This application claims priority on Japanese Patent Application No. 2023-148894 filed in Japan on Sep. 14, 2023, the entire content of which is incorporated herein by reference.
The present invention relates to heavy duty tires.
In order to manage data regarding manufacturing management, customer information, running history, etc., of tires, incorporation of radio frequency identification (RFID) tags into tires has been proposed. Various studies have been conducted for the technology to incorporate an RFID tag into a tire (for example, PATENT LITERATURE 1 below).
In a tire, deformation and restoration are repeated. In the tire in a running state, movement is active at each end portion of a tread and near a maximum width position. From the viewpoint of preventing damage to an RFID tag itself, the RFID tag is placed at a portion at which there is little movement. In the case of a heavy duty tire, each bead portion has high stiffness, and thus it has been considered to place an RFID tag in the bead portion.
For the tire, the RFID tag is foreign matter. Therefore, even if the position of the RFID tag is determined from the viewpoint of preventing damage to the RFID tag itself and forming a good communication environment, strain is increased due to the presence of the RFID tag, and there is an undeniable risk of occurrence of damage to the RFID tag.
A heavy duty tire is not always used under conditions where a load close to a normal load is applied to the tire. The heavy duty tire is sometimes used under conditions where a load (light load) that is about 50% of the normal load is applied to the tire. If the location where the RFID tag is placed is sensitive to the action of a load, strain is increased even under a light load.
The heavy duty tire is used in a wide load range from a light load to a heavy load. In order to prevent the presence of the RFID tag from decreasing the durability of the tire, it is important to check whether or not strain is increased due to the placement of the RFID tag even under a light load.
The present invention has been made in view of such circumstances. An object of the present invention is to provide a heavy duty tire that can suppress occurrence of damage due to the presence of an RFID tag.
A heavy duty tire according to the present invention includes: a pair of beads; a carcass extending on and between the pair of beads; a belt located radially outward of the carcass and including a large number of belt cords aligned with each other; a pair of sidewalls each located axially outward of the carcass; a pair of chafers each located radially inward of the sidewall and configured to come into contact with a rim; and a tag member including an RFID tag. Each of the beads includes a core and an apex located radially outward of the core. The carcass includes a carcass ply. The carcass ply includes a ply body extending between the pair of beads and a pair of turned-up portions each connected to the ply body and turned up around the bead. The belt includes three or fewer belt plies aligned in a radial direction. The rim is a normal rim, and a state where the tire is fitted on the rim and an internal pressure of the tire is adjusted to a normal internal pressure is a normal state. A state where a load equal to 50% of a normal load is applied to the tire in the normal state and the tire is brought into contact with a flat surface is a standard ground-contact state. In the standard ground-contact state, the RFID tag is located between an axially outer end of the rim and a maximum width position of the tire in an axial direction, and is located between a radially outer end of the rim and the maximum width position of the tire in the radial direction.
According to the present invention, a heavy duty tire that can suppress occurrence of damage due to the presence of an RFID tag is obtained.
The following will describe in detail the present invention based on preferred embodiments with appropriate reference to the drawings.
A tire of the present disclosure is fitted on a rim. The interior of the tire is filled with air to adjust the internal pressure of the tire. The tire fitted on the rim is also referred to as tire-rim assembly. The tire-rim assembly includes the rim and the tire fitted on the rim.
In the present disclosure, a state where a tire is fitted on a normal rim, the internal pressure of the tire is adjusted to a normal internal pressure, and no load is applied to the tire is referred to as a normal state.
In the present disclosure, unless otherwise specified, the dimensions and angles of each component of the tire are measured in the normal state.
The dimensions and angles of each component in a meridian cross-section of the tire, which cannot be measured in a state where the tire is fitted on the normal rim, are measured in a cross-section of the tire obtained by cutting the tire along a plane including the rotation axis of the tire. In this measurement, the tire is set such that the distance between right and left beads is made equal to the distance between the beads in the tire that is fitted on the normal rim.
The normal rim means a rim specified in a standard on which the tire is based. The “standard rim” in the JATMA standard, the “Design Rim” in the TRA standard, and the “Measuring Rim” in the ETRTO standard are normal rims.
The normal internal pressure means an internal pressure specified in the standard on which the tire is based. The “highest air pressure” in the JATMA standard, the “maximum value” recited in the “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” in the TRA standard, and the “INFLATION PRESSURE” in the ETRTO standard are normal internal pressures.
A normal load means a load specified in the standard on which the tire is based. The “maximum load capacity” in the JATMA standard, the “maximum value” recited in the “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” in the TRA standard, and the “LOAD CAPACITY” in the ETRTO standard are normal loads.
In the present disclosure, a tread portion of the tire is a portion of the tire that comes into contact with a road surface. A bead portion is a portion of the tire that is fitted to a rim. A sidewall portion is a portion of the tire that extends between the tread portion and the bead portion. The tire includes a tread portion, a pair of bead portions, and a pair of sidewall portions as portions thereof.
In the present disclosure, a complex elastic modulus of a component formed from a crosslinked rubber, from among the components included in the tire, is measured according to the standards of JIS K6394. The measurement conditions are as follows.
In this measurement, a test piece (a length of 40 mm×a width of 4 mm×a thickness of 1 mm) is sampled from the tire. The length direction of the test piece is caused to coincide with the circumferential direction of the tire. When a test piece cannot be sampled from the tire, a test piece is sampled from a sheet-shaped crosslinked rubber (hereinafter, also referred to as a rubber sheet) obtained by pressurizing and heating a rubber composition, which is used for forming the component to be measured, at a temperature of 170° C. for 12 minutes.
In the present disclosure, the complex elastic modulus is represented as a complex elastic modulus at 70° C.
