan 1984 | A |
4429830 | Forster et al. | Feb 1984 | A |
4448348 | Bidwell | May 1984 | A |
4449569 | Lisi | May 1984 | A |
4502626 | Gerstmann et al. | Mar 1985 | A |
4503902 | Zolik | Mar 1985 | A |
4516628 | Ward | May 1985 | A |
4594856 | Rothmeyer | Jun 1986 | A |
4629117 | Kasbohm | Dec 1986 | A |
4640458 | Casier et al. | Feb 1987 | A |
4646541 | Reid, Jr. | Mar 1987 | A |
4648377 | Van Camp | Mar 1987 | A |
4660511 | Anderson | Apr 1987 | A |
4671212 | Smith | Jun 1987 | A |
4722194 | Kantor | Feb 1988 | A |
4730600 | Harrigill | Mar 1988 | A |
4785151 | Voegtlin | Nov 1988 | A |
4807588 | Bentley et al. | Feb 1989 | A |
4817582 | Oslin et al. | Apr 1989 | A |
4852524 | Cohen | Aug 1989 | A |
RE33082 | Gerstmann et al. | Oct 1989 | E |
4896411 | Dempsey | Jan 1990 | A |
4909307 | Besik | Mar 1990 | A |
4928749 | Paull | May 1990 | A |
4930489 | McFadden | Jun 1990 | A |
4930571 | Paull | Jun 1990 | A |
4974579 | Shellenberger et al. | Dec 1990 | A |
5014770 | Palmer | May 1991 | A |
5046478 | Clawson | Sep 1991 | A |
5122352 | Johnson | Jun 1992 | A |
5161739 | Saito | Nov 1992 | A |
5282457 | Kraemer et al. | Feb 1994 | A |
5351497 | Lowenstein | Oct 1994 | A |
5445216 | Cannata | Aug 1995 | A |
5567215 | Bielawski et al. | Oct 1996 | A |
5623918 | Swilik et al. | Apr 1997 | A |
5687678 | Suchomel et al. | Nov 1997 | A |
5696872 | Seward | Dec 1997 | A |
5697435 | Stickford et al. | Dec 1997 | A |
5775126 | Sato | Jul 1998 | A |
5845631 | Kleva et al. | Dec 1998 | A |
5918570 | Gilchrist | Jul 1999 | A |
6014966 | Stevenson | Jan 2000 | A |
6044833 | Gebhardt et al. | Apr 2000 | A |
6129285 | Schafka | Oct 2000 | A |
6296480 | Anderson et al. | Oct 2001 | B1 |
6619951 | Bodnar et al. | Sep 2003 | B2 |
6675880 | Namba et al. | Jan 2004 | B2 |
6694926 | Baese et al. | Feb 2004 | B2 |
6986797 | Clawson | Jan 2006 | B1 |
7066973 | Bentley | Jun 2006 | B1 |
7096666 | Fay | Aug 2006 | B2 |
7114553 | Edwards | Oct 2006 | B2 |
7337837 | Edwards | Mar 2008 | B2 |
7422009 | Rummel et al. | Sep 2008 | B2 |
7487821 | Miller et al. | Feb 2009 | B2 |
8925541 | Thompson | Jan 2015 | B2 |
8978639 | Halverson et al. | Mar 2015 | B2 |
9222678 | Venkatakrishnan | Dec 2015 | B2 |
9328916 | Lampe | May 2016 | B2 |
9617152 | Johnston | Apr 2017 | B2 |
9631848 | Vandermeulen | Apr 2017 | B2 |
9664404 | Veltkamp | May 2017 | B2 |
20020038552 | Maisotsenko | Apr 2002 | A1 |
20020164944 | Haglid | Nov 2002 | A1 |
20030005892 | Baese et al. | Jan 2003 | A1 |
20030070789 | Mueller | Apr 2003 | A1 |
20030070799 | Mueller | Apr 2003 | A1 |
20030167768 | Clawson | Sep 2003 | A1 |
20040103637 | Maisotsenko | Jun 2004 | A1 |
20040123615 | Yabu | Jul 2004 | A1 |
20040219079 | Hagen | Nov 2004 | A1 |
20050056313 | Hagen | Mar 2005 | A1 |
20050236136 | Veltkamp | Oct 2005 | A1 |
20050274328 | Baese et al. | Dec 2005 | A1 |
20060093713 | Jurkovich | May 2006 | A1 |
20060093718 | Jurkovich | May 2006 | A1 |
20060225726 | Andoh | Oct 2006 | A1 |
20060248799 | Bandhauer | Nov 2006 | A1 |
20060251940 | Bandhauer | Nov 2006 | A1 |
20070234702 | Hagen | Oct 2007 | A1 |
20080003940 | Haglid | Jan 2008 | A1 |
20080022547 | Shivvers | Jan 2008 | A1 |
20080184587 | Shivvers | Aug 2008 | A1 |
20080184589 | Shivvers | Aug 2008 | A1 |
20080209755 | Shivvers | Sep 2008 | A1 |
20080209759 | Shivvers | Sep 2008 | A1 |
20080244975 | Johnston | Oct 2008 | A1 |
20080264062 | Prueitt | Oct 2008 | A1 |
20090188447 | Lutz | Jul 2009 | A1 |
20090264060 | Livchak | Oct 2009 | A1 |
20100107439 | Shivvers | May 2010 | A1 |
20100176064 | Batty | Jul 2010 | A1 |
20100314238 | Frolov | Dec 2010 | A1 |
20110108406 | Maisotsenko | May 2011 | A1 |
20110232124 | Shivvers | Sep 2011 | A1 |
20120080023 | Thompson | Apr 2012 | A1 |
20120180505 | Gerber | Jul 2012 | A1 |
20120240551 | Johnson | Sep 2012 | A1 |
20130074694 | Govindan | Mar 2013 | A1 |
20130101492 | McAlister | Apr 2013 | A1 |
20130153399 | McAlister | Jun 2013 | A1 |
20130199921 | McGovern | Aug 2013 | A1 |
20130232983 | Maslov | Sep 2013 | A1 |
20130233213 | Martin | Sep 2013 | A1 |
20130233288 | Schnepel | Sep 2013 | A1 |
20130236840 | Maslov | Sep 2013 | A1 |
20130236841 | Armstrong | Sep 2013 | A1 |
20130299123 | Matula | Nov 2013 | A1 |
20130333684 | Cescot | Dec 2013 | A1 |
20140245769 | Vandermeulen | Sep 2014 | A1 |
20150000275 | Prueitt | Jan 2015 | A1 |
20150308711 | Gillan | Oct 2015 | A1 |
20170016645 | Maisotsenko | Jan 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20160146473 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13966670 | Aug 2013 | US |
Child | 15008201 | US |