The present invention relates to heavy duty pneumatic tires. More specifically, the present invention relates to heavy duty pneumatic tires that are to be mounted to trucks, buses, and the like.
For tires, for use in trucks and buses, to which heavy load is applied, attention is paid to stiffness in bead portions thereof. This is because deformation at the bead portions is increased under a load. Namely, the bead portions are deformed and deflected in the axially outward direction under a load. An end of a turned-up portion of a carcass ply is positioned near the mid-portion, in the radial direction, of a bead apex. According to market research, much damage at side portions of tires occurs near the ends of the turned-up portions in general.
On the other hand, reduction in weight of tires for use in trucks and buses is highly required in the market. As a method for reducing a weight of a heavy duty pneumatic tire, reduction in thickness of the bead apexes may be selected. The reduction in thickness of the bead apexes causes reduction in stiffness of the bead portions. Deflection of the bead portion in a direction outward of the tire is increased under a load. Namely, deformation of the bead portion is increased. As a result, movement of the end of the turned-up portion of the carcass ply is increased, whereby damage is more likely to occur. This is confirmed by a quantitative determination using a finite element method and a CT scan. A tire structure which does not reduce durability of bead portions even when the thickness of the bead apexes is reduced for, for example, reducing weight of tires, is strongly required.
A technique for solving the aforementioned problem has been suggested. The technique is associated with, for example, a radial tire for use in trucks and buses as disclosed in Japanese Patent No. 3643191. In this tire, side surface rubber portions of bead portions include curved concave portions with which curved convex portions at edges of flanges portions (hereinafter, referred to as rim flange) of a rim are engageable. The curved convex portion of the rim flange engages with and fits into the curved concave portion of the bead portion when an internal pressure and load are applied to the tire. As a result, a contact pressure between the curved concave portion of the bead portion and the curved convex portion of the rim flange may become uniform. Further, a creep change amount in the side surface rubber portion may be reduced.
In the technique described above, a radius of curvature of the curved concave portion of the bead portion is set so as to have a value approximate to a value of a radius of curvature of the curved convex portion of the rim flange, such that the curved convex portion of the rim flange fits well into the curved concave portion of the bead portion. As a result, when the tire is under a load and the bead portion is deflected outward, distortion is likely to concentrate on a portion (near a position of the end of the turned-up portion of the carcass ply) of the bead above a position at which the convex portion of the rim flange fits into the bead.
Patent Literature 1: Japanese Patent No. 3643191
The present invention is made in view of the above situation, and an object of the present invention is to provide a heavy duty pneumatic tire which can suppress reduction of durability of bead portions while allowing reduction in weight of bead apexes in order to reduce weight of the tire.
A heavy duty pneumatic tire according to the present invention includes:
a tread having an outer surface that forms a tread surface;
a pair of sidewalls that extends almost inward, in a radial direction, from ends, respectively, of the tread;
a pair of beads positioned almost inward of the sidewalls, respectively, in the radial direction; and
a clinch portion that extends from the sidewalls to the beads, in which
a concave curved surface extends on an outer surface of the clinch portion in a circumferential direction, and a convex curved surface formed on an outer side end, in the radial direction, of a rim flange is engageable with the concave curved surface,
a ratio R1/R of a radius of curvature R1 of the concave curved surface to a radius of curvature R of the convex curved surface of the rim flange, satisfies
1.7≦R1/R≦2.5, and
the radius of curvature R1 of the concave curved surface and the radius of curvature R of the convex curved surface are each a radius of curvature of an arc on a cross section as taken along a plane including a center axis of the tire.
Preferably, a ratio L1/R of a length L1 of the arc on the cross section of the concave curved surface relative to the radius of curvature R of the convex curved surface, satisfies
0.7≦L1/R≦1.5.
Preferably, a carcass ply that is extended, along the tread and the sidewalls, on and between both the beads, is further provided,
each bead includes a core and a bead apex positioned outward of the core in the radial direction,
the carcass ply includes a main body portion and turned-up portions which are formed by the carcass ply being turned up from an inner side toward an outer side around the core, and
when N1 represents a distance, in the radial direction, to an end of each turned-up portion of the carcass ply from a bead base line that passes through a lower end of the core and is parallel to the center axis of the tire, a ratio N1/R of the distance N1 in the radial direction to the radius of curvature R of the convex curved surface, satisfies
2.1≦N1/R≦3.5.
The heavy duty pneumatic tire according to the present invention can suppress reduction of durability of bead portions while allowing reduction in weight of bead apexes in order to reduce weight of the tire.
The following will describe in detail the present invention based on preferred embodiments with reference where appropriate to the accompanying drawing.
In
Each sidewall 3 extends from the edge of the tread 2 in almost radially inward direction. The sidewalls 3 are formed of a crosslinked rubber. The sidewalls 3 prevent the carcass 6 from being damaged.
The beads 4 are disposed inward of the sidewalls 3 in the radial direction. Each bead 4 includes a core 14, and a bead apex 15 that extends outward from the core 14 in the radial direction. The core 14 is ring-shaped, and includes non-stretchable wound wires (typically, steel wires). The bead apex 15 is tapered outward in the radial direction. The bead apex 15 is formed of a highly hard crosslinked rubber.