The present disclosure is directed to a heavy duty tire including: a pair of beads; a carcass extending on and between the pair of beads; a belt located radially outward of the carcass and including a large number of belt cords aligned with each other; a pair of sidewalls each located axially outward of the carcass; a pair of chafers each located radially inward of the sidewall and configured to come into contact with a rim; and a tag member including an RFID tag, wherein each of the beads includes a core and an apex located radially outward of the core, the carcass includes a carcass ply, the carcass ply includes a ply body extending between the pair of beads and a pair of turned-up portions each connected to the ply body and turned up around the bead, the belt includes three or fewer belt plies aligned in a radial direction, the rim is a normal rim, a state where the tire is fitted on the rim and an internal pressure of the tire is adjusted to a normal internal pressure is a normal state, a state where a load equal to 50% of a normal load is applied to the tire in the normal state and the tire is brought into contact with a flat surface is a standard ground-contact state, and in the standard ground-contact state, the RFID tag is located between an axially outer end of the rim and a maximum width position of the tire in an axial direction, and is located between a radially outer end of the rim and the maximum width position of the tire in the radial direction.
In the tire, the RFID tag is placed away from the vicinity of an end portion of a flange of the rim and the vicinity of the maximum width position of the tire where large strain may be generated if the RFID tag is present. In the tire, the presence of the RFID tag is inhibited from promoting an increase in strain. Therefore, in the tire, occurrence of damage due to the presence of the RFID tag is suppressed. Moreover, occurrence of damage to the RFID tag itself is also suppressed.
In the tire, good durability is maintained even though the RFID tag is incorporated into the tire.
Preferably, in the standard ground-contact state, the RFID tag is located between an end of the turned-up portion and a maximum width position of the carcass in the axial direction, and is located between the end of the turned-up portion and the maximum width position of the carcass in the radial direction.
In the tire, the RFID tag is placed sufficiently away from the vicinity of the end portion of the flange and the vicinity of the maximum width position where large strain may be generated if the RFID tag is present. In the tire, the presence of the RFID tag is effectively inhibited from promoting an increase in strain. In the tire, occurrence of damage due to the presence of the RFID tag is effectively suppressed. Moreover, occurrence of damage to the RFID tag itself is also effectively suppressed. In the tire, good durability is maintained even though the RFID tag is incorporated into the tire.
Preferably, a shortest distance from an outer surface of the tire to the RFID tag is not less than 3.5 mm.
In the tire, the RFID tag is covered with a rubber having a sufficient thickness. In the tire, the presence of the RFID tag is effectively inhibited from promoting an increase in strain. In the tire, occurrence of damage due to the presence of the RFID tag is effectively suppressed.
Preferably, in a meridian cross-section of the tire in the normal state, a contour of the carcass includes, in a radially inner portion from the maximum width position of the carcass, an outwardly bulging curved portion and an inwardly recessed inversely curved portion located radially inward of the curved portion; the inversely curved portion is connected to the curved portion; a boundary between the curved portion and the inversely curved portion is an inflection point; a part or an entirety of the curved portion is represented by a first arc including the inflection point; a part or an entirety of the inversely curved portion is represented by a second arc including the inflection point; the first arc and the second arc are tangent to each other at the inflection point; and the RFID tag is located radially outward of the inflection point.
In the tire, the presence of the RFID tag is effectively inhibited from promoting an increase in strain. In the tire, occurrence of damage due to the presence of the RFID tag is effectively suppressed. Moreover, occurrence of damage to the RFID tag itself is also effectively suppressed. In the tire, good durability is maintained even though the RFID tag is incorporated into the tire.
Preferably, the apex includes an inner apex located radially outward of the core and an outer apex located radially outward of the inner apex, the outer apex is more flexible than the inner apex, the tag member is in contact with the outer apex on a radially outer side of the end of the turned-up portion, and the RFID tag is located between an outer end of the outer apex and the end of the turned-up portion in the radial direction.
In the tire, since the flexible outer apex is located axially inward of the RFID tag, the presence of the RFID tag is effectively inhibited from promoting an increase in strain. In the tire, occurrence of damage due to the presence of the RFID tag is suppressed. Moreover, occurrence of damage to the RFID tag itself is also suppressed. In the tire, good durability is maintained even though the RFID tag is incorporated into the tire. Furthermore, since the outer apex is located between the carcass ply and the RFID tag, the RFID tag is placed so as to be spaced apart from the carcass ply. Even if the carcass ply includes steel cords as carcass cords, radio waves are less likely to be disturbed, so that a good communication environment is formed between the RFID tag and a communication device (not shown). Writing of data to the RFID tag and reading of data recorded in the RFID tag are accurately performed.
Preferably, between the outer end of the outer apex and an outer end of the chafer, the tag member is located between the outer apex and the sidewall.
The tire can achieve improvement of the readability of the RFID tag and reduction of the risk of damage to the RFID tag while suppressing influence on durability.
Preferably, an outer end of the chafer is located radially outward of an inner end of the sidewall, and the sidewall covers the outer end of the chafer.
In the tire, strain applied to the outer end of the chafer is effectively alleviated. In the tire, occurrence of damage due to the presence of the RFID tag is suppressed. Moreover, occurrence of damage to the RFID tag itself is also suppressed. In the tire, good durability is maintained even though the RFID tag is incorporated into the tire.
Preferably, the tag member is a plate-shaped member in which the RFID tag is covered with a crosslinked rubber, and the tag member has a thickness of not less than 1.0 mm and not greater than 2.5 mm.
In the tire, the risk of damage to the RFID tag is reduced, and a good communication environment is formed.
Preferably, a number of the belt plies included in the belt is two or less.
The belt can contribute to reducing the weight of the tire.
Preferably, the above-described tire further includes a band located radially outward of the carcass and including a helically wound band cord, the band includes a full band having ends opposed to each other across an equator plane, and the belt plies and the full band are aligned in the radial direction.
The band restricts the movement of a tread portion, so that deformation of the entire tire is suppressed.
In
In
The tire 2 includes a tread 4, a pair of sidewalls 6, a pair of chafers 8, a pair of beads 10, a carcass 12, a cord reinforcing layer 14, a pair of cushion layers 16, a strip layer 18, a pair of steel reinforcing layers 20, a pair of interlayer strips 22, an inner liner 24, and a tag member 26.
