This application claims priority to and the benefit of Japanese Patent Application No. 2013-062727 filed on 25 Mar. 2013, the disclosure of which is incorporated by reference herein in its entirety.
The presently disclosed embodiment relates to a short heating head unit and a heating head for heating or two-dimensionally or three-dimensionally thermal processing of a medium having a wide width by arranging the heating head units one-dimensionally, two-dimensionally or three-dimensionally. The presently disclosed embodiment relates, in particular, to a heating head and a heating head unit having a strip-like heating element for heating a medium such as a heat-sensitive re-writable medium in order to carry out pre-treatment of a medium (purification, stabilization), main treatment of a medium (recording, transfer (re-transfer), erasing, or fixing (fixing of a toner), processing by post-treatment and heating (stabilization, or adhesion, fusion, or deformation by heating), over-coating, lamination of documents, adhesion of a sheet, sealing of a vinyl package, and imprinting (convexoconcave thermal processing of plastic and the like).
Recently information recording media (reversible or irreversible information recording media (re-writable card, re-writable sheet) provided with a recording portion comprising a reversible heat-sensitive recording layer) has been widely used, in which coloration, color change and erasing of color can be carried out reversibly or irreversibly repeatedly by heating on a base material in a shape of film, sheet or card made of a paper, non-woven fabric, woven fabric, synthetic resin such as vinyl chloride or polyethylene terephthalate, metal, glass, hard converted paper (paper for a card being harder than a cardboard and produced by curing a vegetable fiber or the like under pressure), or the like.
For example, a heating head having a structure as shown in
The above-mentioned heating head as shown in
Further, while a protection layer made of glass is provided on a surface of a heating element for the purpose of preventing ablation and a short circuit due to adhesion of a foreign matter, as mentioned above, when records stored in a recording medium is erased by heating a heating element while flowing electricity thereto, passing the recording medium thereon and pressing the recording medium onto the heating element while pressing by a rubber roller, there arises a problem that the glass is easily broken, ablation of the glass is much and a resistance value of the heating element is likely to change since the glass is pressed directly on the heating element 52 with the rubber roller.
Furthermore, in order to heat a wide medium, if short heating heads are formed and are arranged to heat such a wide medium, there arises a problem that temperatures around electrode portions formed at both ends of the heating head become lower and a uniform temperature distribution cannot be obtained.
The presently disclosed embodiment has been made to solve the above-mentioned problems, and an aspect of the presently disclosed embodiment is to provide a heating head unit configured such that heating head units being as short as about 20 to 108 mm are connected without making a length of the heating element so long and that while measuring a temperature of each heating element, a voltage for heating is controlled, and another object of the presently disclosed embodiment is to provide a one-dimensional heating head for a long medium which can be applied to a wide medium by connecting the heating head units or a heating head being capable of two-dimensional or three-dimensional heating at once.
Another aspect of the presently disclosed embodiment is to provide a heating head unit and a heating head which are capable of heating at a stable temperature by adhering, to a surface of a heating element provided on one surface of a head substrate, a second substrate having a heat conductivity being different from that of the head substrate to improve heat conduction to the surface of the second substrate contacting the medium while protecting the heating element.
The heating head unit of the presently disclosed embodiment comprises a rectangular head substrate having long sides and short sides, a strip-like heating element provided continuously on one surface of the head substrate from one end to another end of the head substrate along its long side, a pair of electrode connecting portions formed from the same material as that of the heating element which are bent and extend along the short side of the head substrate at both ends of the heating element, a pair of electrodes formed on the one surface of the head substrate between the strip-like heating element and the side edge of the long side of the head substrate at the side where the electrode connecting portions are provided, wherein the electrodes are electrically connected with each other while being partially brought into contact with each of the pair of electrode connecting portions, and a substrate temperature control means for controlling the substrate temperature by measuring the temperatures of the head substrate and a temperature measurement element.
