Heating method and assembly for staircase

Information

  • Patent Grant
  • 6438909
  • Patent Number
    6,438,909
  • Date Filed
    Monday, December 11, 2000
    24 years ago
  • Date Issued
    Tuesday, August 27, 2002
    22 years ago
Abstract
A heating assembly is provided which includes a metal stair tread member having an upper horizontal surface and a bottom surface for mounting on a stair tread of a staircase. A strip heating element is attached to the bottom surface of the stair tread member. A first covering of synthetic material encapsulates the horizontal surface of the metal stair tread member and the strip heating element on bottom surface of the stair tread member. The strip heating element is contiguous with the bottom surface and is attached thereto by a gasket extending around the peripheral edge of the strip heating element. A thermostat is electrically connected to the strip heater and to a power source for selectively supplying electric current to the strip heater in response to changes ambient temperatures. A temperature sensing element is in electrical communication with the thermostat wherein the thermostat selectively supplies the current to the strip heating element. The thermostat has multiple settings which are manually selected for providing different selected current levels to the strip heater in response to temperature changes at preselected ambient temperature levels.
Description




TECHNICAL FIELD




The present invention relates to a staircase and a staircase repair device adapted to be used for both residential and commercial buildings and, more particularly, to a staircase including specially constructed stair tread members for use with standard stringers, and a staircase repair device or kit which can refurbish an existing staircase in need of repair without modification of the original staircase. A heating assembly also is provided for melting ice and snow off of stair treads of a staircase. Methods are also provided for fabrication.




BACKGROUND ART




A number of prior art devices exist which relate to the construction of a staircase, or the repair or refurbishing of a staircase. Particularly for conventional outside stairs and emergency stairs in both residential and commercial applications, such stairs are often constructed of materials which do not withstand heavy traffic or harsh environmental conditions. Because of safety concerns, stairs should always be kept in a high state of maintenance. However, the cost to repair damaged staircases can be quite prohibitive, even for minor flaws. For example, stairs formed of concrete which have chips or other surface defects are not only dangerous, but are also unsightly. Concrete repair is usually a very temporary measure and, particularly in high traffic areas, the concrete repair is never as wear-resistant as the original concrete. For wooden stairs, the wood has a tendency to warp or deform along heavy traffic areas. Even if constructed of treated lumber, the wood becomes unsightly over time.




There are a number of examples of prior art devices which have attempted to overcome one or more of the following problems. These devices can be in the form of either a repair unit, or a complete staircase construction.




U.S. Pat. No. 5,357,724 discloses a stair tread in which rubber sheet material is placed around a metal core section, and then heated to melt the sheets together. Once heated, the core section is encapsulated within the rubber. The stair tread has anti-slip serrations formed on its upper surface. A front face or overhanging front lip forms the front edge of the stair tread, and a vertically extending rear flange forms the rear face or edge of the stair tread. The upper edge of the rear face has a groove to accept the lower edge of a riser board, while the upper edge of the riser board is inserted into a corresponding groove formed in the lower edge of the front face of the next higher stair tread.




U.S. Pat. No. 5,799,448 discloses an adjustable closed riser metal staircase system. The system includes a plurality of stair treads which may be assembled into staircases having different rise heights. The stair treads include a vertical riser portion and a horizontal walking surface, preferably made of a slip-resistant material such as Mebac™, a coating of thermally sprayed steel encapsulating a dispersion of grit materials, normally aluminum oxide. The nose piece portion of the stair tread is formed at the front of the stair by bending the forward edge of the steel plate downward. When assembled, the upper end of the riser portion is inserted within a channel created by the bent nosepiece of the next higher stair tread assembly.




U.S. Pat. No. 4,783,939 discloses a composite covering for improving worn-out treadways of steps. This covering includes a stair tread section which is placed over the existing stair tread, and an integral vertical flange which overhangs the front lip of the stair tread section. The covering is constructed of a scuff-resistant plastic. The underside of the stair tread section includes an insert of pressboard, and a binder which helps raise the elevation of worn out sections or indentations, and also serves to bind the layers of the composite covering.




U.S. Pat. No. 5,660,009 discloses a metal stairway construction in which stair steps are supported between a pair of trimmed sheet metal stringer panels on each side of the stairway. Each step of the stairway is formed of metal treads and risers cut to appropriate lengths from conventional joice members provided on site. The metal treads and risers are attached at opposite ends thereof to respective stringer panels by way of standard angle brackets. Threaded self-drilling fasteners attach each angle bracket to a corresponding stringer panel and to an associated metal tread or metal riser. Wooden treads and risers are attached over the corresponding metal treads and risers by standard self-drilling screws.