The tread 4 is located radially outward of the carcass 12. The tread 4 comes into contact with a road surface at a tread surface 28 thereof. Grooves 30 are formed on the tread 4.
The tread 4 includes a plurality of circumferential grooves 30G that continuously extend in the circumferential direction. The two outermost circumferential grooves 30GS in the axial direction among the plurality of circumferential grooves 30G are shoulder circumferential grooves.
The tread 4 includes a base portion 32 and a cap portion 34 located radially outward of the base portion 32. The base portion 32 is formed from a crosslinked rubber that has low heat generation properties. The cap portion 34 is formed from a crosslinked rubber for which wear resistance and grip performance are taken into consideration. The cap portion 34 includes the tread surface 28.
In
The distance in the radial direction, from the bead base line BBL to the equator PC, obtained in the tire 2 in the normal state is the cross-sectional height (see JATMA or the like) of the tire 2.
Each sidewall 6 is connected to an end of the tread 4. The sidewall 6 is located radially inward of the tread 4. The sidewall 6 is located axially outward of the carcass 12. A position indicated by reference sign PS is an inner end of the sidewall 6.
The sidewall 6 is formed from a crosslinked rubber for which cut resistance is taken into consideration. The complex elastic modulus of the sidewall 6 is not less than 2.0 MPa and not greater than 6.0 MPa.
A position indicated by reference sign PW is an axially outer end (hereinafter, outer end PW) of the tire 2. In the case where decorations such as patterns and letters are present on the outer surface of the tire 2, the outer end PW is specified on the basis of a virtual outer surface obtained on the assumption that the decorations are not present thereon. The tire 2 has a maximum width at the outer end PW. The outer end PW is also referred to as maximum width position.
In the present disclosure, the maximum width position PW in the tire 2 in the normal state is a reference maximum width position PWb. The distance in the axial direction from a first reference maximum width position PWb to a second reference maximum width position PWb (not shown) is the cross-sectional width (see JATMA or the like) of the tire 2.
In
In the tire 2 in the normal state, the ratio of the radial height H of the reference maximum width position PWb to the cross-sectional height is not less than 0.40 and not greater than 0.60.
Each chafer 8 is located radially inward of the sidewall 6. The chafer 8 comes into contact with the rim R. A position indicated by reference sign PB is an outer end of the chafer 8.
The chafer 8 is formed from a crosslinked rubber for which wear resistance is taken into consideration. The complex elastic modulus of the chafer 8 is not less than 10 MPa and not greater than 15 MPa. The chafer 8 is harder than the sidewall 6.
Each bead 10 is located axially inward of the chafer 8. The bead 10 is located radially inward of the sidewall 6. The bead 10 includes a core 36 and an apex 38.
The core 36 extends in the circumferential direction. The core 36 includes a core body 36m and a wrapping layer 36r.
The core body 36m is a ring extending in the circumferential direction. The core body 36m includes a wire made of steel and wound in the circumferential direction. A cross-sectional shape of the core body 36m is shaped by winding the wire in a regular manner. Accordingly, in a cross-section of the core body 36m, cross-sectional units each including a plurality of wire cross-sections aligned substantially in the axial direction are stacked in a plurality of stages substantially in the radial direction. The cross-sectional shape of the core body 36m is represented by a line that circumscribes the core body 36m. As shown in
The core body 36m generally has six side surfaces 36ms. As shown in
The wrapping layer 36r surrounds the core body 36m. The wrapping layer 36r covers the core body 36m. The wrapping layer 36r prevents the core body 36m from falling apart.
The configuration of the wrapping layer 36r is not particularly limited as long as the wrapping layer 36r can prevent the core body 36m from falling apart. The wrapping layer 36r is composed of a cord helically wound around the core body 36m, a rubberized fabric wrapped around the core body 36m, or the like.
The apex 38 is located radially outward of the core 36. The apex 38 extends radially outward from the core 36. The apex 38 is tapered outward. An outer end PA of the apex 38 is located radially outward of the outer end PB of the chafer 8.
The apex 38 includes an inner apex 40 and an outer apex 42. The inner apex 40 is located radially outward of the core 36. The outer apex 42 is located radially outward of the inner apex 40.
The inner apex 40 is tapered outward. The inner apex 40 is formed from a hard crosslinked rubber. The complex elastic modulus of the inner apex 40 is not less than 60 MPa and not greater than 90 MPa. The inner apex 40 is harder than the chafer 8.
The outer apex 42 is thick around an outer end PU of the inner apex 40. The outer apex 42 is tapered inward and tapered outward from the thick portion thereof.
An inner end PG1 of the outer apex 42 is located near the core 36. An outer end PG2 of the outer apex 42 is also the outer end PA of the apex 38.
In
In the tire 2, from the viewpoint of well balancing the stiffness of the bead portion and bending of the tire 2, the outer end PA of the apex 38 is located radially inward of the reference maximum width position PWb. Specifically, the ratio (L1/H) of the radial height L1 of the bead 10 to the radial height H of the reference maximum width position PWb is adjusted in the range of not less than 0.55 and not greater than 0.95.
The outer apex 42 is formed from a crosslinked rubber. The outer apex 42 is more flexible than the inner apex 40. The complex elastic modulus of the outer apex 42 is not less than 3.0 MPa and not greater than 6.0 MPa. The outer apex 42 is more flexible than the chafer 8. The outer apex 42 is substantially equal to the sidewall 6 in stiffness, or is harder than the sidewall 6.
The apex 38 of the tire 2 further includes an edge strip 44.
The edge strip 44 is located axially outward of the outer apex 42 and forms a part of the outer surface of the apex 38. The edge strip 44 is located between the outer end PB of the chafer 8 and the inner end PG1 of the outer apex 42 in the radial direction. An outer end of the edge strip 44 is located radially inward of an outer end of the interlayer strip 22. The edge strip 44 is located between the outer end of the interlayer strip 22 and the inner end PG1 of the outer apex 42 in the radial direction.
