The disclosure relates to heating smokeable material.
Smoking articles such as cigarettes and cigars burn tobacco during use to create tobacco smoke. Attempts have been made to provide alternatives to these smoking articles by creating products which release compounds without creating tobacco smoke. Examples of such products are so-called heat-not-burn products which release compounds by heating, but not burning, tobacco.
According to the disclosure, there is provided an apparatus comprising a film heater configured to heat smokeable material to volatilize at least one component of the smokeable material for inhalation.
The film heater may be a polyimide film heater.
The heater may have a thickness of less than 1 mm.
The heater may have a thickness of less than 0.5 mm.
The heater may have a thickness of between approximately 0.2 mm and 0.0002 mm.
The apparatus may comprise thermal insulation integrated with the heater.
The apparatus may comprise thermal insulation lined with the heater.
The apparatus may comprise thermal insulation separated from the heater by a barrier. The barrier may comprise a layer of stainless steel.
The thermal insulation may comprise a core region which is evacuated to a lower pressure than an exterior of the insulation.
Wall sections of the insulation either side of the core region may converge to a sealed gas outlet.
A thickness of the insulation may be less than approximately 1 mm.
A thickness of the insulation may be less than approximately 0.1 mm.
A thickness of the insulation may be between approximately 1 mm and 0.001 mm.
The apparatus may comprise a mouthpiece for inhaling volatized components of the smokeable material.
The apparatus may be configured to heat the smokeable material without combusting the smokeable material.
In accordance with the disclosure, there is provided a method of manufacturing the apparatus and a method of heating smokeable material using the apparatus.
The insulation may be located between a smokeable material heating chamber and an exterior of the apparatus to reduce heat loss from heated smokeable material.
The insulation may be located co-axially around the heating chamber.
The smokeable material heating chamber may comprise a substantially tubular heating chamber and the insulation may be located around a longitudinal surface of the tubular heating chamber.
The insulation may comprise a substantially tubular body of insulation located around the heating chamber.
The smokeable material heating chamber may be located between the insulation and a heater.
A heater may be located between the smokeable material heating chamber and the insulation.
The insulation may be located externally of the heater.
The heater may be located co-axially around the heating chamber and the insulation may be located co-axially around the heater.
The insulation may comprise an infra-red radiation-reflective material to reduce the propagation of the infra-red radiation through the insulation.
The insulation may comprise an exterior wall which encloses the core region.
An internal surface of the wall may comprise an infra-red radiation-reflective coating to reflect infra-red radiation within the core region.
The wall may comprise a layer of stainless steel having a thickness of at least approximately 100 microns.
Wall sections either side of the core region may be connected by a joining wall section which follows an indirect path between the sections either side of the core region.
A pressure in the core region may be between approximately 0.1 and approximately 0.001 mbar.
A heat transfer coefficient of the insulation may be between approximately 1.10 W/(m2K) and approximately 1.40 W/(m2K) when a temperature of the insulation is in a range of from 150 degrees Celsius to 250 degrees Celsius.
The core region may comprise a porous material.
The converging wall sections may converge in an end region of the insulation. The heater may be electrically-powered.
For exemplary purposes only, embodiments of the disclosure are described below with reference to the accompanying figures in which:
As used herein, the term ‘ smokeable material’ includes any material that provides volatilized components upon heating and includes any tobacco-containing material and may, for example, include one or more of tobacco, tobacco derivatives, expanded tobacco, reconstituted tobacco or tobacco substitutes.
An apparatus 1 for heating smokeable material comprises an energy source 2, a heater 3 and a heating chamber 4. The energy source 2 may comprise a battery such as a Li-ion battery, Ni battery, Alkaline battery and/or the like, and is electrically coupled to the heater 3 to supply electrical energy to the heater 3 when required. The heating chamber 4 is configured to receive smokeable material 5 so that the smokeable material 5 can be heated in the heating chamber 4. For example, the heating chamber 4 may be located adjacent to the heater 3 so that thermal energy from the heater 3 heats the smokeable material 5 therein to volatilize aromatic compounds and nicotine in the smokeable material 5 without burning the smokeable material 5. A mouthpiece 6 is provided through which a user of the apparatus 1 can inhale the volatilized compounds during use of the apparatus 1. The smokeable material 5 may comprise a tobacco blend.