While the foregoing references may be adequate for their intended purposes, there are certain advantages with the present invention which are not found in these references. One advantage is that the staircase repair device of this invention can be used with any type of existing staircase, whether it be concrete, wood, or metal. Another advantage is that this staircase repair device can be used to repair a staircase without preparation or modification of the original staircase wear surfaces. Yet another advantage not overcome by the prior art is the use of a staircase repair device which has high strength and weathering capabilities, yet does not detract from the general aesthetic appearance of the staircase. The same advantages discussed above also apply to the staircase of this invention. Additionally, the staircase of this invention is simple in design, and can be used for stairways in a wide array of residential and commercial buildings.




Removal of ice and snow from the stair tread of a staircase is a chronic problem during cold winter weather. Typically, ice and snow are removed by scraping them from the stair tread or applying a chemical thereto which causes the ice and snow to melt. Heating devices are sometimes provided under surfaces such as driveways and sidewalks to melt snow. However, they are quite expensive and not practical for many stairways.




DISCLOSURE OF THE INVENTION




In accordance with this invention, a staircase and a staircase repair device or kit are provided. The staircase repair device or kit forms a first embodiment and is comprised of two major components, namely, a stair tread repair member and a riser repair member. Both of these members are constructed of metal, preferably raw steel, bent to desired shapes. The stair tread repair member includes a front flange and an inward protruding lip. Holes may be drilled in the wearing surface of the stair tread repair member in order to accept fasteners which help to secure the stair tread repair member to an existing stair tread. The riser repair member includes an outward protruding flange. Holes may also be drilled in the riser repair member to accept fasteners for attachment of the riser repair member to an existing staircase riser. Both the stair tread and riser repair members are coated with a synthetic material which protects the metal from corrosion and other environmental hazards. The coating is preferably in the form of a polyurethane which is sprayed in liquid form to encapsulate the members therein. The upper wearing surface of the stair tread repair member also has a slip-free surface. This slip-free surface is formed by particles which are spread or sprinkled over the first sprayed coating of synthetic material. These particles are spread on the first coating while it is wet which allows the particles to become embedded in the first coating. Then, a second coating of synthetic material is sprayed over the embedded particles to seal the particles between the first and second coatings. The particles may be materials such as coal dust, aluminum oxide, walnut shells, and other known granular-type material which is used to create slip-free surfaces. It shall be understood that the stair tread repair member serves as a subcombination which may be used to repair the stair treads of an existing staircase.




In a second embodiment, the invention is a staircase which includes a plurality of stair tread members which span between a pair of spaced stringers. The stair tread member is similar to the stair tread repair member of the first embodiment in that it is also constructed of metal bent to a desired shape encapsulated within a first coating of synthetic material, and having a slip-free surface made of a particulate material sandwiched between the first coating and a second applied coating. The stair tread member further includes a pair of opposed side flanges disposed on opposite ends of the stair tread member, and opposing front and rear flanges. The stair tread member spans between a pair of common stringers used in construction of staircases. The stair tread member may be mounted to the facing inner surfaces of the stringers, or may be mounted over the outer surfaces of the stringers. Optionally, an L bracket or other similar supporting hardware may be used to secure the stair tread member to the inner surfaces of the stringers.




The second embodiment may be used in conjunction with either metal or wood stringers. Holes are drilled in the side flanges for receiving fasteners which secure the stair tread member to the stringers. If desired, a riser member could also be used with the invention of the second embodiment. More specifically, a riser similar to the riser repair member of the first embodiment could be used in the second embodiment. The riser in the second embodiment could simply be rectangular in shape and coated in the same way as the other components.




Methods of fabricating a stair tread repair member and of fabricating a stair tread member in a new staircase are also provided. Both methods involve the provision of a flat sheet of metal cut to a desired size. The metal sheet is sanded to roughen its surfaces in preparation for coating with a synthetic material. A primer may be applied to further prepare the metal sheet for coating. The metal sheet is bent by a metal brake machine to the desired shape. In fabrication of the stair tread repair member, the sheet is bent to form the front flange and inward protruding lip. For the stair tread member of a new staircase, the sheet is bent to include front and rear flanges, and the opposed side flanges. In order to bend the sheet of metal used in the stair tread member, comer sections are removed. After the sheet has been bent, the joints formed at the corners of the stair tread members may be welded together. Prior to or after bending, screw holes are punched or drilled in the metal sheets enabling fasteners to be received therethrough.