The edge strip 44 is formed from a crosslinked rubber. The edge strip 44 is more flexible than the chafer 8 and is harder than the outer apex 42. The complex elastic modulus of the edge strip 44 is not less than 7.0 MPa and not greater than 12 MPa.
The carcass 12 is located inward of the tread 4, the pair of sidewalls 6, and the pair of chafers 8. The carcass 12 extends on and between the pair of beads 10. The carcass 12 of the tire 2 has a radial structure.
The carcass 12 includes at least one carcass ply 46. The carcass 12 of the tire 2 is composed of one carcass ply 46. The carcass ply 46 is turned up around each bead 10.
The carcass ply 46 has a ply body 48 and a pair of turned-up portions 50. The ply body 48 extends between the pair of beads 10, that is, between a first bead 10 and a second bead 10 (not shown). Each turned-up portion 50 is connected to the ply body 48 and turned up around the bead 10. The turned-up portion 50 of the tire 2 is turned up around the bead 10 from the inner side toward the outer side in the axial direction. An end PF of the turned-up portion 50 is located radially inward of the outer end PB of the chafer 8. The end PF of the turned-up portion 50 is located radially inward of the outer end PU of the inner apex 40. The end PF of the turned-up portion 50 is located between the outer end and an inner end of the edge strip 44 in the radial direction, and is in contact with the edge strip 44. The bead 10 is interposed between the ply body 48 and the turned-up portion 50.
The carcass ply 46 includes a large number of carcass cords aligned with each other, which are not shown. These carcass cords are covered with a topping rubber. Each carcass cord intersects the equator plane CL. An angle of each carcass cord with respect to the equator plane CL (hereinafter referred to as intersection angle of the carcass cord) is not less than 70° and not greater than 90°. The material of the carcass cords is steel. The carcass cords are steel cords.
In
In the tire 2, the ratio (N/H) of the radial height N of the end PF of the turned-up portion 50 to the radial height H of the reference maximum width position PWb is not less than 0.25 and not greater than 0.45.
The cord reinforcing layer 14 is located radially outward of the carcass 12. The cord reinforcing layer 14 is located radially inward of the tread 4.
The cord reinforcing layer 14 of the tire 2 includes a belt 52. The belt 52 includes three or fewer belt plies 54. The belt 52 is lighter than a belt including four belt plies 54. The belt 52 can contribute to reducing the weight of the tire 2.
The belt 52 shown in
In the tire 2, the number of belt plies 54 included in the belt 52 may be two or less. When the belt 52 includes two or fewer belt plies 54 aligned in the radial direction, the belt 52 can effectively contribute to reducing the weight of the tire 2. In the case where the belt 52 is composed of two belt plies 54, the belt 52 is composed of a wider first belt ply 54A and a second belt ply 54B which is the widest after the first belt ply 54A.
Each belt ply 54 included in the belt 52 includes a large number of belt cords aligned with each other, which are not shown. Each belt cord is inclined with respect to the equator plane CL.
In the tire 2, the direction of inclination of the belt cords included in the second belt ply 54B, that is, second belt cords, is opposite to the direction of inclination of the belt cords included in the first belt ply 54A, that is, first belt cords. The direction of inclination of the belt cords included in the third belt ply 54C, that is, third belt cords, is the same as the direction of inclination of the second belt cords. The direction of inclination of the third belt cords may be opposite to the direction of inclination of the second belt cords.
An angle of the first belt cords with respect to the equator plane CL, that is, an inclination angle of the first belt cords, is preferably not less than 15° and preferably not greater than 30°. The inclination angle of the first belt cords is more preferably not greater than 20°. An angle of the second belt cords with respect to the equator plane CL, that is, an inclination angle of the second belt cords, is preferably not less than 15° and preferably not greater than 30°. The inclination angle of the second belt cords is more preferably not greater than 20°. An angle of the third belt cords with respect to the equator plane CL, that is, an inclination angle of the third belt cords, is preferably not less than 15° and preferably not greater than 50°. The inclination angle of the third belt cords is more preferably not greater than 25°.
The material of the belt cords is steel. The belt cords are steel cords.
The band 56 includes a helically wound band cord, which is not shown. The band cord is a steel cord. The band cord may be a cord formed from an organic fiber (hereinafter referred to as organic fiber cord). In the case where the band cord is an organic fiber cord, examples of the organic fiber include nylon fibers, polyester fibers, rayon fibers, and aramid fibers.
The band 56 of the tire 2 includes a full band 58. As shown in
As described above, the belt 52 of the tire 2 includes the three belt plies 54. The three belt plies 54 and the full band 58 are aligned in the radial direction. In the cord reinforcing layer 14 shown in
Each end 58e of the full band 58 is located axially inward of the end 52e of the belt 52. In the cord reinforcing layer 14 shown in
In the cord reinforcing layer 14 shown in
Each cushion layer 16 is located between the cord reinforcing layer 14 and the carcass 12 at the end of the cord reinforcing layer 14. The cushion layer 16 is formed from a flexible crosslinked rubber.
The strip layer 18 is located between the carcass 12 and the cord reinforcing layer 14 on the radially inner side of the tread 4. The strip layer 18 is stacked on the carcass 12, and the cord reinforcing layer 14 is stacked on the strip layer 18. The strip layer 18 is located between a first cushion layer 16 and a second cushion layer 16 in the axial direction. The strip layer 18 is formed from a crosslinked rubber. In the tire 2, the strip layer 18 may not necessarily be provided. In this case, the cord reinforcing layer 14 is stacked on the carcass 12.
