This invention relates generally to heating pads that can be selectively applied to various surfaces for effective heating.
Conventionally, permanent structures (such as concrete structures) can be provided with heating devices that are imbedded within the structures. Thus, after the structure is completed, it is not possible to access or reposition the heating devices. There is a need for improved systems and methods for selectively and externally heating various structures.
Disclosed herein is a heating pad having at least one heating element positioned within an encapsulation layer (optionally, a waterproof encapsulation layer) that defines an outer surface of the heating pad. Each heating element can have a carbon fiber tape layer and a conductive sheath surrounding the carbon fiber tape layer. Optionally, the heating element can have an electrically insulating material positioned between the carbon fiber tape layer and the conductive sheath. Optionally, the at least one heating element can have a plurality of heating sections. Optionally, the plurality of heating sections can form a continuous structure within the heating pad. Optionally, the heating pad comprises a thermally conductive material positioned between the plurality of heating sections, with the at least one heating element and the thermally conductive material defining a heating layer. The outer surface of the heating pad can comprise a contact portion and an opposing base portion, and the contact portion can be adjacent to the heating layer and configured to permit transfer of heat from the plurality of heating sections to the contact portion. Optionally, the heating pad can further comprise an insulation layer positioned between the base portion and the heating layer.
Also disclosed are methods for securing an electrode to a carbon fiber tape layer. Such methods can include: bending a first end portion of a first conductive plate toward a base portion of the first conductive plate such that the end portion and the base portion of the first conductive plate define a receiving space; inserting a first end portion of a carbon fiber tape layer within the receiving space of the first conductive plate; further bending the first end portion of the first conductive plate to compress the end portion of the carbon fiber tape layer within the receiving space of the first conductive plate; and bending a second, opposed end portion of the first conductive plate over the first end portion of the first conductive plate to form a first electrode. The disclosed method can be repeated on the opposing side of the carbon fiber tape layer to form a second electrode.
After the electrodes are formed using the carbon fiber tape layer, additional steps as further disclosed herein can be followed to produce a heating pad.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the disclosed apparatus, system, and method and together with the description, serve to explain the principles of the disclosed apparatus, system, and method.
The present invention can be understood more readily by reference to the following detailed description, which include examples, drawings, and claims. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this invention is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, as such can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description of the invention is provided as an enabling teaching of the invention in its best, currently known embodiment. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the invention described herein, while still obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present invention are possible and can even be desirable in certain circumstances and are a part of the present invention. Thus, the following description is provided as illustrative of the principles of the present invention and not in limitation thereof.
As used throughout, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an electrode” can include two or more such electrodes unless the context indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. Finally, it should be understood that all of the individual values and sub-ranges of values contained within an explicitly disclosed range are also specifically contemplated and should be considered disclosed unless the context specifically indicates otherwise. The foregoing applies regardless of whether in particular cases some or all of these embodiments are explicitly disclosed.
Optionally, in some aspects, when values or characteristics are approximated by use of the antecedents “about,” “substantially,” or “generally,” it is contemplated that values within up to 15%, up to 10%, up to 5%, or up to 1% (above or below) of the particularly stated value or characteristic can be included within the scope of those aspects.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed apparatus, system, and method belong. Although any apparatus, systems, and methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present apparatus, system, and method, the particularly useful methods, devices, systems, and materials are as described.
Throughout the description and claims of this specification, the word “comprise” and variations of the word, such as “comprising” and “comprises,” means “including but not limited to,” and is not intended to exclude, for example, other additives, components, integers or steps. In particular, in methods stated as comprising one or more steps or operations it is specifically contemplated that each step comprises what is listed (unless that step includes a limiting term such as “consisting of”), meaning that each step is not intended to exclude, for example, other additives, components, integers or steps that are not listed in the step.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
Disclosed herein, in exemplary aspects, are heating pads and methods of making such heating pads. As further described below, the disclosed heating pads can be placed directly underneath a concrete structure, or applied to any vertical or horizontal surface or structure for effective heating. The disclosed heating pads can promote and provide uniform heat transfer in a desired direction. During formation of the heating pads, electrodes can be formed on end portions of a carbon fiber tape layer that serves as the heating element within the heating pad. Wire connections can apply current to the carbon fiber tape layer through the electrodes, and the carbon fiber tape layer can generate heat that is transferred through the heating pad to a desired structure or surface. Various layouts of the carbon fiber tape layer and insulating materials can be employed within the heating pads.