Once the stair tread repair member and the stair tread member have been bent to the desired shapes, they may be sprayed with a synthetic coating, preferably polyurethane. This polyurethane is applied to all exposed surfaces. The encapsulation of the members within the coating helps to ensure that all surfaces are protected from corrosion and other environmental hazards. The upper wearing surfaces of the members are then sprinkled with a dispersed layer of particles. This preferably occurs when the first applied coating is still wet which enables the particles to become embedded within the first coating. A second coating of polyurethane is then applied over the dispersed layer of particles to encapsulate the particles between the first and second coatings. A slip-free surface is therefore formed by the second coating covering the particles. In addition to providing weather-resistant surfaces, the coatings of polyurethane also help to dampen noise normally associated with metal stair treads, and help to keep the wearing surfaces scuff-free. Additionally, the applied polyurethane may be mixed with a desired color which enables the components to match or complement existing colors on the building. For the staircase embodiment, the stair tread members may include diagonal stress lines pressed on the upper wearing surfaces. This pre-stressing of the upper wearing surfaces adds strength to resist any buckling or wobbling of the upper wearing surfaces.




The apparatuses and methods of this invention provide a staircase repair device and a staircase which are extremely durable, simple in construction, aesthetically pleasing, have integral slip-free surfaces, and resist scuffing. Furthermore, these devices are simple to install and are universal in their ability to be used for all types of buildings.




This invention also contemplates a structure and method for removing ice and snow from a stairway. A heating assembly is provided which includes a metal stair tread member having an upper horizontal surface and a bottom surface for mounting on a stair tread of a staircase. A strip heating element is attached to the bottom surface of the stair tread member. Then a first covering of synthetic material encapsulates the horizontal surface of the metal stair tread member and the strip heating element on the bottom surface of the stair tread member. The strip heating element is contiguous with the bottom surface and is attached thereto by a gasket extending around the peripheral edge of the strip heating element. A thermostat is electrically connected to the strip heater and to a power source for selectively supplying electric current to the strip heater in response to changes in ambient air temperature. A temperature sensing element is in electrical communication with the thermostat wherein the thermostat selectively supplies the current to the strip heating element. The thermostat has multiple settings which can be manually selected for providing different selected current levels to the strip heater at preselected ambient temperature levels.




Additional advantages of this invention will become apparent from the description which follows, taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a stair tread repair member of the first embodiment;





FIG. 2

is a perspective view of a riser repair member of the first embodiment;





FIG. 3

is a fragmentary perspective view of the staircase repair device of the first embodiment mounted to an existing staircase or stairway;





FIG. 4

is an enlarged vertical section, taken along line


4





4


of

FIG. 3

illustrating one manner in which the first embodiment may be mounted to the existing staircase;





FIG. 5

is an enlarged vertical section taken along line


5





5


of

FIG. 3

illustrating further details on the mounting of the first embodiment to the existing staircase;





FIG. 6

is an enlarged vertical section taken along line


6





6


of

FIG. 3

illustrating yet further details on the mounting of the first embodiment to the existing staircase;





FIG. 7

is an enlarged fragmentary cross section of the stair tread repair member in

FIG. 3

which illustrates a core metal layer, a first applied coating of synthetic material encapsulating the core metal layer, a dispersed layer of particles applied on the upper wearing surface, and a second coating placed on the dispersed layer of particles and trapping them between the first and second coatings;





FIG. 8

is a perspective view of a stair tread member of the second embodiment;





FIG. 9

is a perspective view of the stair tread member of

FIG. 8

prior to being bent into the desired shape;





FIG. 10

is a fragmentary perspective view of the staircase construction of the second embodiment illustrating stair tread repair members being mounted to stringers in three different manners;





FIG. 11

is an enlarged fragmentary perspective view of

FIG. 10

illustrating details of how a stair tread member is mounted over the stringer;





FIG. 12

is an enlarged fragmentary vertical section taken along line


12





12


of

FIG. 10

illustrating details of how a stair tread member may be mounted to the inner surfaces of the stringers;





FIG. 13

is another enlarged fragmentary vertical section taken along line


13





13


of

FIG. 10

illustrating another manner in which a stair tread member may be mounted to the inner surfaces of the stringers;