The clinch portions 5 are disposed almost inward of the sidewalls 3 in the radial direction. The clinch portions 5 are disposed outward of the beads 4 and the carcass 6 in the axial direction. As shown in
The carcass 6 includes a carcass ply 16. The carcass ply 16 is extended along the tread 2 and the sidewalls 3 on and between the beads 4 on both sides. The carcass ply 16 is turned up around each core 14 from the inner side toward the outer side in the axial direction. By the carcass ply 16 being turned up, the carcass ply 16 includes a main body portion 17 and turned-up portions 18. The turned-up portions 18 are layered between the chafers 11 and the bead apexes 15. An end 18 a of each turned-up portion 18 is positioned near a mid-portion, in the radial direction, of the bead apex 15.
In the present embodiment, the thickness of the bead apex 15 is reduced as compared. to that of a conventional tire having the same size, in order to reduce the weight of the tire 1. Specifically, a thickness T1 (
The belt 7 is layered outward of the carcass 6 in the radial direction. The belt 7 reinforces the carcass 6. In the tire 1, the belt 7 includes a first layer 7a, a second layer 7b, and a third layer 7c. Each of the first layer 7a, the second layer 7b, and the third layer 7c includes multiple cords aligned with each other, and a topping rubber, which is not shown. Each cord is formed of a steel. An organic fiber may be used for the cords. The cords are inclined relative to the equator plane.
The reinforcing layers 8 are wound around the cores 14. The reinforcing layers 8 are layered over the carcass ply 16. Each reinforcing layer 8 includes multiple cords aligned with each other, and a topping rubber. Each cord is formed of a steel. The reinforcing layer 8 may be also referred to as a steel filler. The reinforcing layers 8 contribute to durability of the tire 1.
The cover rubbers 9 are disposed outward of the bead apexes 15 in the axial direction. The cover rubbers 9 are layered over the turned-up portions 18 of the carcass ply 16. The end 18a of each turned-up portion 18 is covered with the cover rubber 9. Concentration of stress on the end 18a is reduced by each cover rubber 9. One end of each reinforcing layer 8 is also covered with the cover rubber 9. Concentration of stress on the one end is reduced by each cover rubber 9.
The chafers 11 are disposed near the beads 4. The chafers 11 extend inward from the sidewalls 3 in the radial direction. When the tire 1 is mounted to a rim, each chafer 11 contacts with the rim flange 30 (
The chafers 11 are typically formed of a fabric and a rubber impregnated into the fabric. The chafers 11 formed of only a rubber may be used.
The inner liner 10 is joined to the inner circumferential surface of the carcass 6. The inner liner 10 extends outward from the chafers 11 in the radial direction. The inner liner 10 is extended on and between the chafers 11 on the right and the left sides. The inner. liner 10 is formed of a crosslinked rubber. A rubber that is excellent in air-tightness is used for the inner liner 10. The inner liner 10 functions to maintain an internal pressure of the tire 1.
As shown in
The radius of curvature R1 of the arc 23 of the concave curved surface 21 of the clinch portions 5 is set so as to have the following value in order to improve durability of the beads 4. Namely, the radius of curvature R1 of the arc 23 of the concave curved surface 21 is set so as to be greater than the radius of curvature R1 of the arc 24 of the convex curved surface 22 in each rim flange 30. A ratio R1/R of the radius of curvature R1 of the concave curved surface 21 to the radius of curvature R of the convex curved surface 22 satisfies
1.7≦R1/R≦2.5.
When the ratio R1/R is less than 1.7, movement of the rubber near the concave curved surface 21 is excessively reduced when the tire 1 is under a load. As a result, distortion is concentrated near the end 18a of the turned-up portion 18 of the carcass ply 16, and it may be difficult to assuredly obtain durability of the beads 4. On the other hand, when the ratio R1/R is greater than 2.5, it is difficult to reduce movement of the end 18a of the turned-up portion 18 of the carcass ply 16 when the tire 1 is under a load. As a result, it may be difficult to assuredly obtain durability of the beads 4.
In the above structure, since durability of the bead portions of the tire 1 is improved, the thickness of each bead apex 15 can be reduced in order to reduce the weight of the tire 1.
The cross-section (
0.7≦L1/R≦1.5.
When the ratio L1/R is less than 0.7, it is difficult to reduce movement of the end 18a of the turned-up portion 18 of the carcass ply 16 when the tire 1 is under a load. As a result, it may be difficult to assuredly obtain durability of the beads 4. On the other hand, when the ratio L1/R is greater than 1.5, movement of the rubber near the concave curved surface 21 is excessively reduced when the tire 1 is under a load. As a result, distortion is concentrated near the end 18a of the turned-up portion 18 of the carcass ply 16, whereby it may be difficult to assuredly obtain durability of the beads 4.