A housing 7 may contain components of the apparatus 1 such as the energy source 2 and heater 3. As shown in
The heater 3 may comprise a film heater 3 such as a film polyimide heater 3. An example is a heater 3 comprising KAPTON® polyimide film. Other materials could alternatively be used. The film heater 3 has high tensile strength and high resistance to tearing. The dielectric strength of the heater 3 may be approximately 1000 VAC. The film heater 3 has a small thickness, such as less than 1 mm, which can contribute significantly in reducing the size of the apparatus 1 compared to the use of other types of heaters. An example thickness of the film 3 is approximately 0.2 mm, although heaters 3 with smaller and larger thickness dimensions can alternatively be used. For example, the thickness of the film heater 3 may be as low as approximately 0.0002 mm. The power output of the heater 3 may be between approximately 5 W/cm2 and approximately 8 W/cm2, although the power output may be lower and may be controlled, as required, over time. The film heater 3 may optionally be transparent, thereby allowing easy inspection of its internal structure. Such ease of inspection may be beneficial for quality control and maintenance tasks. The film heater 3 may incorporate one or more etched foil heating elements for heating the smokeable material in the heating chamber 4. The operating temperature of the heater 3 may, for example, be up to approximately 260° The apparatus 1 may comprise a Resistance Temperature Detector (RTD) or a thermocouple for use with controlling the temperature of the heater 3. Sensors may be mounted to a surface of the heater 3, which are configured to send resistance measurements to a controller 12 so that the controller 12 can maintain or adjust the temperature of the heater 3 as required. For example, the controller 12 may cycle the heater 3 at a set temperature for a predetermined period of time or may vary the temperature in accordance with a heating regime. The controller 12 and examples of heating regimes are described in more detail below. The film heater 3 has a low mass and therefore its use can help to reduce the overall mass of the apparatus 1.
As shown in
For example, referring to
Referring to
As shown in
The heating regions 10 may each comprise an individual element of the heater 3. As shown in
In this way, when a particular one of the heating regions 10 is activated, it supplies thermal energy to the smokeable material 5 located adjacent, for example radially adjacent, the heating region 10 without substantially heating the remainder of the smokeable material 5. Referring to
Additionally or alternatively, the heater 3 may comprise a plurality of elongate, longitudinally extending heating regions 10 positioned at different locations around the central longitudinal axis of the heater 3. The heating regions 10 may be of different lengths, or may be of substantially the same length so that each extends along substantially the whole length of the heater 3.
The heated sections of smokeable material 5 may comprise longitudinal sections of smokeable material 5 which lie parallel and directly adjacent to the longitudinal heating regions 10. Therefore, as explained previously, the smokeable material 5 can be heated in independent sections.
As will be described further below, the heating regions 10 can each be individually and selectively activated.
The smokeable material 5 may be comprised in a cartridge 11 which can be inserted into the heating chamber 4. For example, as shown in
The housing 7 of the apparatus 1 may comprise an opening through which the cartridge 11 can be inserted into the heating chamber 4. The opening may, for example, comprise an opening located at the housing's second end 9 so that the cartridge 11 can be slid into the opening and pushed directly into the heating chamber 4. The opening is preferably closed during use of the apparatus 1 to heat the smokeable material 5. Alternatively, a section of the housing 7 at the second end 9 is removable from the apparatus 1 so that the smokeable material 5 can be inserted into the heating chamber 4. The apparatus 1 may optionally be equipped with a user-operable smokeable material ejection unit, such as an internal mechanism configured to slide used smokeable material off and/or away from the heater 3. The used smokeable material 5 may, for example, be pushed back through the opening in the housing 7. A new cartridge 11 can then be inserted as required.