FIG. 14

is a fragmentary perspective view of a staircase incorporating the heating assembly of this invention;





FIG. 15

A is an exploded view of the heating assembly of this invention;





FIG. 15

B is an enlarged fragmentary section of a second covering which encapsulate a layer of particles;





FIG. 15

C is an enlarged fragmentary section of a first covering;





FIG. 16

is an enlarged, fragmentary, horizontal section taken along line


16





16


of

FIG. 14

showing details of the heating assembly construction; and





FIG. 17

is an enlarged fragmentary, vertical section taken along line


17





17


of

FIG. 14

showing further details of the heating assembly construction.











BEST MODE FOR CARRYING OUT THE INVENTION




According to a first embodiment, a stair case repair device is shown in

FIGS. 1 and 2

which comprises a stair tread repair member


10


and a riser repair member


12


. The stair tread repair member


10


has a wearing surface


14


, and a front flange


16


extending from the forward or front edge of the wearing surface


14


. Contiguous with the front flange


16


is an inward protruding lip


18


. A plurality of holes


19


may be drilled through the wearing surface


14


to receive fasteners. The riser repair member in

FIG. 2

has a riser surface


20


and an outwardly protruding flange


22


. A plurality of holes


23


may be drilled in both riser surface


20


and flange


22


to receive fasteners.





FIG. 3

illustrates the staircase repair device installed on an existing stairway or staircase. As shown, the existing stairway has a plurality of stair treads


26


which are mounted between a pair of stringers


24


. A plurality of vertical risers


28


are also mounted between the stringers


24


. The top of the stairway leads to a landing


30


which communicates with a doorway


32


.





FIG. 4

illustrates in further detail the manner in which stair tread repair members


10


and riser repair members


12


are secured to the staircase. As shown, fasteners


38


may be placed through holes


19


and


23


, respectively. Additionally, an appropriate industrial adhesive or cement (not shown) may be used to secure members


10


and


12


to respective stair treads


26


and risers


28


.

FIG. 4

illustrates wearing surface


14


, front flange


16


, and lip


18


closely conforming to the lip


27


of the stair tread


26


. However, it will understood that front flange


16


and lip


18


function equally as well even if there is some gap which exists between these members and the exterior surfaces of lip


27


. Also, the size and shape of front flange


16


and lip


18


may be modified to fit the particular type of staircase encountered. As further shown in

FIG. 4

, the upper edge of riser surface


20


extends very nearly to or in contact with the edge of lip


18


. It should also be understood that riser repair member


12


functions equally as well even if there is some gap between lip


18


and riser surface


20


.




As shown in

FIG. 5

, the edge of flange


22


is placed underneath the rear edge of wearing surface


14


. Fasteners


38


may also be used to secure the members to each other and to stair tread


26


at this location.




As shown in

FIG. 6

, the landing


30


may be repaired by the use of landing repair member


39


. Landing repair member


39


may also be used to provide continuity with the covered stairway even if the landing is not damaged. The landing repair member


39


may be secured to the landing


30


by means of adhesive/cement, and/or by a plurality of fasteners


38


extending through landing member


30


and the edge of wearing surface


14


.





FIG. 7

more specifically shows a cross section of materials used to construct the stair tread repair member


10


. A steel layer


40


is encapsulated within a first layer or coating of synthetic material


42


. Preferably, this coating is polyurethane which is sprayed directly onto the steel layer


40


. As shown, this layer covers both the upper surface and the lower surface. A dispersed layer of particles


44


is then sprinkled over the first layer


42


. If the first layer


42


is wet when the layer of particles


44


is applied, the particles


44


will be embedded within the first layer


42


as shown. However, it will be understood that the dispersed layer of particles


44


may be applied after the first layer


42


has been allowed to dry. A second layer of polyurethane


46


is applied over the dispersed layer of particles


44


trapping or encapsulating them between the first and second layers Thus, the upper surface of the stair tread repair member


10


has an undulating or rough surface which is slip-free. The polyurethane used is extremely wear-resistant and serves not only to protect the steel core, but also to provide a bonding and sealing agent for the dispersed layer of particles


44


. The riser repair member


12


is also coated with a layer of polyurethane; however, no slip-free surface is required so no layer of particles or second layer of polyurethane is applied. Landing repair member


39


may be made of the same composite construction as stair tread repair member


10


.