Herein, the medium means a material in a shape of film, sheet, card or plate made of paper (including a cardboard), non-woven fabric, woven fabric, synthetic resin such as vinyl chloride or polyethylene terephthalate, or the like. The medium includes reversible heat-sensitive recording media (re-writable card, re-writable sheet) comprising a base substrate made of the above-mentioned material and a recording portion provided on the base substrate and comprising a reversible heat-sensitive recording layer being capable of repeatedly conducting coloration and discoloration reversibly by heating; a recording paper used for transfer, re-transfer or toner fixing; a base film; the above-mentioned materials to be subjected to various processing such as adhesion, fusion, deformation, over-coating, under-coating, laminating or imprinting; and a gas such as air used for cultivating plants and adjusting a temperature of a vinyl house.
It is preferable, from the viewpoint of making the temperatures at both ends and at the center part of the heating element uniform, that at both ends of the heating element, an angle formed by the heating element and the electrode connecting portions is an acute angle by forming the heating element with a narrower width at the corner sections than a width at a middle portion, the angle being formed between the electrode connecting portion extending along the short side of the head substrate and the strip-like heating element extending along the long side of the head substrate.
The heating head of the presently disclosed embodiment is configured such that heating of a wide medium (in the case of being long in the direction of L in
In the heating head unit of the presently disclosed embodiment, the heating element is provided on one surface of the rectangular head substrate having long sides and short sides from one end to another end of the head substrate along the long side thereof, and is bent along the short side of the head substrate at both ends of the heating element to form the electrode connecting portions, and a pair of electrodes is formed so as to be partially brought into contact with each of the pair of electrode connecting portions. Thus, the heating element is formed from one end to another end of the head substrate. Therefore, by arranging two heating head units adjacently to each other, the length of the heating elements is the same as the length of the two heating head units. Further, it is possible to arrange three or more heating head units similarly in a line, and a heating head having a required width (length of the heating element) can be easily obtained according to a width of a medium to be processed. Also, since the electrode connecting portions are formed in a direction extending along the short side of the substrate at both ends thereof, there is no area where heating cannot be done in the direction of the long side even by the formation of the electrodes. On the contrary, while there is a tendency that there is an excessive temperature elevation of the electrode connecting portions at both ends, the temperature of the entire heating head can be made uniform by escaping heat to the electrodes and adjusting the width of the heating element.
Further, if the electrode connecting portion extending from the heating element along the short side is formed so as to extend up to the edge of the long side of the head substrate, or if the electrode connecting portion is formed so that at least a part thereof reaches the edge of the long side of the heating element, the electrode connecting portion or the heating element can be connected to the heating element of another heating head unit. Therefore, for example, a quadrangular two-dimensional heating head can be obtained. Even in this case of the two-dimensional heating head, each side of the quadrangular heating head can comprise a plurality of heating head units and a desired size of two-dimensional or three-dimensional heating head can be obtained. Also, by making the number of heating head units in a vertical direction different from that in a horizontal direction, a rectangular heating head can be formed. Further, in addition to a quadrangular shape, a two-dimensional heating head having three sides can be obtained, and by cutting the end of the head substrate diagonally, a triangular, Y-shaped or diagonal heating head but not one having a right angle such as a rectangle can be formed.
Furthermore, in the heating head unit of the presently disclosed embodiment, the length of the heating element (the length from one end to another end of the head substrate) can be about 20 to 108 mm, for example about 54 mm (a size to be used usually for printing and erasing of a card with a 2-inch head), and non-uniformity of electrical resistance of the heating element can be reduced as much as possible. In addition, the heating head can be easily handled and can be produced easily, and in the case of heating of a large medium having an A4 size, by arranging the required number of heating head units as mentioned above, a heating head large enough for a medium can be produced.