As mentioned previously, the apparatus 1 may comprise a controller 12, such as a microcontroller 12, which is configured to control operation of the apparatus 1. The controller 12 is electronically connected to the other components of the apparatus 1 such as the energy source 2 and heater 3 so that it can control their operation by sending and receiving signals. The controller 12 is, in particular, configured to control activation of the heater 3 to heat the smokeable material 5. For example, the controller 12 may be configured to activate the heater 3, which may comprise selectively activating one or more heating regions 10, in response to a user drawing on the mouthpiece 6 of the apparatus 1. In this regard, the controller 12 may be in communication with a puff sensor 13 via a suitable communicative coupling. The puff sensor 13 is configured to detect when a puff occurs at the mouthpiece 6 and, in response, is configured to send a signal to the controller 12 indicative of the puff. An electronic signal may be used. The controller 12 may respond to the signal from the puff sensor 13 by activating the heater 3 and thereby heating the smokeable material 5. The use of a puff sensor 13 to activate the heater 3 is not, however, essential and other means for providing a stimulus to activate the heater 3 can alternatively be used. For example, the controller 12 may activate the heater 3 in response to another type of activation stimulus such as actuation of a user-operable actuator. The volatilized compounds released during heating can then be inhaled by the user through the mouthpiece 6. The controller 12 can be located at any suitable position within the housing 7. An example position is between the energy source 2 and the heater 3/heating chamber 4, as illustrated in
If the heater 3 comprises two or more heating regions 10 as described above, the controller 12 may be configured to activate the heating regions 10 in a predetermined order or pattern. For example, the controller 12 may be configured to activate the heating regions 10 sequentially along or around the heating chamber 4. Each activation of a heating region 10 may be in response to detection of a puff by the puff sensor 13 or may be triggered in an alternative way, as described further below.
Referring to
Instead of activating each heating region 10 in response to an individual puff, the heating regions 10 may alternatively be activated sequentially, one after the other, in response to a single, initial puff at the mouthpiece 6. For example, the heating regions 10 may be activated at regular, predetermined intervals over the expected inhalation period for a particular smokeable material cartridge 11. The inhalation period may, for example, be between approximately one and approximately four minutes. Therefore, at least the fifth and ninth steps S5, S9 shown in
It will be appreciated that activating individual heating regions 10 in order rather than activating the entire heater 3 means that the energy required to heat the smokeable material 5 is reduced over what would be required if the heater 3 were activated fully over the entire inhalation period of a cartridge 11. Therefore, the maximum required power output of the energy source 2 is also reduced. This means that a smaller and lighter energy source 2 can be installed in the apparatus 1.
The controller 12 may be configured to de-activate the heater 3, or reduce the power being supplied to the heater 3, in between puffs. This saves energy and extends the life of the energy source 2. For example, upon the apparatus 1 being switched on by a user or in response to some other stimulus, such as detection of a user placing their mouth against the mouthpiece 6, the controller 12 may be configured to cause the heater 3, or next heating region 10 to be used to heat the smokeable material 5, to be partially activated so that it heats up in preparation to volatilize components of the smokeable material 5. The partial activation does not heat the smokeable material 5 to a sufficient temperature to volatilize nicotine. A suitable temperature could be approximately 100°. In response to detection of a puff by the puff sensor 13, the controller 12 can then cause the heater 3 or heating region 10 in question to heat the smokeable material 5 further in order to rapidly volatilize the nicotine and other aromatic compounds for inhalation by the user. If the smokeable material 5 comprises tobacco, a suitable temperature for volatilizing the nicotine and other aromatic compounds may be between 150° and 250°. Therefore, an example full activation temperature is 250°. A super-capacitor can optionally be used to provide the peak current used to heat the smokeable material 5 to the volatization temperature. An example of a suitable heating pattern is shown in
Three example operational modes of the heater 3 are described below.
In a first operational mode, during full activation of a particular heating region 10, all other heating regions 10 of the heater are deactivated. Therefore, when a new heating region 10 is activated, the previous heating region is deactivated. Power is supplied only to the activated region 10.
Alternatively, in a second operational mode, during full activation of a particular heating region 10, one or more of the other heating regions 10 may be partially activated. Partial activation of the one or more other heating regions 10 may comprise heating the other heating region(s) 10 to a temperature which is sufficient to substantially prevent condensation of components such as nicotine volatized from the smokeable material 5 in the heating chamber 4. The temperature of the heating regions 10 which are partially activated is less than the temperature of the heating region which is fully activated. The smokeable material 10 located adjacent the partially activated regions 10 is not heated to a temperature sufficient to volatize components of the smokeable material 5.
Alternatively, in a third operational mode, once a particular heating region 10 has been activated, it remains fully activated until the heater 3 is switched off. Therefore, the power supplied to the heater 3 incrementally increases as more of the heating regions 10 are activated during inhalation from the cartridge 11. As with the second mode previously described, the continuing activation of the heating regions 10 substantially prevent condensation of components such as nicotine volatized from the smokeable material 5 in the heating chamber 4.