With reference to
In further aspects, the encapsulation layer can comprise an electrically insulating material as is known in the art. Optionally, in these aspects, the encapsulation layer can comprise self-fusing tape, such as ARLON silicon self-fusing tape (Rogers Corporation).
In exemplary aspects, at least one heating element 12 (optionally, each heating element) can have an insulation layer (electrically insulating material 28) positioned between the carbon fiber tape layer 20 and the conductive sheath 26. In use, the electrically insulating material 28 can isolate the at least one heating element from the conductive, grounding sheath 26 as disclosed herein. In exemplary aspects, the electrically insulating material 28 can comprise electrical insulation paper (e.g., “fish paper”) or electrical insulation film as is known in the art. For example, the insulation layer 50 can comprise vulcanized cellulose fiber.
As shown in
In exemplary aspects, and as shown in
In further exemplary aspects, the outer surface 32 of the heating pad 10 can comprise a contact portion 34 and an opposing base portion 36. In these aspects, the contact portion 34 can be adjacent the heating layer 40 and configured to permit transfer of heat from the plurality of heating sections 14 to the contact portion, which can be placed in direct contact with a selected structure or surface (a substrate as further described herein).
Optionally, as depicted in
Optionally, as shown in
As shown in
As shown in
In exemplary aspects, the heating pad can comprise a plurality of electrodes 60. In these aspects, it is contemplated that a respective electrode of the plurality of electrodes can be secured to the end portion of each of said end portions 22, 24 of the carbon fiber tape layer 20. Exemplary methods for securing electrodes 60 to the end portion of the carbon fiber tape layer 20 are described further herein. In additional aspects, the heating pad 10 can further comprise a plurality of wires 70. In these aspects, at least one wire of the plurality of wires 70 can be electrically connected to each respective electrode of the plurality of electrodes 60. In further aspects, it is contemplated that the end portions 22, 24 of the carbon fiber tape layer 20 can be defined, respectively, by a first heating section of the plurality of parallel heating sections 16 and a second heating section of the at least one transverse heating section 18.
In use, it is contemplated that the heating pad 10 can provide heat to one or more structures within a system 100. In exemplary aspects, and with reference to
Methods of using the disclosed heating pad can comprise securing the heating pad in contact with a substrate and delivering current to the carbon fiber tape layer of the heating pad to transfer heat to the substrate. In some exemplary aspects, it is contemplated that the heating pad can be used in deicing applications. More particularly, in these aspects, the heating pad can be positioned under or within structures having an outer surface where ice or snow accumulates, and the heating pad can be used to melt the ice or snow. In further aspects, it is contemplated that the heating pad can be electrically and communicatively connected to an electrical controller/generator as is known in the art.
In exemplary aspects, and with reference to
Optionally, it is contemplated that the conductive plate can comprise copper.
Optionally, with reference to
In order to form a second electrode, the method can be repeated on the opposing side of the carbon fiber tape layer. More particularly, the method can further comprise bending a first end portion of a second conductive plate toward a base portion of the second conductive plate such that the end portion and the base portion of the second conductive plate define a receiving space. The method can further comprise inserting a first end portion of a carbon fiber tape layer within the receiving space of the second conductive plate. The method can still further comprise further bending the first end portion of the second conductive plate to compress the end portion of the carbon fiber tape layer within the receiving space of the second conductive plate. The method can still further comprise bending a second, opposed end portion of the second conductive plate over the first end portion of the first conductive plate to form a second electrode.
Optionally, prior to bending of the end portions of the conductive plate, it is contemplated that an inner surface of the conductive plate can be coated with an electrically conductive gel 95 as is known in the art (optionally, an electrode gel), which can comprise electrically conductive polymers.