Further, in the heating head of the presently disclosed embodiment, the heating head is formed by arranging a plurality of heating head units providing a uniform temperature, non-uniformity of temperature of the respective heating head units can be adjusted with substrate temperature control means provided on the respective heating head units, and further, at the connection portion between the at least two heating head units, the heating element is provided up to the end of the head substrate, thereby causing no temperature decrease even at the jointed portions between the plurality of heating head units. Therefore, the temperature of the entire heating head is kept so uniform. Namely, in the heating head unit, an end-to-end substrate temperature is made uniform, and even if there arises non-uniformity of temperatures between the heating head units, since the substrate temperature control means are provided on the respective heating head units, the temperatures of the units can be made uniform by adjusting voltages to be applied to the heating elements, thereby making the temperature of the entire heating head uniform.
In the case where there is a heating head unit having a non-uniform temperature, it can be replaced with a heating head unit having a normal temperature distribution. Further, by designing the head substrate constituting the heating head unit so that the long side and the short side thereof form an acute angle (a smaller angle than a right angle) without intersecting at a right angle, a heating head having heating head units connected at an optional angle can be obtained, and a heating head having a rhombic shape, Y-shape or the like shape can also be obtained. In addition, by using such a connection structure, heating head units can be inserted crosswise on diagonal lines of a quadrangle formed from other heating head units, and, for example, a three dimensional heating head can be formed and a three dimensional vinyl bag can be easily produced. Furthermore, since temperature control means are provided on the respective heating head units, even if temperature changes due to environmental variation, each heating head unit can follow such a change. Therefore, it is possible to carry out temperature control in a vinyl house and temperature control around vegetables depending on kinds thereof.
Next, the heating head unit of the presently disclosed embodiment and the heating head using the unit are explained below referring to the drawings.
In the heating head unit of the presently disclosed embodiment, as shown in
The head substrate 1 has a substantially rectangular shape of about 20 to 108 mm length, about 5 to 25 mm width and about 0.6 to 1.0 mm thickness. Its material is one having as excellent a heat conductivity as possible, namely one having about 1 (e.g. soda glass) to 200 W/(m·k) of heat conductivity, and having heat resistance under heat generation temperature condition at the time of use and insulating properties on its surface where the heating element 2 is provided. For example, ceramics such as alumina (Vickers' hardness Hv: about 20) and aluminum nitride can be used. The head substrate 1 may be one produced by printing and baking a thick film paste for insulation on a surface of a metal plate such as stainless steel to form an insulating film in a thickness of about 5 to 20 μm.
In the example shown in
The heating element 2 is formed in a strip-like shape extending from one end to another end of the head substrate 1 along the long side of the head substrate 1. The pair of electrode connecting portions 2a is formed from the same material as that of the heating element 2, and is bent and extends along the short side of the head substrate 1 at both ends of the heating element 2. The electrode connecting portions 2a are caught on a part of a pair of previously formed electrodes 3 to be explained infra. Therefore, the heating element 2 and the pair of electrode connecting portions 2a are formed integrally in one unit, and are configured such that the electrodes 3 are connected to both ends of the heating element 2 via the electrode connecting portions 2a. The width w of this heating element 2 can be determined depending on the purpose of heating a medium, and for the purpose of heating a usual card, the width is from about 2 to 10 mm. The length L of the heating element 2 is determined to an end-to-end size of the above-mentioned head substrate 1 and is, for example, from about 20 to 108 mm. The number of the heating elements 2 may be two or more instead of one heating element 2 as shown in
In the example shown in
Further, in the example shown in
In the example shown in