The apparatus 1 may comprise a heat shield 3a, which is located between the heater 3 and the heating chamber 4/smokeable material 5. The heat shield 3a is configured to substantially prevent thermal energy from flowing through the heat shield 3a and therefore can be used to selectively prevent the smokeable material 5 from being heated even when the heater 3 is activated and emitting thermal energy. Referring to
The heat shield 3a comprises a substantially heat-transparent window 3b which allows thermal energy to propagate through the window 3b and into the heating chamber 4 and smokeable material 5. Therefore, the section of smokeable material 5 which is aligned with the window 3b is heated whilst the remainder of the smokeable material 5 is not. The heat shield 3a and window 3b may be rotatable or otherwise moveable with respect the smokeable material 5 so that different sections of the smokeable material 5 can be selectively and individually heated by rotating or moving the heat shield 3a and window 3b. The effect is similar to the effect provided by selectively and individually activating the heating regions 10 referred to above. For example, the heat shield 3a and window 3b may be rotated or otherwise moved incrementally in response to a signal from the puff detector 13. Additionally or alternatively, the heat shield 3a and window 3b may be rotated or otherwise moved incrementally in response to a predetermined heating period having elapsed. Movement or rotation of the heat shield 3a and window 3b may be controlled by electronic signals from the controller 12. The relative rotation or other movement of the heat shield 3a/window 3b and smokeable material 5 may be driven by a stepper motor 3c under the control of the controller 12. This is illustrated in
It will be appreciated that a similar result can be obtained by rotating or moving the smokeable material 5 relative to the heater 3, heat shield 3a and window 3b. For example, the heating chamber 4 may be rotatable around the heater 3. If this is the case, the above description relating to movement of the heat shield 3a can be applied instead to movement of the heating chamber 4 relative to the heat shield 3a.
The heat shield 3a may comprise a coating on the longitudinal surface of the heater 3. In this case, an area of the heater's surface is left uncoated to form the heat-transparent window 3b. The heater 3 can be rotated or otherwise moved, for example under the control of the controller 12 or user controls, to cause different sections of the smokeable material 5 to be heated. Alternatively, the heat shield 3a and window 3b may comprise a separate shield 3a which is rotatable or otherwise moveable relative to both the heater 3 and the smokeable material 5 under the control of the controller 12 or other user controls.
The apparatus 1 may comprise air inlets 14 which allow external air to be drawn into the housing 7 and through the heated smokeable material 5 during puffing. The air inlets 14 may comprise apertures 14 in the housing 7 and may be located upstream from the smokeable material and heating chamber 4 towards the first end 8 of the housing 7. This is shown in
The compressor 16 is principally configured to compress the smokeable material 5 and thereby increase its density during heating. Compression of the smokeable material increases the thermal conductivity of the body of smokeable material 5 and therefore provides a more rapid heating and consequent rapid volatization of nicotine and other aromatic compounds. This is preferable because it allows the nicotine and aromatics to be inhaled by the user without substantial delay in response to detection of a puff. Therefore, the controller 12 may activate the compressor 16 to compress the smokeable material 5 for a predetermined heating period, for example one second, in response to detection of a puff. The compressor 16 may be configured to reduce its compression of the smokeable material 5, for example under the control of the controller 12, after the predetermined heating period. Alternatively, the compression may be reduced or automatically ended in response to the smokeable material 5 reaching a predetermined threshold temperature. A suitable threshold temperature may be in the range of approximately 150° to 250°, and may be user selectable. A temperature sensor may be used to detect the temperature of the smokeable material 5.
The expander 17 is principally configured to expand the smokeable material 5 and thereby decrease its density during puffing. The arrangement of smokeable material 5 in the heating chamber 4 becomes looser when the smokeable material 5 has been expanded and this aids the gaseous flow, for example air from the inlets 14, through the smokeable material 5. The air is therefore more able to carry the volatilized nicotine and aromatics to the mouthpiece 6 for inhalation. The controller 12 may activate the expander 17 to expand the smokeable material 5 immediately following the compression period referred to above so that air can be drawn more freely through the smokeable material 5. Actuation of the expander 17 may be accompanied by a user-audible sound or other indication to indicate to the user that the smokeable material 5 has been heated and that puffing can commence.
