The invention relates to the heating/air conditioning installations that equip certain vehicles, such as automobiles, as well as certain buildings.
As is known to the person skilled in the art, certain heating/air conditioning installations include reversible heat pumps that are able to work both in a heating mode as well as in a cooling mode. In particular, for this effect, they comprise an internal condenser which, in the heating mode, contributes towards heating of interior air by exchange with a heated and pressurized refrigerant fluid, and an external evaporator which, in the heating mode, heats the cooled and depressurized refrigerant fluid by exchange with exterior air.
We will hereinafter understand “external” to indicate a device that is used in the heat exchange process with the exterior air (i.e. an external evaporator or an external pressure reducer that feeds an internal evaporator), and understand “internal” to indicate a device used in the heat exchange process with the interior air (such as for example an internal condenser or an internal evaporator or even an internal pressure reducer which is feeding an internal evaporator).
In the event in which it is cold or very cold, which is to say when the temperature of the exterior air is sub-zero or approaching zero degrees Celsius (0° C.), the contact between the exterior air and the partially cooled refrigerant, which comes from the internal condenser and which circulates in the external evaporator, frequently provokes icing of the external evaporator, which has a negative impact on the functioning and therefore renders the installation less effective.
Many solutions have been proposed to rectify this disadvantage.
Thus, a first solution, which is most notably described in the French Pat. No. FR 2525330, consists of associating conduits to the external evaporator that are dedicated to de-icing in which a heat transfer fluid coming from the cooling circuit (for example, from a vehicle motor) circulates. The disadvantage of this first solution lies in the fact that this requires an important modification of the external evaporator. Furthermore, it turns out to be very difficult to use when the heat transfer fluid is practically nonexistent or unavailable from an energy prospective in heating mode, as is notably the case in “all electric” or “hybrid” vehicles or in buildings.
A second solution, most notably described in the British Pat. No. GB 988874, consists of implanting the external evaporator within the same housing as the internal condenser, in such a manner that the external evaporator can be heated due to the refrigerant liquid that is circulating in the internal condenser. The disadvantage of this second solution lies in the fact that it is exceedingly inconvenient, or even impossible to implement in an automobile and has a negative impact on overall performance.
A third solution that is notably described in the U.S. Pat. No. 5,586,448 consists in the use of an additional electric radiator for the heating of a heat transfer fluid which circulates through the external evaporator. The disadvantage of this third solution lies in the fact that it requires not only a modification of the external evaporator, but also an additional electric heating device, which reveals itself to be very cumbersome and energy hungry (which is penalizing as regards range in the case of an electric or hybrid vehicle).
The object of the invention is therefore to propose a heating/air conditioning installation that does not present all or parts of the aforementioned disadvantages.
In particular, in this vein, a heating/air conditioning installation or system is provided that comprises:
The heating/air conditioning installation can also feature other characteristics that can be taken either separately or in combination, and more in particular:
The invention furthermore proposes a vehicle, such as an automobile, which features a heating/air conditioning installation of the type described here above.
DESCRIPTION OF THE FIGURES
Other characteristics and advantages of the invention will be revealed upon examination of the following detailed description, as well as from the attached drawings, in which:
The attached drawings can, as the case may be, help to complement the invention, as well as to contribute to its definition.
The purpose of the invention is that of proposing a reversible heat pump heating/air conditioning installation (IC).
We consider hereinafter as a non-exhaustive example, that the heating/air conditioning installation (IC) belongs to an automobile, such as for example, a car, such as the “full electric” or “hybrid” type. However, the invention is not limited to this application. It does in fact involve any reversible heat pump type heating/air conditioning installation, no matter whether it is destined to be installed in a vehicle or a building.
Two embodiments of heating/air conditioning installations IC, according to the invention, are schematically represented in
The heating/air conditioning installation IC is destined to work, as required, in heating or refrigeration mode. In particular, for this purpose, it features a compressor CP, an internal condenser CDI, an external pressure reducer DTE, an external evaporator EE, and an external condenser CDE that all are used, at least, in the heating mode.
The compressor CP heats and pressurizes a refrigerant fluid which, in heating mode, comes from the external evaporator EE.