Each steel reinforcing layer 20 is located in the bead portion. The steel reinforcing layer 20 is located between the bead 10 and the chafer 8. The steel reinforcing layer 20 is located between the carcass 12 and the chafer 8. The steel reinforcing layer 20 is turned up around the bead 10. The steel reinforcing layer 20 is placed so as to wrap a radially inner portion of the bead 10 from the radially inner side of the turned-up portion 50. An inner end 20s and an outer end 20f of the steel reinforcing layer 20 are located between the end PF of the turned-up portion 50 and the core 36 in the radial direction. The inner end 20s of the steel reinforcing layer 20 is located radially inward of the outer end PU of the inner apex 40.
The steel reinforcing layer 20 includes a large number of filler cords aligned with each other, which are not shown. The material of the filler cords is steel. The steel reinforcing layer 20 includes steel cords. In the steel reinforcing layer 20, the steel cords are covered with a topping rubber.
The outer end 20f of the steel reinforcing layer 20 is located between the turned-up portion 50 and the chafer 8 in the axial direction. The outer end 20f is located radially inward of the end PF of the turned-up portion 50. The inner end 20s is located between the inner liner 24 and the ply body 48 in the axial direction. It is sufficient that the position in the radial direction of the inner end 20s substantially coincides with that of the outer end 20f, and the inner end 20s may be located radially outward of the outer end 20f or may be located radially inward of the outer end 20f.
Each interlayer strip 22 is located between the chafer 8 and the apex 38 in the axial direction. The interlayer strip 22 covers the end PF of the turned-up portion 50 and the outer end 20f of the steel reinforcing layer 20.
The interlayer strip 22 is in contact with the apex 38 on the radially outer side of the end PF of the turned-up portion 50. In other words, the contact surface between the interlayer strip 22 and the apex 38 forms a part of the outer surface of the apex 38 (or the inner surface of the interlayer strip 22).
The interlayer strip 22 is in contact with the chafer 8 on the radially outer side of the outer end 20f of the steel reinforcing layer 20. In other words, the contact surface between the interlayer strip 22 and the chafer 8 forms a part of the inner surface of the chafer 8 (or the outer surface of the interlayer strip 22).
The interlayer strip 22 is formed from a crosslinked rubber. The interlayer strip 22 is harder than the sidewall 6 and is more flexible than the chafer 8. The complex elastic modulus of the interlayer strip 22 is not less than 7.0 MPa and not greater than 12 MPa.
The inner liner 24 is located inward of the carcass 12. The inner liner 24 is joined to the inner surface of the carcass 12 via an insulation (not shown) formed from a crosslinked rubber. The inner liner 24 forms an inner surface of the tire 2. The inner liner 24 is formed from a crosslinked rubber that has an excellent air blocking property.
The tag member 26 is located axially outward of the bead 10. In the tire 2, the tag member 26 is provided only on the side of one sidewall 6 out of the pair of sidewalls 6 provided in the tire 2. The tag member 26 may be provided on each of the side of the one sidewall 6 and the side of the other sidewall 6. From the viewpoint of reducing the risk of damage, preferably, the tag member 26 is provided on the side of the one sidewall 6 out of the pair of sidewalls 6.
The tag member 26 has a plate shape. The tag member 26 is long in a length direction thereof and short in a width direction thereof. As shown in
The tag member 26 includes an RFID tag 60. In
Although not described in detail, the RFID tag 60 is a small and lightweight electronic component that includes: a semiconductor chip 64 obtained by making a transmitter/receiver circuit, a control circuit, a memory, etc., into a chip; and an antenna 66. Upon receiving interrogation radio waves, the RFID tag 60 uses the radio waves as electrical energy and transmits various data in the memory as response radio waves. The RFID tag 60 is a type of passive radio frequency identification transponder.
The tag member 26 is a plate-shaped member in which the RFID tag 60 is covered with a crosslinked rubber. From the viewpoint of reducing the risk of damage to the RFID tag 60 and forming a good communication environment, the thickness of the tag member 26 in the tire 2 is preferably not less than 1.0 mm and not greater than 2.5 mm. The thickness of the tag member 26 in the tire 2 is represented as the maximum thickness of the tag member 26 at the semiconductor chip 64 of the RFID tag 60.
A length TL of the tag member 26 before embedding in the tire 2 is not less than 60 mm and not greater than 80 mm. A width TW thereof is not less than 10 mm and not greater than 20 mm.
In
In the present disclosure, the case where the inner end TU of the RFID tag 60 in the tire 2 is located radially outward of a position serving as a reference (hereinafter, reference position) is the case where the RFID tag 60 is located radially outward of the reference position. The case where the outer end TS of the RFID tag 60 in the tire 2 is located radially inward of the reference position is the case where the RFID tag 60 is located radially inward of the reference position.
In the present disclosure, the state where a load equal to 50% of the normal load is applied to the tire 2 in the normal state and the tire 2 is brought into contact with the flat surface FS is also referred to as standard ground-contact state.
In the standard ground-contact state shown in
In
A position indicated by reference sign PRr is a radially outer end of the flange Rf. An alternate long and short dash line indicated by reference sign LRr is a straight line that passes through the radially outer end PRr and that extends in the axial direction.
In
As shown in
In the tire 2, the RFID tag 60 is placed away from the vicinity of an end portion of the flange Rf and the vicinity of the maximum width position PWs where large strain may be generated if the RFID tag 60 is present. In the tire 2, the presence of the RFID tag 60 is inhibited from promoting an increase in strain.
In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is suppressed. Moreover, occurrence of damage to the RFID tag 60 itself is also suppressed.
In the tire 2, good durability is maintained even though the RFID tag 60 is incorporated into the tire 2.
In
In
As shown in
In the tire 2, the RFID tag 60 is placed sufficiently away from the vicinity of the end portion of the flange Rf and the vicinity of the maximum width position PWs where large strain may be generated if the RFID tag 60 is present. In the tire 2, the presence of the RFID tag 60 is effectively inhibited from promoting an increase in strain.
In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is effectively suppressed. Moreover, occurrence of damage to the RFID tag 60 itself is also effectively suppressed.