Referring to
The heater 3 may be integrated with the thermal insulation 18 mentioned previously. For example, referring to
The integration of the heater 3 with the thermal insulation 18 means that the heating regions are substantially surrounded by the insulation 18 on all sides of the heating regions 10 other than those which face inwardly towards the smokeable material heating chamber 4. As such, heat emitted by the heater 3 is concentrated in the smokeable material 5 and does not dissipate into other parts of the apparatus 1 or into the atmosphere outside the housing 7.
Integration of the heater 3 with the thermal insulation 18 may also reduce the thickness of the combination of heater 3 and thermal insulation 18. This can allow the diameter of the apparatus 1, in particular the external diameter of the housing 7, to be further reduced. Alternatively, the reduction in thickness provided by the integration of the heater 3 with the thermal insulation 18 can allow a wider smokeable material heating chamber 4 to be accommodated in the apparatus 1, or the introduction of further components, without any increase in the overall width of the housing 7.
Alternatively, the heater 3 may be adjacent the insulation 18 rather than being integrated into it. For example, if the heater 3 is located externally of the heating chamber 4, the insulation 18 may be lined with the film heater 3 around its inwardly-facing surface 21. If the heater 3 is located internally of the heating chamber 4, the insulation 18 may be lined with the film heater 3 on its outwardly-facing surface 22.
Optionally, a barrier may be present between the heater 3 and the insulation 18. For example, a layer of stainless steel may be present between the heater 3 and the insulation 18. The barrier may comprise a stainless steel tube which fits between the heater 3 and the insulation 18. The thickness of the barrier may be small so as not to substantially increase the dimensions of the apparatus. An example thickness is between approximately 0.1 mm and 1.0 mm.
Additionally, a heat reflecting layer may be present between the transverse surfaces of the heating regions 10. The arrangement of the heating regions 10 relative to each other may be such that thermal energy emitted from each one of the heating regions 10 does not substantially heat the neighboring heating regions 10 and instead travels predominately inwardly from the circumferential surface of the heating region 10 into the heating chamber 4 and smokeable material 5. Each heating region 10 may have substantially the same dimensions as the other regions 10.
The heater 3 may be bonded or otherwise secured in the apparatus 1 using pressure sensitive adhesive. For example, the heater 3 may be adhered to the insulation 18 or barrier referred to above using pressure sensitive adhesive. The heater 3 may alternatively be adhered to the cartridge 11 or an exterior surface of the smokeable material heating chamber 4.
As an alternative to the use of pressure sensitive adhesive, the heater 3 may be secured in position in the apparatus 1 using self-fusing tape or by clamps which clamp the heater 3 in place. All of these methods provide a secure fixing for the heater 3 and allow effective heat transfer from the heater 3 to the smokeable material 5. Other types of fixing are also possible.
The thermal insulation 18, which is provided between the smokeable material 5 and an external surface 19 of the housing 7 as described above, reduces heat loss from the apparatus 1 and therefore improves the efficiency with which the smokeable material 5 is heated. For example, referring to
Referring to
As shown in
The thermal insulation 18 may comprise hyper-deep vacuum insulation such as an INSULON®. Shaped-Vacuum Thermal Barrier as described in U.S. Pat. No. 7,374,063. The overall thickness of such insulation 18 may be extremely small. An example thickness is between approximately 1 mm and approximately 1 μm, such as approximately 0.1 mm, although other larger or smaller thicknesses are also possible. The thermally insulating properties of the insulation 18 are substantially unaffected by its thickness and therefore thin insulation 18 can be used without any substantial additional heat loss from the apparatus 1. The very small thickness of the thermal insulation 18 may allow the size of the housing 7 and apparatus 1 as a whole to be reduced beyond the sizes previously discussed and may allow the thickness, for example the diameter, of the apparatus 1 to be approximately equal to smoking articles such as cigarettes, cigars and cigarillos. The weight of the apparatus 1 may also be reduced, providing similar benefits to the size reductions discussed above.
Although the thermal insulation 18 described previously may comprise a gas-absorbing material to maintain or aid with creation of the vacuum in the core region 20, a gas absorbing material is not used in the deep-vacuum insulation 18. The absence of the gas absorbing material aids with keeping the thickness of the insulation 18 very low and thus helps to reduce the overall size of the apparatus 1.