Although the first embodiment illustrates the use of both stair tread repair members and riser repair members, it shall be understood that the stair tread repair members alone can be used to repair damaged staircases when such staircases have or do not have risers. Since risers are not walking surfaces, a more cost-effective repair can be completed without the use of the riser repair members. Thus, the stair tread repair members serve as a valuable subcombination of the first embodiment.





FIG. 10

illustrates the second embodiment of this invention which is a stairway or staircase. This staircase includes two primary members, namely, a plurality of stair tread members


50


, and a pair of opposed stringers


68


. Beginning first with a discussion of the stair tread members


50


, one of which is shown in

FIG. 8

, each includes a wearing surface


52


, a front flange


54


, a rear flange


56


, and a pair of opposed side flanges


58


. A pair of diagonally opposed stress lines


60


may be formed on the wearing surface


52


to add bending strength. A plurality of holes


62


may be drilled in side flanges


58


in order to receive fasteners, as further discussed below.





FIG. 9

illustrates a stair tread member


50


prior to being bent into shape. Corner sections


64


are removed which enable the sheet of material to be bent along bend lines


66


. Bending may be achieved by a standard metal break machine. Preferably, holes


62


are drilled prior to bending the member


50


into shape. Stress lines


60


are also formed during the metal break operation. Thus, it is clear that stair tread members


50


may be formed simply from rectangular sheets of metal. After bending, corners


67


may secured as by welding, or other well known means.





FIG. 10

illustrates the staircase assembled, and further shows three ways in which stair tread members


50


may be mounted to the pair of stringers


68


. Stringers


68


may be of any well-known construction to include cut pieces of lumber, or cut pieces of heavy gauge metal. The stringers


68


each have inner surfaces


70


, outer surfaces


72


, and upper surfaces defined by a plurality of continuous rises


74


and runs


76


. The details of how the most upper stair tread member


50


attaches to the stringers


68


is shown in FIG.


11


. In this case, the stair tread member


50


is mounted over the outside surfaces


72


of stringers


68


. Side flanges


58


are placed over outer surfaces


72


. In order to allow the stair tread member


50


to fit over runs


76


, slots are cut out of the rear flange


56


near the rear corners at least a width as wide as the width of run


76


. In

FIG. 11

, the width of the slot removed is shown as width


78


. As needed, fasteners


79


are then used to secure the stair tread member


50


.




An alternate manner in which to mount a stair tread member


50


to the stringers


68


is through an inside mount. This is shown in

FIG. 12

wherein side flanges


58


are secured to the inner surfaces


70


of stringers


68


. Fasteners


79


may also be used to secure the connection. Thus, the method shown in

FIG. 12

requires the stair tread member


50


to be slightly shorter in length to accommodate the smaller gap between the inner surfaces


70


of the opposed stringers


68


.





FIG. 13

shows yet another manner in which the stair tread members


50


may be secured to the stringers


68


. As shown, this is also an inside mount, but further includes the use of L-shaped brackets


80


which help to stabilize the connection. As shown, L brackets


80


are placed between side flanges


58


and inner surfaces


70


. Fasteners


79


may also be used to secure the connection.




Although

FIG. 10

does not illustrate the use of risers, it shall be understood that risers can also be used. Riser repair member


12


of the first embodiment may be modified to simply eliminate flange


22


, resulting in a rectangular shaped member. This rectangular shaped member may be sized to fit the particular rise


74


, and then secured thereto, either by fastener


79


or adhesive. Stair tread members


50


are made of the same composite construction shown in FIG.


7


. If risers are used in this second embodiment, then they can be coated in the same manner as the riser repair members


12


of the first embodiment.




Both the first and second embodiments illustrate staircases with risers that include continuous rises and runs. However, it shall be clearly understood that both the first and second embodiments can be used with any type of stringers to include those which do not have continuous rises and runs, but have continuous flat upper surfaces. For these types of stringers, the stair tread members of the second embodiment must utilize an inside mount.




In practice, it has been found that stair tread repair members


10


and stair tread members


50


can be made of 18 gauge metal which provide adequate strength to resist undue deformation or bending. It has also been found that riser repair members


12


may be made of a thinner gauge steel, such as 24 gauge. In heavy traffic areas, it has also been found that 16 gauge metal is acceptable for stair tread members


50


. Examples of commercially available polyurethane spray coatings which may be used with this invention include Bullhide™ manufactured by Bullhide, Inc.