In short, the presently disclosed embodiment is characterized in that the heating element 2 is formed from one end to another end of the head substrate 1 in the direction of its long side (lengthwise direction) and the electrodes 3 are formed on the same surface of the head substrate 1. Namely, in usual heating heads, a pair of electrodes is formed at both ends in the direction of a head substrate 1 or on a back surface of a head substrate by leading a wire up to the back surface of the head substrate. However, the heating head unit of the presently disclosed embodiment is characterized in that a plurality of heating head units can be connected while avoiding a configuration of directly pressing a medium via a protection film formed on the surface of the heating element 2. As a result, the temperature can be raised uniformly up to the end of the head substrate 1 and a long heating head or a two-dimensional heating head can be formed. Since the electrodes for flowing electric current through the heating element 2 are formed at the positions apart from each other in the widthwise direction of the heating element 2, the temperature characteristics of heating element 2 are not affected at all by the electrodes, and also, even if unevenness of the heating head arises due to formation of the electrode, it does not have an effect at all on the pressing of a medium. As a result, by arranging the heating head units 10 (See
The heating element 2 and the electrode connecting portions 2a are formed by coating with a paste comprising Ag, Pd and glass or Ag and glass and then baking. A paste further comprising RuO2 can also be used. In the case of an Ag—Pd alloy formed by baking, a sheet resistance per unit area of 100 mΩ/Sq to 500 mΩ/Sq can be obtained (the sheet resistance varies with a mixing ratio, an amount of a solid insulating powder, a printing thickness, baking conditions or the like), and a resistance value and a temperature coefficient can be changed by a mixing ratio of the both. For example, the heating element 2 and the electrode connecting portions 2a are formed with settings such as a sheet resistance value of about 200 mΩ/Sq, a width of 5 mm, a length of 100 mm, a thickness of about rim, (total resistance of about 3.6Ω) and a temperature coefficient of the resistance of about 1500 ppm/° C. (a resistance value changes by 15% when a temperature changes by 100° C.). This heating element 2 is formed by printing so as to overlap with a pair of electrodes provided at the both end sides in the lengthwise direction of the head substrate 1 via the electrode connecting portions 2a.
The sheet resistance and the like of the heating element 2 is set depending on a size of a medium to be heated, a processing speed of a medium (a record erasing speed, namely, a speed at which a medium passes over the heating head) and the like. For example, in the case of a head substrate 1 made of alumina and having a size of a width, a length and a thickness of 7 mm, 104 mm and 0.8 mm, respectively, an amount of heat necessary for elevating a temperature of the head substrate 1 by 1° C. is 1.76 J, and in order to elevating it to 150° C., 150×1.76=264 J is required. For example, when the resistance between the both ends of the heating element 2 is designed to be 3.6Ω, by application of a voltage of 24 V, an amount of heat of 160 W is generated, and so, a required amount of heat can be supplied in 264 J/160 W=1.65 seconds. Namely, when starting the heating head, it is necessary to wait for about 1.65 seconds until the substrate temperature reaches a predetermined temperature of about 170° C., and thereafter, since a heating capacity of the head substrate 1 is extraordinarily large unlike only conventional thin heating element 2, a medium can be continuously heated almost without non-uniformity of temperature even if the medium is passed at high speed.
On nearly the entire surface of the head substrate 1 except a width of about 2 mm from the edge at the sides where the electrode connecting portions 2a are formed, one or a plurality of heating elements 2 is arranged in parallel. As shown in
As mentioned above, the number of heating elements to be formed can be one or plural, and a plurality of electrode connecting portions can be formed into one (by connecting the ends of the plural portions).
Heat generating characteristics of the heating element 2 can be designed freely, and for a temperature measurement element or a heating element 2 for temperature measurement explained infra, it is preferable to use a resistive material having a larger temperature coefficient at zeroth order of the resistance, in particular, a material having a temperature coefficient of the resistance of from 1000 to 3500 ppm/° C., in order to detect and control a temperature of the heating element 2 or the temperature measurement element and to prevent overheating due to thermal runaway. A material having a large temperature coefficient makes it easy to accurately measure the temperature of the head substrate 1 and carry out temperature control.