The geometry of the hyper-deep insulation 18 allows the vacuum in the insulation to be deeper than the vacuum used to extract molecules from the core region 20 of the insulation 18 during manufacture. For example, the deep vacuum inside the insulation 18 may be deeper than that of the vacuum-furnace chamber in which it is created. The vacuum inside the insulation 18 may, for example, be of the order 10−7 Torr. Referring to
In order to evacuate the core region 20, the insulation 18 may be placed in a low pressure, substantially evacuated environment such as a vacuum furnace chamber so that gas molecules in the core region 20 flow into the low pressure environment outside the insulation 18. When the pressure inside the core region 20 becomes low, the tapered geometry of the core region 20, and in particular the converging sections 21, 22 referred to above, becomes influential in guiding remaining gas molecules out the core 20 via the outlet 25. Specifically, when the gas pressure in the core region 20 is low, the guiding effect of the converging inwardly and outwardly facing sections 21, 22 is effective to channel the remaining gas molecules inside the core 20 towards the outlet 25 and make the probability of gas exiting the core 20 higher than the probability of gas entering the core 20 from the external, low pressure environment. In this way, the geometry of the core 20 allows the pressure inside the core 20 to be reduced below the pressure of the environment outside the insulation 18.
Optionally, as previously described, one or more low emissivity coatings may be present on the internal surfaces of the inwardly and outwardly facing sections 21, 22 of the wall 19 in order to substantially prevent heat losses by radiation.
Although the shape of the insulation 18 is generally described herein as substantially cylindrical or similar, the thermal insulation 18 could be another shape, for example in order to accommodate and insulate a different configuration of the apparatus 1 such as different shapes and sizes of heating chamber 4, heater 3, housing 7 or energy source 2. For example, the size and shape of deep-vacuum insulation 18 such as an INSULON®. Shaped-Vacuum Thermal Barrier referred to above is substantially unlimited by its manufacturing process. Suitable materials for forming the converging structure described above include ceramics, metals, metalloids and combinations of these.
Referring to the schematic illustration in
To reduce heat losses due to the thermal bridge 23, the thermal bridge 23 may be extended to increase its resistance to heat flow from the inwardly-facing section 21 to the outwardly-facing section 22. This is schematically illustrated in
Referring to
The mass of the smokeable material 5 which is heated by the heater 3, for example by each heating region 10, may be in the range of 0.2 to 1.0 g. The temperature to which the smokeable material 5 is heated may be user controllable, for example to any temperature within the temperature range of 150° to 250° as previously described. The mass of the apparatus 1 as a whole may be in the range of 70 to 125 g, although the mass of the apparatus 1 can be lower when incorporating the film heater 3 and/or deep-vacuum insulation 18. A battery 2 with a capacity of 1000 to 3000 mAh and voltage of 3.7V can be used. The heating regions 10 may be configured to individually and selectively heat between approximately 10 and 40 sections of smokeable material for a single cartridge 11.
It will be appreciated that any of the alternatives described above can be used singly or in combination.
In order to address various issues and advance the art, the entirety of this disclosure shows by way of illustration various embodiments in which the claimed invention(s) may be practiced and provide for superior apparatus. The advantages and features of the disclosure are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and teach the claimed features. It is to be understood that advantages, embodiments, examples, functions, features, structures, and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilized and modifications may be made without departing from the scope and/or spirit of the disclosure. Various embodiments may suitably comprise, consist of, or consist essentially of, various combinations of the disclosed elements, components, features, parts, steps, means, etc. In addition, the disclosure includes other inventions not presently claimed, but which may be claimed in future.
The present application is a continuation application of U.S. patent application Ser. No. 17/247,987 filed Jan. 4, 2021, which is a continuation of application Ser. No. 14/382,198 filed Aug. 29, 2014, which in turn is a National Phase entry of PCT Application No. PCT/EP2013/057539, filed Apr. 11, 2013, which claims priority to GB 1207039.7, filed Apr. 23, 2012, all of which are hereby fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17247987 | Jan 2021 | US |
Child | 18392786 | US | |
Parent | 14382198 | Aug 2014 | US |
Child | 17247987 | US |