The specific amount of coatings applied to the components may vary as desired. In practice, it has been found that the lower surfaces of the components are adequately covered with a 60 mil covering, and the upper surfaces are adequately covered with an 80 mil coating. For the second coating applied over the dispersed layer of particles, 40 mils has been found to be adequate. The polyurethane spray will adequately dry and cure by air drying. No heat treatment is required.




For the first embodiment, there is no requirement that the wearing surfaces of the existing staircase be repaired or otherwise prepared. For example, damage to the stair treads in the form of holes or other imperfections do not have to be filled prior to installing the invention. Because the invention includes continuous sheets of high strength material, they are able to cover imperfections in the underlying surfaces yet provide the desired walking or wear surfaces. Of course, if the existing staircase is structurally unstable, it must be repaired prior to installing the invention.




One clear advantage of the invention is the simplicity of its construction. The components making up each of the embodiments are simply bent sheets of metal encapsulated within a synthetic coating. An integral slip-free tread surface is formed directly on the first coating. The invention may also be adapted for use with literally any type of staircase or stairway requirement. Each of the components may be sized and bent to specifications without altering the general principles of the invention. Furthermore, the invention can be constructed with relatively simple machinery and processes. A standard metal break machine may be used to bend the components to desired shapes. Polyurethane as a spray coating is readily available and can be applied with standard industrial sprayers. Since no heat treating is required, the polyurethane coatings may simply air dry. Any number of differing types of particles may be used to create the slip-free wearing surfaces. Depending upon the application, the particles may be applied in a mixture, or by themselves in a homogeneous layer. Yet another advantage of this invention is the ease with which it is installed. Standard fasteners such as screws or bolts are used to assemble the components, along with adhesive or glue, as necessary. No special tools are required for assembly, and the components are easily shipped and stored.




A heating assembly


90


is shown in

FIGS. 14-16

which is intended to melt ice and snow that accumulates on stair tread


26


. A riser


12


having a vertical riser surface


28


and an outwardly projecting flange


22


are incorporated in the stairway, as previously described. The heating assembly


90


is in contiguous contact with stair tread


26


. As best seen in

FIG. 16

, it has a metal stair tread member


92


. A strip heater


94


is attached to and is held in contact with the bottom surface of stair tread member


92


by means of a gasket


96


. As can be seen, the strip heater


94


is tapered at the peripheral edge and gasket


96


, which extends around the peripheral edge of strip heater


94


, provides a thickness which is substantially the same as the body of strip heater


94


so that the heater assembly


90


is substantially flat along its bottom surface and rests firmly on stair tread


26


without rocking.




Advantageously, a first covering


98


of synthetic material encapsulate the upper horizontal surface of stair tread member


92


along with strip heater


94


and gasket


96


on the bottom surface of stair tread member


92


. A dispersed layer of particles


100


are placed on the upper surface of first covering


98


. A second covering


102


is placed on the dispersed layer of particles


100


encapsulating them between first covering


98


and second covering


102


. When strip heater


94


is heated, the heat is transferred by conduction through metal stair tread member


92


and then through first covering


98


, the dispersed layer of particles


100


and second covering


102


to melt the ice and snow.




A thermostat


104


is mounted in a convenient location, such as on the side of the stairway, as shown in FIG.


14


. The thermostat is connected by means of an outlet


106


to a suitable power source (not shown). The thermostat


104


has electrical conduits


108


which run to the respective heating assemblies


90


on each step. Conveniently, a wire


110


extends from the end of each strip heater


94


and terminates in a connector


112


which plugs into a receptacle


114


in each conduit


108


.




Thermostat


104


selectively supplies electric current to the strip heaters


94


in response to changes in ambient temperature. Additionally, thermostat


104


has multiple settings which are manually selected for providing different selected current levels to the strip heaters


94


in response to the changes sensed by temperature sensing element


105


which senses ambient temperature and is in electrical communication with the thermostat


104


, as shown in FIG.


14


. The thermostat selectively supplies a greater or lesser amount of current depending on its manual setting in contemplation of the expected ambient temperature and the location of the stairway. In other words, a greater amount of current is required if the ambient temperature is expected to be below 0 degrees Fahrenheit than if it is expected to be 25 degrees Fahrenheit. Similarly, if the stairway is on the north side of a building or in a shady area, more current is required than if it is in a sunny area.