The pair of electrodes 3 is formed so as to partially overlap the electrode connecting portions 2a provided at both ends opposite to each other in the lengthwise direction of the head substrate 1 and is made, for example, by printing and sintering in the same manner as in the heating element 2 using a silver-palladium alloy or silver-platinum alloy having good conductivity and a smaller palladium ratio than that of the material of the heating element 2. The pair of electrodes 3 may be formed before forming the heating element 2 and the electrode connecting portions 2a or may be formed after forming the heating element 2 and the electrode connecting portions 2a so as to be placed on the electrode connecting portions 2a. In the presently disclosed embodiment, the surface of the heating element 2 is not pressed directly onto a medium, and since the medium is pressed onto the other surface or side surface of the head substrate 1 or onto the second substrate formed on the surface of the heating element 2 and explained infra, the pair of electrodes 3 can be easily connected to power source by connecting a lead not shown in the drawing directly to the pair of electrodes 3 by welding or soldering using a high temperature solder. As a result, for example, even in the case of connecting a plurality of heating head units, heating can be carried out easily by connecting and earthing two electrodes at the joint portion of the heating head units using a lead and connecting a plus (or minus) side of separate power sources to the respective other side electrodes.
The temperature measurement element 41 is not intended to be used for heating, and therefore, is formed as a thin resistance film changing its resistance value to a large extent depending on the temperature. While the temperature measurement element can be formed from the same material as that for the heating element 2, in the case of forming a temperature measurement element 41, it is preferable to form it using a material changing its resistance value to a large extent depending on a temperature change. In the example shown in
Namely, for example, as shown in
In this temperature control of the heating element 2 with the control means 45, an AC voltage or a DC voltage can be applied to the heating element 2 and thus, an applied voltage can be changed, and also, the temperature of the heating element 2 can be adjusted by carrying out duty drive and changing a duty cycle. It is desirable that the reference resistance 43 is one having a small temperature coefficient. It is preferable that the temperature measurement element 41 is one having a width of about 0.3 to 0.5 mm and is mounted on a suitable position of the head substrate 1. The applied voltage is preferably as low as about 5 V so that heat is not generated on the temperature measurement element 41. Thereby, the temperature at the portion of the head substrate 1 to be pressed onto the medium can be presumed.
The plan views of
As mentioned above, in the case of using the other surface or the side surface of the head substrate 1 as a pressing surface with the medium, it is preferable that the second substrate is made of a material having the same thermal expansion coefficient as that of the head substrate 1 and a heat conductivity smaller than that of the head substrate 1. However, from the viewpoint of a thermal expansion coefficient being near to each other, a material such as alumina or the like which is the same as the head substrate 1 can be used as the second substrate. This is because while the heating element 2 is provided directly on the head substrate 1, the second substrate 5 is provided through the glass film 11 and the temperature of the head substrate 1 is easily raised compared with the second substrate 5. The reason why the second substrate 5 preferably has the thermal expansion coefficient which is the same as or near to that of the head substrate 1 is that it is necessary that the second substrate 5 should not be separated in the heat cycle of elevation and lowering of the temperature of the head substrate 1. However, the surface of the second substrate 5 can be a surface for pressing onto the medium. In that case, it is preferable to select a material of the second substrate 5 having larger heat conductivity than the head substrate 1. Even in such a case, the same material as that of the head substrate 1 can be used for the second substrate 5.
As shown in
As mentioned above, the circuit board 6 can be used for connection of each of the electrodes 3 and 41a with the power source and is provided with parts for detecting the temperature of the head substrate 1, and therefore, is formed, for example, from a printed circuit board, but can also be formed from a flexible film. This circuit board 6 can be connected with a connector, a wire, a screw terminal, or the like by providing a high-current terminal, a temperature measuring terminal or the like on the circuit board. In addition, by providing a thermal fuse on the circuit board, it is possible to shut off voltage application to the electrodes 3 in the case where the temperature of the head substrate 1 is elevated excessively.
A metal plate such as an aluminum plate (heat conductivity: 221 W/(m·K)) and an iron plate (heat conductivity: 83 W/(m·K)), ceramics such as aluminum nitride and aluminum oxide, and the like can be used as the base 7, and is used for holding the head substrate 1. This base 7 is formed into a size corresponding to the head substrate 1, and the thickness thereof is, for example, about 7 mm. The heating head unit is so formed as mentioned above.