In exemplary aspects, and with reference to
In additional aspects, and with reference to
In further aspects, the method can comprise connecting electrical wiring configured to supply power to at least one of the first and second electrodes. Optionally, as shown in
In still further aspects, and with reference to
Optionally, prior to positioning the carbon fiber tape layer over the first conductive sheath layer, the method can comprise positioning electrically insulating material on the first conductive sheath layer. In these aspects, positioning the carbon fiber tape layer over the first conductive sheath layer can comprise positioning the carbon fiber tape layer on the electrically insulating material positioned on the first conductive sheath layer. Optionally, prior to positioning the second conductive sheath layer over the carbon fiber tape layer, the method can further comprise positioning electrically insulating material on the carbon fiber tape layer. In these aspects, positioning the second conductive sheath layer over the carbon fiber tape layer can comprise positioning the second conductive sheath layer on the electrically insulating material positioned on the carbon fiber tape layer. Thus, it is contemplated that the two layers of electrically insulating material can cooperate to define a single layer of electrically insulating material that circumferentially surrounds the carbon fiber tape layer and is circumferentially surrounded by the conductive sheath. In further aspects, and as shown in
In additional aspects, the method can further comprise connecting a grounding wire 70c to one or more of the first and second conductive sheath layers through the first electrode.
In additional aspects, the method can comprise applying an encapsulation layer over the heating element to define an outer surface of a heating pad. In these aspects, it is contemplated that the heating element can be positioned within the encapsulation layer. It is further contemplated that the encapsulation layer can comprise an electrically insulating material. In further aspects, it is contemplated that the heating element can comprise a plurality of heating sections. Optionally, in these aspects, the plurality of heating sections can form a continuous structure within the heating pad.
In still further aspects, the method can comprise positioning a thermally conductive material between the plurality of heating sections. In these aspects, as further disclosed herein, the thermally conductive material and the heating element can cooperate to define a heating layer.
In exemplary aspects, the outer surface of the heating pad can comprise a contact portion and an opposing base portion. In these aspects, the contact portion can be adjacent the heating layer and configured to permit transfer of heat from the plurality of heating sections to the contact portion. Optionally, prior to applying the encapsulation layer, the method can further comprise positioning an insulation layer between the base portion of the outer surface of the heating pad and the heating layer. In these aspects, it is contemplated that the insulation layer between the base portion of the outer surface of the heating pad and the heating layer comprises a thermally reflective material.
Optionally, in further exemplary aspects, the plurality of heating sections can comprise a plurality of parallel heating sections that are oriented substantially parallel to one another. Optionally, in these aspects, the plurality of heating sections further can comprise at least one transverse heating section oriented substantially perpendicular to the plurality of parallel heating sections. In these aspects, it is contemplated that at least two of the parallel heating sections are connected together via a transverse heating section. In still further aspects, the first and second electrodes can be secured, respectively, to a first heating section of the plurality of parallel heating sections and a second heating section of the at least one transverse heating section.
Forming reliable electrodes at the ends of a carbon fiber tape is a challenging task. Described below with reference to
(a) As shown in
(b) As shown in
(c) As shown in
Steps a) through c) are performed on the other end of the carbon fiber tape to form the other electrode. As shown in
The following steps a) through e) illustrate how a heating pad having a single carbon fiber heating element can be fabricated. This method can be adapted for a heating element with multiple heating elements connected by a parallel circuit.
(a) As shown in
(b) As shown in
(c) As shown in
(d) As shown in
(e) As shown in
As shown in
In view of the described products, systems, and methods and variations thereof, herein below are described certain more particularly described aspects of the invention. These particularly recited aspects should not however be interpreted to have any limiting effect on any different claims containing different or more general teachings described herein, or that the “particular” aspects are somehow limited in some way other than the inherent meanings of the language literally used therein.
Aspect 1: A heating pad comprising: at least one heating element, each heating element having: a carbon fiber tape layer; and a conductive sheath surrounding the carbon fiber tape layer; and an encapsulation layer defining an outer surface of the heating pad, wherein the at least one heating element is positioned within the encapsulation layer.
Aspect 2: The heating pad of aspect 1, wherein each heating element has an electrically insulating material positioned between the carbon fiber tape layer and the conductive sheath.
Aspect 3: The heating pad of aspect 1 or aspect 2, wherein the encapsulation layer comprises an electrically insulating material.