This invention has been described in detail with reference to particular embodiments thereof, but it will be understood that various other modifications can be affected within the spirit and scope of this invention.



Claims
  • 1. A method of assembling a staircase repair device incorporating a heating element for installation on an existing stairway, said method comprising the steps of:providing an existing staircase, including at least one stair tread; providing a stair tread repair member which is substantially coextensive with the existing stair tread; attaching a stair tread repair member to the existing stair tread, the stair tread repair member having an upper surface and a bottom surface; attaching a heating element to the bottom surface of the stair tread repair member so that the heating element is in surface contact with the bottom surface; encapsulating the stair tread repair member and the heating element in a first covering of synthetic material to form a heating assembly; electrically connecting the heating element to a source of current; and supplying current to the heating element in response to a predetermined ambient temperature.
  • 2. A method, as claimed in claim 1, wherein after the encapsulating step:dispersing a layer of particles on the first covering at the upper surface; placing a second layer of synthetic material on the dispersed layer of particles to encapsulate the dispersed layer of particles between the first and second coverings to form a wear surface.
  • 3. A method, as claimed in claim 1, including the further step of:attaching the heating element by means of a peripheral gasket extending therearound so that the heating element is in contact with the bottom surface of the stair tread repair member.
  • 4. A method, as claimed in claim 1, wherein said step of supplying current includes:electrically connecting a thermostat to the strip heater and to a source of current; and sensing the ambient temperature with a temperature sensing element in electrical communication with the thermostat wherein the thermostat selectively supplies the current to the strip heater based on sensed ambient temperature.
  • 5. A method, as claimed in claim 4, including the further step of:using the thermostat to manually select different current levels to the provided to the strip heater in response to temperature changes at preselected ambient temperature levels.
  • 6. In combination, an existing staircase and a heat regulated stair tread repair assembly, said combination comprising:a staircase including a plurality of stairs; a heat regulated stair tread repair member including; (i) at least one stair tread repair member mounted to said staircase, said repair member having an upper surface and a bottom surface; (ii) a heating element mounted to said stair tread repair member; and (iii) a covering of synthetic material placed on at least said upper surface and said bottom surface of said stair tread repair member.
  • 7. The combination of an existing staircase and a heat regulated stair tread repair assembly, as claimed in claim 6, further including:a dispersed layer of particles placed on said first covering at said upper surface; and a second covering of synthetic material placed on said dispersed layer of particles encapsulating said dispersed layer of particles between said first and second coverings to form a wear surface.
  • 8. The combination of an existing staircase and a heat regulated stair tread repair assembly, as claimed in claim 6, further including:a gasket extending around said peripheral edge of said heating element attaching said heating element to said bottom surface of said stair tread repair member.
  • 9. The combination of an existing staircase and a heat regulated stair tread repair assembly, as claimed in claim 6, further including:a thermostat electrically connected to said heating element and connectable to a power source for selectively supplying electric current to said heating element in response to changes in ambient temperature.
  • 10. The combination of an existing staircase and a heat regulated stair tread repair assembly, as claimed in claim 6, further including:a temperature sensing element in electrical communication with said thermostat wherein said thermostat selectively supplies the current to said heating element.
  • 11. The combination of an existing staircase and a heat regulated stair tread repair assembly, as claimed in claim 6, wherein:said thermostat has multiple settings which are manually selected for providing different selected current levels to said heating element in response to temperature changes at preselected ambient temperature levels.
Parent Case Info

This application is a continuation-in-part application of U.S. Ser. No. 09/311,526, filed May. 13, 1999, and entitled “Staircase, Staircase Repair and Methods of Fabricating Same”.

US Referenced Citations (14)
Number Name Date Kind
1458708 Jeppson Jun 1923 A
1536895 Lindyberg May 1925 A
2193146 Skeel et al. Mar 1940 A
2844696 Custer Jul 1958 A
4783939 Bergmann et al. Nov 1988 A
4967057 Bayless et al. Oct 1990 A
4985095 Riddle Jan 1991 A
5357724 Sonoda Oct 1994 A
5380988 Dyer Jan 1995 A
5475951 Litzow Dec 1995 A
5550350 Barnes Aug 1996 A
5660009 Cousin Aug 1997 A
5799448 Dunk Sep 1998 A
6318033 Birch et al. Nov 2001 B1
Continuation in Parts (1)
Number Date Country
Parent 09/311526 May 1999 US
Child 09/735390 US