As explained above with respect to
Even in the case of producing a two-dimensional heating head, a heating head in a rectangular shape but not a square shape can be produced and also, a heating head having a desired size can be produced by connecting two or more heating head units 10 on one side. In addition, when two or more heating head units 10 are connected in order to make a length of one side long, the connection shown in
In the case where producing a heating head by continuously connecting the electrode connecting portion 2a of one heating head unit 10 to the heating element 2 of the other heating head unit 10 as shown in
Namely,
It is preferable, from the viewpoint of easy production, to dispose the protruded portion 2d at a minimum position as mentioned above, since in the case where after forming a plurality of heating elements 2 at the same time by printing on a large head substrate for multiple head substrates, the large head substrate is divided into some pieces, it is not necessary to cut the portion of the heating element. Further, if a scribing line is provided beforehand, dividing the large head substrate can be carried out without causing a fracture of the heating element 2. Therefore, if the protruded portion 2d is formed over the entire length from one end to another end of the heating element 2, in other words, if the heating element 2 is formed to reach the side edge 1b, it is possible to obtain two-dimensional heating head shown in
With the structure as mentioned above, a heating head unit having a Y-shape can be formed. The cutting angle at one end of the heating head unit 101, 102 is not limited to 60°, and the angle is adjusted to a desired one, and for example, X-shaped, Z-shaped, or diagonal heating head can be formed, and also, the heating head is not limited to two-dimensional one, and a three-dimensional heating head can be formed. Further, in the heating heads shown in
As mentioned above, according to the heating head unit of the presently disclosed embodiment, the length of one heating element 2 is as short as about 50 mm and its temperature non-uniformity is small. Therefore, in the case of heating of a short card, very stable heating can be carried out by using one heating head unit as a heating head. Further, even in the case of connecting several heating head units to form one-dimensional heating head or two-dimensional or three-dimensional heating head for wide media, temperatures of the respective heating head units 10 can be adjusted, and therefore, a heating head having a very uniform temperature distribution as a whole can be obtained. If such a two-dimensional heating head is used, for example, even in the case of carrying out sealing of a vinyl package, by placing, for example, drugs to be packaged on a vinyl sheet, folding the vinyl sheet and then heating the vinyl sheet using the heating head as shown in
In the case of such a heating head using one heating head unit 10, recording in a card or the like or erasing a record are carried out by the method shown in the schematic view of
In the example shown in
According to the aspects of the disclosed embodiment, in the case of a long one-dimensional heating head produced by connecting a plurality of heating head units 10, media having any given width can be heated, and the heating head can be used for color development of a heat-sensitive paper having any given size; recording and erasing by heating of a heat-sensitive re-writable media; transferring by heating, retransferring and toner fixing of a transfer film; adhesion, fusion and deformation by heating; over-coating for protecting surfaces of a paper and an image from a solvent, gas, light and the like and for making an image surface have a mirror surface to obtain a clear image; lamination of documents; partial adhesion of a heat curing adhesive sheet; imprinting for forming a convexoconcave surface on a plastic and the like by thermal processing; and the like. In addition, conventionally when recording and erasing of a thermal reversible heat-sensitive paper were repeated 500 to 1000 times, erasing of a record became insufficient and a clear recording could not be obtained. However, in the presently disclosed embodiment, since the temperature of the heating head is uniform, sufficient erasing can be done as compared with conventional devices, and clear recording can be carried out up to about 1000 times. Further, the heating head of the presently disclosed embodiment can be used for heating for various purposes such as retransferring, overall transfer coating, image recording, processing for prevention of discoloration, processing for prevention of corrosion, adhesion of electrically conductive material, coloration and the like or chemical reaction, drying, plastic molding, fixing of a toner by heating and the like.
Number | Date | Country | Kind |
---|---|---|---|
2013-062727 | Mar 2013 | JP | national |