Aspect 4: The heating pad of any one of aspects 1-3, wherein the at least one heating element comprises a plurality of heating sections.
Aspect 5: The heating pad of aspect 4, wherein the plurality of heating element sections form a continuous structure within the heating pad.
Aspect 6: The heating pad of aspect 5, further comprising a thermally conductive material positioned between the plurality of heating sections, wherein the at least one heating element and the thermally conductive material define a heating layer.
Aspect 7: The heating pad of aspect 6, wherein the outer surface of the heating pad comprises a contact portion and an opposing base portion, and wherein the contact portion is adjacent the heating layer and configured to permit transfer of heat from the plurality of heating sections to the contact portion.
Aspect 8: The heating pad of aspect 7, wherein the heating pad further comprises an insulation layer positioned between the base portion and the heating layer.
Aspect 9: The heating pad of aspect 8, wherein the insulation layer comprises a thermally reflective material.
Aspect 10: The heating pad of any one of aspects 7-9, wherein the plurality of heating sections comprises a plurality of parallel heating sections that are oriented substantially parallel to one another.
Aspect 11: The heating pad of aspect 10, wherein the plurality of heating sections further comprises at least one transverse heating section oriented substantially perpendicular to the plurality of parallel heating sections, wherein at least two of the parallel heating sections are connected together via a transverse heating section.
Aspect 12: The heating pad of any one of aspects 5-11, wherein the carbon fiber tape layer has opposing end portions that are proximate each other.
Aspect 13: The heating pad of aspect 12, further comprising an electrode secured to an end portion of the carbon fiber tape layer.
Aspect 14: The heating pad of aspect 13, further comprising at least one wire that is electrically connected to the electrode.
Aspect 15: The heating pad of aspect 12, further comprising a plurality of electrodes, wherein a respective electrode of the plurality of electrodes is secured to the end portion of each of said end portions of the carbon fiber tape layer.
Aspect 16: The heating pad of aspect 15, further comprising a plurality of wires, wherein at least one wire of the plurality of wires is electrically connected to each respective electrode of the plurality of electrodes.
Aspect 17: The heating pad of aspect 15 or aspect 16, wherein the end portions of the carbon fiber tape layer are defined, respectively, by a first heating section of the plurality of parallel heating sections and a second heating section of the at least one transverse heating section.
Aspect 18: The heating pad of aspect 17, further comprising a termination block, wherein the end portions of the carbon fiber tape layer are secured to the termination block.
Aspect 19: A system comprising: a substrate; and the heating pad of any one of aspects 1-18, wherein the heating pad is secured in contact with the substrate.
Aspect 20: The system of aspect 19, wherein the substrate is a concrete structure.
Aspect 21: The system of aspect 19 or aspect 20, wherein the substrate is a vertical structure.
Aspect 22: The system of aspect 19 or aspect 21, wherein the substrate is a horizontal structure.
Aspect 23: A method of using the heating pad of any one of aspects 1-18, comprising: securing the heating pad in contact with a substrate; and delivering current to the carbon fiber tape layer of the heating pad to transfer heat to the substrate.
Aspect 24: A method comprising: bending a first end portion of a first conductive plate toward a base portion of the first conductive plate such that the end portion and the base portion of the first conductive plate define a receiving space; inserting a first end portion of a carbon fiber tape layer within the receiving space of the first conductive plate; further bending the first end portion of the first conductive plate to compress the end portion of the carbon fiber tape layer within the receiving space of the first conductive plate; bending a second, opposed end portion of the first conductive plate over the first end portion of the first conductive plate to form a first electrode.
Aspect 25: The method of aspect 24, wherein the conductive plate comprises copper.
Aspect 26: The method of aspect 24 or aspect 25, wherein the first end portion, the second end portion, and the base portion of the first conductive plate have substantially equal lengths.
Aspect 27: The method of any one of aspects 24-26, further comprising: bending a first end portion of a second conductive plate toward a base portion of the second conductive plate such that the end portion and the base portion of the second conductive plate define a receiving space; inserting a first end portion of a carbon fiber tape layer within the receiving space of the second conductive plate; further bending the first end portion of the second conductive plate to compress the end portion of the carbon fiber tape layer within the receiving space of the second conductive plate; and bending a second, opposed end portion of the second conductive plate over the first end portion of the first conductive plate to form a second electrode.