In the tire 2, good durability is maintained even though the RFID tag 60 is incorporated into the tire 2. From this viewpoint, in the tire 2, preferably, in the standard ground-contact state, the RFID tag 60 is located between the end PF of the turned-up portion 50 and the maximum width position PPs of the carcass 12 in the axial direction, and is located between the end PF of the turned-up portion 50 and the maximum width position PPs of the carcass 12 in the radial direction.
In
In the tire 2, the shortest distance t is preferably not less than 3.5 mm. Accordingly, the RFID tag 60 is covered with the rubber having a sufficient thickness. In the tire 2, the presence of the RFID tag 60 is effectively inhibited from promoting an increase in strain. In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is effectively suppressed. From this viewpoint, the shortest distance t is more preferably not less than 4.0 mm. The upper limit of the shortest distance t varies depending on the position of the RFID tag 60, and thus a preferable upper limit of the shortest distance t is not set.
The contour PL of the carcass 12 shown in
In
In the tire 2, the equator PE coincides with the radially outer end of the case line PL. The distance CH in the radial direction is also the cross-sectional height of the carcass 12.
In
In
In the tire 2, the case line PL is formed by combining a plurality of arcs and, if necessary, connecting the arcs to each other via straight lines. The case line PL has an outwardly convex shape at the tread portion, has an outwardly convex shape at the sidewall portion and a radially outer portion of each bead portion, and has an inwardly concave shape at a radially inner portion of each bead portion. In the bead portion, an inflection point between an outwardly bulging portion and an inwardly recessed portion exists.
In the present disclosure, outwardly bulging means a shape curved from the inner surface side toward the outer surface side of the tire, and inwardly recessed means a shape curved from the outer surface side toward the inner surface side of the tire.
In the tire 2, of the case line PL, a radially inner portion from the axially outer end PPb, specifically, a portion from the axially outer end PPb to the reference point PM includes an outwardly bulging curved portion 70 and an inwardly recessed inversely curved portion 72. That is, in the meridian cross-section of the tire 2 in the normal state, the contour of the carcass 12 includes, in the radially inner portion from the maximum width position PPb of the carcass 12, the curved portion 70 and the inversely curved portion 72 located radially inward of the curved portion 70.
The inversely curved portion 72 is located radially inward of the curved portion 70, and is connected to the curved portion 70. The boundary between the curved portion 70 and the inversely curved portion 72 is the above-described inflection point. In
The curved portion 70 of the tire 2 shown in
Although not shown, in the tire 2, the curved portion 70 may be represented by an arc (hereinafter, arc a) having a center on the straight line LPb and including the axially outer end PPb and an arc (hereinafter, arc b) tangent to the arc a and including the inflection point PV. In this case, the center of the arc b is located on a straight line passing through the center of the arc a and the tangent point between the arc a and the arc b.
In the tire 2, an arc having a center on the straight line LPb and including the axially outer end PPb and an arc including the inflection point PV may be connected to each other via one or more arcs. In this case, the curved portion 70 is represented by a plurality of arcs that include an arc having a center on the straight line LPb and including the axially outer end PPb and an arc including the inflection point PV, and is formed such that adjacent two arcs are tangent to each other.
In either case, the curved portion 70 includes an arc including the inflection point PV. In the present disclosure, the arc passing through the inflection point PV is a first arc.
In the tire 2, a part or the entirety of the curved portion 70 is represented by the first arc passing through the inflection point PV.
In the tire 2 shown in
Although not shown, in the tire 2, the inversely curved portion 72 may be represented by an arc (hereinafter, arc c) including the inflection point PV and an arc (hereinafter, arc d) tangent to the arc c and including the reference point PM. In this case, the center of the arc d is located on a straight line passing through the center of the arc c and the tangent point between the arc c and the arc d. In the tire 2, an arc including the inflection point PV and an arc including the reference point PM may be connected to each other via one or more arcs. In this case, the inversely curved portion 72 is represented by a plurality of arcs that include an arc including the inflection point PV and an arc including the reference point PM, and is formed such that adjacent two arcs are tangent to each other.
In either case, the inversely curved portion 72 includes an arc including the inflection point PV. In the present disclosure, the arc passing through the inflection point PV is a second arc.
If the configuration of the case line PL is unknown, the first arc representing the curved portion 70, the second arc representing the inversely curved portion 72, and the inflection point PV are obtained as follows.
The case line PL is specified on the basis of a cross-sectional image, of the tire in the normal state, taken by the X-ray CT method. The axially outer end PPb of the case line PL is obtained. An outwardly convex arc (hereinafter, outward arc) having a center on the straight line LPb, which passes through the axially outer end PPb and extends in the axial direction, and including the axially outer end PPb is drawn. By drawing the outward arc while changing the radius thereof, an outward arc (hereinafter, first outward arc) having the maximum overlap length with the case line PL from the axially outer end PPb is obtained. If the entirety of the curved portion 70 cannot be represented by the first outward arc, another outward arc having a center on a straight line passing through an end of the first outward arc and the center of the first outward arc is drawn. The outward arc is drawn while changing the radius thereof, and an outward arc (hereinafter, second outward arc) having the maximum overlap length with the case line PL from the end of the first outward arc is obtained. Tracing of the case line PL by the outward arc is repeated until the case line PL can no longer be traced by the outward arc. The end on the core body 36m side of an outward arc drawn last is specified as the inflection point PV, and this outward arc is specified as a first arc including the inflection point PV and representing a part or the entirety of the curved portion 70.
An inwardly convex arc (hereinafter, inward arc) including the inflection point PV and having a center on a straight line passing through the center of the first arc specified as described above and the inflection point PV and on the side opposite to the center of the first arc across the inflection point PV, is drawn. By drawing the inward arc while changing the radius thereof, an inward arc (hereinafter, first inward arc) having the maximum overlap length with the case line PL from the inflection point PV is obtained. The first inward arc is specified as a second arc including the inflection point PV and representing a part or the entirety of the inversely curved portion 72. If the entirety of the inversely curved portion 72 cannot be drawn by the first inward arc, tracing by the inward arc is repeated until the last inward arc including the reference point PM is drawn.