The internal condenser CDI is only used in the heating mode. It contributes to the heating of the interior air (which here comes from the interior of the vehicle cabin) by exchange with the refrigerant fluid transformed into hot and pressurized gas by the compressor CP. At its outlet, it delivers a refrigerant fluid in liquid phase that has been partially cooled during exchange with the interior air.
In the example illustrated in
In the example illustrated in
Herein, “air heater” is understood to mean an air/liquid heat exchanger. Furthermore, one will note that the air heater AR can form part of the installation IC.
The external pressure reducer DTE is only used in the heating mode. It cools and depressurizes the refrigerant fluid which comes from the external condenser CDI, before it feeds the external evaporator EE. It delivers a depressurized and cooled liquid.
The external evaporator EE is only used in the heating mode. It is used in heating the refrigerant fluid (depressurized and cooled liquid) which comes from the external pressure reducer DTE, by exchange with the exterior air (cold), which is to say absorption of heat contained in the exterior air. It delivers a refrigerant fluid at the outlet, in gaseous and lightly heated phase, which is destined to feed the compressor CP.
The external condenser CDE is contiguous with the external evaporator EE.
Herein, “contiguous” is understood to be the fact of being in contact with the external evaporator EE, or in the immediate vicinity of the external evaporator, most typically within a few centimeters, or rather interlocked in the external evaporator EE.
The external condenser CDE, in heating mode, collects the refrigerant fluid, which comes from the internal condenser CDI, so as to feed together with this refrigerant fluid, the external pressure reducer DTE and constitutes a heat source for the contiguous external evaporator EE. One will then understand that this source of heat (which is made up of the external condenser CDE) is such that it will reduce the probability that the external evaporator EE will ice up in the presence of an exterior air whose temperature is low.
Herein, “reducing the probability of icing” is understood to be the fact of limiting, as much as is possible, the creation of icing as regards the external evaporator EE. Typically, icing up will only be able to occur in the presence of a low exterior temperature, with a high level of humidity and a low exterior air speed.
It is important to note that the heating of the external evaporator EE can be undertaken by thermal conduction, in the case of an interlocking, or mechanical contact, with the external condenser CDE, and/or by means of the exterior air which has been heated during its passing through the external condenser CDE (which requires that the external condenser be placed upstream of the external evaporator EE vis-â-vis the flow of exterior air, as illustrated).
One will note that the external condenser CDE and the external evaporator EE may constitute two contiguous sub-units (preferably, interlocking) of a single heat exchanger or two independent and contiguous heat exchangers.
One will also note that the external condenser CDE may also function in the cooling mode. In such a case, the installation must also include an internal pressure reducer DTI and an internal evaporator EI, as illustrated in
The internal pressure reducer DTI is only used in the cooling mode. It cools and pressurizes the refrigerant fluid (in liquid phase), which comes from the external condenser CDE, before it arrives at the internal evaporator EI.
The internal evaporator EI also is only used in the cooling mode. It is used to cool the interior air which passes through it by thermal exchange with the cooled and depressurized refrigerant fluid (in liquid phase) which comes from the internal pressure reducer DTI.
In the cooling mode, the external condenser CDE is used to pre-cool the refrigerant fluid (hot and pressurized gas), which comes from the compressor CP, by thermal exchange with the exterior air, so as to feed the internal pressure reducer DTI with pre-cooled refrigerant fluid (in liquid phase).
So as to facilitate the verification of the functioning of the installation IC, as well as to also limit its footprint, the heating/air-conditioning installation (IC) can include at least one of the three-way valves Vj, that are described here-below:
One will also note that, as is illustrated in a non-exhaustive manner in
The mode of heating of the installation IC is symbolized by arrows in
The cooling mode of the installation IC is symbolized by arrows in
The invention offers a certain number of advantages, amongst which:
The invention does not limit itself to methods of execution of the heating/air conditioning installation and of the vehicle described here above, in a non-exhaustive manner, but rather encompasses all variants that could be foreseen by the person skilled in the art within the framework of the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
1054015 | May 2010 | FR | national |
The present application is the US national stage under 35 U.S.C. §371 of International Application No. PCT/FR2011/050920 having an international filing date of Apr. 21, 2011, which claims the priority of French application 1054015 filed on May 25, 2010.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR11/50920 | 4/21/2011 | WO | 00 | 11/19/2012 |