Aspect 28: The method of aspect 27, further comprising: forming at least one hole through a portion of a thickness of each of the first and second electrodes, wherein the hole is configured to receive electrical wiring.
Aspect 29: The method of aspect 27 or aspect 28, further comprising: positioning a first conductive sheath layer in a desired layout; and positioning the carbon fiber tape layer over the first conductive sheath layer such that the carbon fiber tape layer is supported in a desired pattern.
Aspect 30: The method of aspect 29, further comprising: connecting electrical wiring configured to supply power to at least one of the first and second electrodes.
Aspect 31: The method of aspect 29 or aspect 30, further comprising: securing the first and second electrodes to a termination block.
Aspect 32: The method of aspect 30 or aspect 31, further comprising: positioning a second conductive sheath layer over the carbon fiber tape layer to form a heating element.
Aspect 33: The method of aspect 32, further comprising: prior to positioning the carbon fiber tape layer over the first conductive sheath layer, positioning electrically insulating material on the first conductive sheath layer, wherein positioning the carbon fiber tape layer over the first conductive sheath layer comprises positioning the carbon fiber tape layer on the electrically insulating material positioned on the first conductive sheath layer.
Aspect 34: The method of aspect 33, further comprising: prior to positioning the second conductive sheath layer over the carbon fiber tape layer, positioning electrically insulating material on the carbon fiber tape layer, wherein positioning the second conductive sheath layer over the carbon fiber tape layer comprises positioning the second conductive sheath layer on the electrically insulating material positioned on the carbon fiber tape layer.
Aspect 35: The method of any one of aspects 32-34, further comprising: connecting a grounding wire to one or more of the first and second conductive sheath layers through the first electrode.
Aspect 36: The method of any one of aspects 32-35, further comprising: applying an encapsulation layer over the heating element to define an outer surface of a heating pad, wherein the heating element is positioned within the encapsulation layer.
Aspect 37: The method of aspect 36, wherein the encapsulation layer comprises an electrically insulating material.
Aspect 38: The method of aspect 36 or aspect 37, wherein the heating element comprises a plurality of heating sections.
Aspect 39: The method of aspect 38, wherein the plurality of heating sections form a continuous structure within the heating pad.
Aspect 40: The method of aspect 39, further comprising: positioning a thermally conductive material between the plurality of heating sections, wherein the thermally conductive material and the heating element cooperate to define a heating layer.
Aspect 41: The method of aspect 40, wherein the outer surface of the heating pad comprises a contact portion and an opposing base portion, and wherein the contact portion is adjacent the heating layer and configured to permit transfer of heat from the plurality of heating sections to the contact portion.
Aspect 42: The method of any one of aspects 36-41, further comprising: prior to applying the encapsulation layer, positioning an insulation layer between the base portion of the outer surface of the heating pad and the heating layer.
Aspect 43: The method of aspect 42, wherein the insulation layer between the base portion of the outer surface of the heating pad and the heating layer comprises a thermally reflective material.
Aspect 44: The method of any one of aspects 39-43, wherein the plurality of heating sections comprises a plurality of parallel heating sections that are oriented substantially parallel to one another.
Aspect 45: The method of aspect 44, wherein the plurality of heating sections further comprise at least one transverse heating section oriented substantially perpendicular to the plurality of parallel heating sections, wherein at least two of the parallel heating sections are connected together via a transverse heating section.
Aspect 46: The method of aspect 45, wherein the first and second electrodes are secured, respectively, to a first heating section of the plurality of parallel heating sections and a second heating section of the at least one transverse heating section.
Although several embodiments of the invention have been disclosed in the foregoing specification and the following appendices, it is understood by those skilled in the art that many modifications and other embodiments of the invention will come to mind to which the invention pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the invention is not limited to the specific embodiments disclosed herein, and that many modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the described invention, nor the claims which follow.
This application claims priority to and the benefit of the filing date of U.S. Provisional Patent Application No. 63/037,940, filed Jun. 11, 2020, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/037027 | 6/11/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63037940 | Jun 2020 | US |