In the tire 2, a part or the entirety of the inversely curved portion 72 is represented by a second arc passing through the inflection point PV. The first arc representing a part or the entirety of the curved portion 70 and the second arc representing a part or the entirety of the inversely curved portion 72 are tangent to each other at the inflection point PV. The inflection point PV is located between the center of the first arc and the center of the second arc, and the center of the first arc, the inflection point PV, and the center of the second arc are located on the same straight line.
In the case line PL shown in
As shown in
In the tire 2, a particularly large load is applied to a radially inner portion of the case line PL from the inflection point PV, and thus the radially inner portion from the inflection point PV is a region where, if foreign matter is present, strain due to the presence of the foreign matter is likely to be generated.
As shown in
In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is effectively suppressed. Moreover, occurrence of damage to the RFID tag 60 itself is also effectively suppressed.
In the tire 2, good durability is maintained even though the RFID tag 60 is incorporated into the tire 2. From this viewpoint, preferably, the RFID tag 60 is located radially outward of the inflection point PV.
In
In the tire 2, preferably, the ratio (X/CW) of the distance X in the axial direction from the equator plane CL to the inflection point PV to the distance CW in the axial direction from the equator plane CL to the axially outer end PPb is not less than 70% and not greater than 85%, and the ratio (Y/CH) of the distance Y in the radial direction from the bead base line BBL to the inflection point PV to the distance CH in the radial direction from the bead base line BBL to the equator PE is not less than 15% and not greater than 22%.
When the ratio (X/CW) is set to be not less than 70% and the ratio (Y/CH) is set to be not less than 15%, the inflection point PV is located at an appropriate interval from the core 36. The RFID tag 60 which is located radially outward of the inflection point PV is effectively inhibited from promoting an increase in strain. In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is effectively suppressed. Moreover, occurrence of damage to the RFID tag 60 itself is also effectively suppressed. From this viewpoint, more preferably, the ratio (X/CW) is not less than 75%, and the ratio (Y/CH) is not less than 17%.
When the ratio (X/CW) is set to be not greater than 85% and the ratio (Y/CH) is set to be not greater than 22%, the inflection point PV is located at an appropriate interval from the maximum width position PPb. Deformation of the carcass 12 at the bead portion when the tire 2 is inflated is suppressed, and in this case as well, the RFID tag 60 which is located radially outward of the inflection point PV is effectively inhibited from promoting an increase in strain. In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is effectively suppressed. Moreover, occurrence of damage to the RFID tag 60 itself is also effectively suppressed. From this viewpoint, more preferably, the ratio (X/CW) is not greater than 80%, and the ratio (Y/CH) is not greater than 20%.
In
In the tire 2, the angle θ is preferably not less than 25 degrees and not greater than 30 degrees.
When the angle θ is set to be not less than 25 degrees, falling-down of the case line PL at the bead portion is effectively suppressed. Strain caused by the action of a load is inhibited from being increased, so that the RFID tag 60 which is located radially outward of the inflection point PV is effectively inhibited from promoting an increase in strain. In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is effectively suppressed. Moreover, occurrence of damage to the RFID tag 60 itself is also effectively suppressed. From this viewpoint, the angle θ is more preferably not less than 26 degrees.
When the angle θ is set to be not greater than 30 degrees, deformation of the carcass 12 at the bead portion when the tire 2 is inflated is suppressed. In this case as well, the RFID tag 60 which is located radially outward of the inflection point PV is effectively inhibited from promoting an increase in strain. In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is effectively suppressed. Moreover, occurrence of damage to the RFID tag 60 itself is also effectively suppressed. From this viewpoint, the angle θ is more preferably not greater than 29 degrees.
In the tire 2, the tag member 26 is located axially outward of the outer apex 42 on the radially outer side of the end PF of the turned-up portion 50. The tag member 26 is in contact with the outer apex 42. The boundary between the tag member 26 and the outer apex 42 forms a part of the outer surface of the outer apex 42. In other words, the boundary between the tag member 26 and the outer apex 42 forms a part of the outer surface of the apex 38.
In the tire 2, the RFID tag 60 is located between the outer end PG2 of the outer apex 42 and the end PF of the turned-up portion 50 in the radial direction.
The RFID tag 60 of the tire 2 is placed in the bead portion where the degree of bending is small. In the tire 2, the risk of damage to the RFID tag 60 is low.
Since the outer apex 42 which is more flexible than the inner apex 40 is located axially inward of the RFID tag 60, the presence of the RFID tag 60 is effectively inhibited from promoting an increase in strain. In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is suppressed. Moreover, occurrence of damage to the RFID tag 60 itself is also suppressed. In the tire 2, good durability is maintained even though the RFID tag 60 is incorporated into the tire 2.
In the tire 2, the outer apex 42 is located between the carcass ply 46 and the RFID tag 60. The RFID tag 60 is placed so as to be spaced apart from the carcass ply 46 including the carcass cords which are metal components. Radio waves are less likely to be disturbed, so that a good communication environment is formed between the RFID tag 60 and a communication device (not shown). Writing of data to the RFID tag 60 and reading of data recorded in the RFID tag 60 are accurately performed.
From the viewpoint of maintaining good durability while achieving formation of a good communication environment and reduction of the risk of damage to the RFID tag 60, preferably, the tag member 26 is in contact with the outer apex 42 on the radially outer side of the end PF of the turned-up portion 50, and the RFID tag 60 is located between the outer end PG2 of the outer apex 42 and the end PF of the turned-up portion 50 in the radial direction. From the same viewpoint, more preferably, the RFID tag 60 is located between the outer end PG2 of the outer apex 42 and the outer end PB of the chafer 8 in the radial direction.