Each turned-up portion 18 of the carcass ply 16 preferably has the following length in order to improve durability of the beads 4. Namely, when a distance, in the radial direction, from a bead base line BL to the end 18a of the turned-up portion 18 of the carcass ply 16 is represented as N1, a ratio N1/R of the distance N1 to the radius of curvature R of the convex curved surface 22 satisfies
2.1≦N1/R≦3.5.
The bead base line BL represents a straight line that passes through the lower end of the core 14 and is parallel to the center axis of the tire. When the ratio N 1/ R is less than 2.1, the turned-up portion 18 is excessively short, whereby the turned-up portion 18 is likely to be removed from the bead apex 15 after forming process. On the other hand, when the ratio N1/R is greater than 3.5, the turned-up portion 18 is elongated, and the end 18a of the turned-up portion 18 is likely to be positioned in a range of the tire side portion where distortion is great under a load. As a result, movement of the end 18a of the turned-up portion 18 is increased under a load, whereby durability of the beads may not be improved.
For the heavy duty pneumatic tire 1 having the above structure, a test for evaluating bead durability performance, and a test for evaluating a rolling resistance performance for weight evaluation are made. The test for evaluating bead durability performance is made by using a bench test machine having a driving drum. The size of the test tire 1 is 11R22.5. The test tire 1 is mounted to a test rim having a rim width of 7.50×22.5. The convex curved surface 22 is formed at an edge portion of a flange portion of the test rim. The test internal pressure for the test tire is 700 kPa as is specified in the JATMA standard. A vertical load applied to the test tire is 81.75 kN that is three times a load (27.25 kN) which is specified in the JATMA standard. The vertical load is a load that is applied to the tire in the tire radial direction. The test tire is run under this load by the driving drum. The running speed is 30 km/h. The running time that elapses before the bead portion of the test tire 1 is damaged is measured and recorded. The test tire for which a longer running time is measured, is more excellent in bead durability performance.
The test for evaluating rolling resistance performance is conducted by using a rolling resistance test machine. A test tire having the same size as used for the test for evaluating bead durability is mounted to the test rim having the rim width of 7.50×22.5. The test internal pressure, for the test tire is 700 kPa as is specified in the JATMA standard. The vertical load applied to the test tire is 27.25 kN as is specified in the JATMA standard. The test tire is run under this load by a driving drum. The running speed is 80 km/h. The rolling resistance is measured during the running. The test tire for which a lower rolling resistance is measured is more excellent in rolling resistance performance. By the bead durability evaluation test and the rolling resistance evaluation test, it is confirmed that durability is assuredly obtained for the tire having the above-described structure.
Hereinafter, effects of the present invention will become apparent according to examples. However, the present invention should not be restrictively construed based on the description of examples.
As tires of examples 1 to 4, the heavy duty pneumatic tires 1 having the concave curved surface 21 as shown in
As tires of examples 5 to 13, the heavy duty pneumatic tires 1 having the concave curved surface 21 as shown in
As tires of comparative examples 1 and 2, heavy duty pneumatic tires were produced. The test tires did not have the concave curved surface 21. The values of the height N1 and the thickness T1 of the bead apex 15 of each test tire were as indicated in Table 1. The other structure and test conditions for the tires were the same as those for the above-described example 1. The test results (evaluation results) for the tires are indicated in Table 1.
As tires of comparative examples 3 to 5, heavy duty pneumatic tires were produced. The numerical factors of the concave curved surface 21, and values of the height N1 and the thickness T1 of the bead apex 15 for each test
Lire were as indicated in Table 1. The other structure and test conditions for the tires were the same as those for the above-described example 1. The rest results (evaluation results) for the tires are indicated in Table 1.
In Table 1 and Table 2, performance evaluation results of the tires according to examples 1 to 13 and comparative examples 1 to 5 are indicated. The results of the bead durability evaluation test are indicated as indexes with the result of comparative example 1 being 100. The greater the index is, the better the performance is. The results of the rolling resistance evaluation test are also indicated as indexes with the result of comparative example 1 being 100. The less the index is, the better the performance is. The evaluation results clearly indicate that the present invention is superior.
The heavy duty pneumatic tire as described above is available to various vehicles such as trucks and buses.
1 . . . tire
2 . . . tread
3 . . . sidewall
4 . . . bead
5 . . . clinch portion
6 . . . carcass
14 . . . core
15 . . . bead apex
16 . . . carcass ply
17 . . . main body portion
18 . . . turned-up portion
21 . . . concave curved surface (of clinch portion)
22 . . . convex curved surface (of rim flange)
23 . . . arc (of concave curved surface)
24 . . . arc (of convex curved surface)
30 . . . rim flange
CL . . . equator plane
R . . . radius of curvature of arc (of convex curved surface)
R1 . . . radius of curvature of arc (of concave curved surface)
L1 . . . length of arc (of concave curved surface)
N1 . . . height of position of end (of turned-up portion)
T1 . . . thickness of bead apex
Number | Date | Country | Kind |
---|---|---|---|
2011-278232 | Dec 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/077023 | 10/19/2012 | WO | 00 | 4/24/2014 |