In the tire 2, the inner end 26u of the tag member 26 is located radially outward of the outer end PB of the chafer 8. In the tire 2, the entirety of the tag member 26 is placed radially outward of the outer end PB of the chafer 8. Interference of the tag member 26 with the outer end PB of the chafer 8 is effectively suppressed, so that waving of the outer end PB of the chafer 8 (i.e., occurrence of creases) is effectively suppressed. The presence of the RFID tag 60 is effectively inhibited from promoting an increase in strain. In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is suppressed. Moreover, occurrence of damage to the RFID tag 60 itself is also suppressed. In the tire 2, good durability is maintained even though the RFID tag 60 is incorporated into the tire 2. From this viewpoint, in the tire 2, the inner end 26u of the tag member 26 is preferably located radially outward of the outer end PB of the chafer 8. More preferably, the inner end 26u of the tag member 26 is located radially outward of the outer end PB of the chafer 8, and is located radially outward of the outer end of the interlayer strips 22.
As shown in
In the tire 2, more preferably, the inner end 26u of the tag member 26 is located radially outward of the outer end PB of the chafer 8, and the outer end 26s of the tag member 26 is located radially inward of the outer end PG2 of the outer apex 42. In this case, as shown in
As described above, the tag member 26 is in contact with the outer apex 42. As shown in
The tire 2 can achieve improvement of the readability of the RFID tag 60 and reduction of the risk of damage to the RFID tag 60 while suppressing influence on durability. From this viewpoint, further preferably, between the outer end PG2 of the outer apex 42 and the outer end PB of the chafer 8, the tag member 26 is interposed between the outer apex 42 and the sidewall 6.
In the tire 2, the outer end PB of the chafer 8 is located radially outward of the inner end PS of the sidewall 6, and the sidewall 6 covers the outer end PB of the chafer 8. Since the outer end PB of the chafer 8 is covered with the sidewall 6, strain applied to the outer end PB is effectively alleviated. In the tire 2, the chafer 8 is harder than the sidewall 6. Therefore, by covering the outer end PB of the chafer 8 with the sidewall 6, strain applied to the outer end PB is more effectively alleviated. In the tire 2, occurrence of damage due to the presence of the RFID tag 60 is suppressed. Moreover, occurrence of damage to the RFID tag 60 itself is also suppressed. In the tire 2, good durability is maintained even though the RFID tag 60 is incorporated into the tire 2. From this viewpoint, in the tire 2, preferably, the outer end PB of the chafer 8 is located radially outward of the inner end PS of the sidewall 6, and the sidewall 6 covers the outer end PB of the chafer 8.
In
In the tire 2, the ratio (L1/Rb1) of the radial height L1 of the outer end PG2 of the outer apex 42 to the radial height Rb1 of the outer end PB of the chafer 8 is preferably not less than 1.08 and not greater than 1.54.
When the ratio (L1/Rb1) is set to be not less than 1.08, a space for placing the tag member 26 is ensured. The tire 2 allows the tag member 26 to be placed at a position at which interference with the outer end PB of the chafer 8 is less likely to occur. In the tire 2, the presence of the RFID tag 60 is effectively inhibited from promoting an increase in strain. From this viewpoint, the ratio (L1/Rb1) is more preferably not less than 1.12.
When the ratio (L1/Rb1) is set to be not greater than 1.54, the influence of the outer apex 42 on bending of the tire 2 is suppressed. With the tire 2, good ride comfort is maintained. From this viewpoint, the ratio (L1/Rb1) is more preferably not greater than 1.42.
In the tire 2, the ratio (Rb1/K2) of the radial height Rb1 of the outer end PB of the chafer 8 to the radial height K2 of the inner end PS of the sidewall 6 is not less than 2.00 and not greater than 3.25.
When the ratio (Rb1/K2) is set to be not less than 2.00, a region where the sidewall 6 and the chafer 8 are joined together can be sufficiently ensured. In the tire 2, strain applied to the outer end PB of the chafer 8 is more effectively alleviated. In the tire 2, the presence of the RFID tag 60 is effectively inhibited from promoting an increase in strain. From this viewpoint, the ratio (Rb1/K2) is more preferably not less than 2.20.
When the ratio (Rb1/K2) is set to be not greater than 3.25, a space for placing the tag member 26 is ensured. The tire 2 allows the tag member 26 to be placed at a position at which interference with the outer end PB of the chafer 8 is less likely to occur. In this case as well, the presence of the RFID tag 60 is effectively inhibited from promoting an increase in strain. From this viewpoint, the ratio (Rb1/K2) is more preferably not greater than 3.00.
In the tire 2, the outer end PU of the inner apex 40 is located between the end PF of the turned-up portion 50 and the RFID tag 60 in the radial direction. Accordingly, the hard inner apex 40 effectively increases the stiffness of the bead portion. Strain applied to the RFID tag 60 is effectively reduced. The presence of the RFID tag 60 is effectively inhibited from promoting an increase in strain. From this viewpoint, the outer end PU of the inner apex 40 is preferably located between the end PF of the turned-up portion 50 and the RFID tag 60 in the radial direction. In this case, from the viewpoint of being able to more effectively inhibit the presence of the RFID tag 60 from promoting an increase in strain, more preferably, the outer end PU of the inner apex 40 is located between the end PF of the turned-up portion 50 and the RFID tag 60 in the radial direction, and further, the outer end PU of the inner apex 40 is located between the end PF of the turned-up portion 50 and the outer end PB of the chafer 8 in the radial direction. The outer end PB of the chafer 8 is located radially outward of the outer end PU of the inner apex 40, and the end PF of the turned-up portion 50 is located radially inward of the outer end PU of the inner apex 40, further more preferably.
As is obvious from the above description, according to the present disclosure, the heavy duty tire 2 that can suppress occurrence of damage due to the presence of the RFID tag 60 is obtained.
The above-described technology capable of suppressing occurrence of damage due to the presence of an RFID tag can be applied to various tires.
Number | Date | Country | Kind |
---|---|---|---|
2023-148894 | Sep 2023 | JP | national |