Heavy-duty valve stem seal assembly

Information

  • Patent Grant
  • 6450143
  • Patent Number
    6,450,143
  • Date Filed
    Thursday, May 17, 2001
    23 years ago
  • Date Issued
    Tuesday, September 17, 2002
    22 years ago
Abstract
An integral valve stem seal retainer and spring seat for a valve seal subassembly is disclosed having lower and upper portions. An annular sealing member engages the upper portions of the metal retainer and an annular flange extends radially outwardly of the lower portion of the retainer to engage at least one coil of a valve spring. The annular sealing member further includes upper and lower portions, wherein the upper portion engages an outer surface of a valve stem while the lower portion engages a transitional surface of a valve guide.
Description




FIELD OF THE INVENTION




The present invention relates to internal combustion engine valve seals and retainers, and more particularly to a unitary annular retainer including an integral spring seat where the retainer provides support to an entire outer circumference of a valve stem seal.




BACKGROUND OF THE INVENTION




In conventional overhead valve, internal combustion engines, at least two valves reciprocate to provide intermittent communication between intake and exhaust manifolds and a combustion chamber. The valves include valve stems that are commonly disposed in valve stem guides, supporting axial motion in an engine component such as an engine head. Lubrication is provided to upper portions of the valve stems by a spray of lubricating oil within a valve cover disposed over the engine head or by gravity flow from an associated rocker arm. Oil flows along a free upper end of the valve stem toward the manifolds and valve heads by the force of gravity and may be encouraged by a pressure differential in the manifold versus crankcase pressure.




Annular valve stem seals are generally urged into contact with the outer surface of the valve stem and an upper portion of the valve guide by a valve stem seal retainer, and serve various purposes. First, valve stem seals minimize engine oil consumption by restricting oil entry into the manifold and the combustion chamber. Second, they help to minimize exhaust particulates that contribute to pollution. Third, they are helpful in minimizing guide wear, which is of particular importance in large diesel engines due to the nature of their operation. The valve stem, valve guide, and valve stem seals are annularly wrapped by a helical compression valve spring that serves to bias the valve into a closed position. The longitudinal ends of the valve spring are restrained by flanges on corresponding valve spring retainers and/or spring seats, thereby maintaining proper alignment and position of the valve and valve spring.




In the heavy-duty engine market, a number of changes are being made to comply with recent and prospective emissions standards. As the construction of the engine changes, engine designers must nevertheless maintain a robust engine design with a sufficient level of dependability. One of the more prominent changes being implemented is the increase of the power rating of the engine in an effort to reduce the size of the engine. In particular, engine manufacturers are attempting to reduce the displacement of heavy-duty engines while still providing ample horsepower and torque for heavy-duty applications. As is well-known, engine displacement is calculated by multiplying cylinder bore area times the piston stroke length. In reducing the displacement of heavy-duty engines, manufacturers are reducing both the bore area and the stroke length while increasing the compression within the combustion chamber. Increasing the required amount of compression, in turn, places greater stress on the valve seal. Many of these engines are increasing their compression by up to 50-60 psig, which is a far greater pressure than many prior art valve seals can handle while being properly retained on a valve guide. For such cases, an integral valve seal with a metal retainer is normally recommended.




However, as the bore area of an engine is reduced, the area provided for valve assemblies above a combustion chamber is correspondingly reduced. The problem is especially significant in heavy-duty diesel engines because all valve assemblies are typically oriented perpendicular to the engine head. Additionally, a fuel injector occupies a large portion of the area above the cylinder bore. Thus, in high efficiency heavy-duty diesel engines having more than two valves (intake and exhaust valves) per cylinder, the area directly above the engine bore must be shared by a fuel injector and the valves. Since the size of the fuel injector is substantially fixed, a reduction in engine bore generally requires a reduction in the valve assembly diameter, including corresponding reductions in the diameter of valve stem seals, valve guides, and valve stem seal retainers. There is thus a need for a valve seal assembly capable of withstanding increased compression loads while providing a seal having close clearance and durability.




Another way manufacturers are attempting to comply with recent and prospective emissions standards is by turbocharging heavy-duty diesel engines while also incorporating exhaust gas recirculation (EGR) to reduce emissions. In typical turbocharged, unthrottled (i.e. diesel) engines that do not have EGR, the intake manifold pressure is slightly higher than the exhaust manifold pressure. Thus, if the valve stem seal is strong enough to withstand the intake manifold pressure, it will also withstand the lower exhaust manifold pressure. However, once EGR is incorporated, a portion of the exhaust gases are injected back into the intake manifold at a point downstream of the turbocharger compressor. To effectively inject exhaust gases into the intake manifold, the exhaust manifold pressure must exceed the intake manifold pressure. In one design, the exhaust manifold pressure must be 75-100 percent higher than the intake manifold pressure to achieve the desired level of exhaust gas recirculation. However, it has been found that prior art integral valve seal designs are insufficiently supported by the metal retainer to operate in high pressure environments. In particular, such a dramatic increase in exhaust manifold pressure has caused “bursting” of the valve seal in experimental turbocharged unthrottled engine designs using EGR, resulting in loss of compression and seal integrity. Thus, a reinforced integral valve seal assembly is desired that is capable of withstanding increased compression loads while also providing a seal having close clearance and durability to minimize the possibility of valve seal failure in high pressure environments.




SUMMARY OF THE INVENTION




The present invention is directed to an integral valve stem seal and valve stem seal retainer designed to withstand high manifold pressures. The retainer includes concentric lower and upper portions, where the portions are separated by diameter-reducing transition zone. As a result, the upper portion has an inside diameter less than the lower portion. An elastomeric annular sealing member engages the upper portion of the metal retainer such that the entire outside circumference of the sealing member is reinforced by the retainer. An annular flange extends radially outwardly of the lower portion of the retainer to engage at least one coil of a valve spring. The annular sealing member includes a plurality of oil or gas seals that engage an outer surface of a valve stem, and further includes a lower lip that engages an upper surface of a transition of a valve guide. The lower portion of the retainer may also include a plurality of radially inwardly extending tangs to positively engage an outer surface of the valve guide against axial and rotational movement.




Because the valve stem seal is reinforced along its entire outside circumference, the inventive seal is extremely strong and resistant to failure even though the outer diameter has been reduced to accommodate smaller, higher power-density engines. Moreover, since the reinforcement on the seal is provided by the upper retainer portion, which has the smallest inner diameter, the seal is extremely resistant to blow-out or “bursting”. Thus, the seal of the present invention may be used in new, higher pressure heavy-duty engines to reduce the likelihood of valve stem seal failure.











BRIEF DESCRIPTION OF THE DRAWINGS




The features and inventive aspects of the present invention will become more apparent upon reading the following detailed description, claims, and drawings, of which the following is a brief description:





FIG. 1

is a side plan view of a cylinder bore of a heavy-duty high power density diesel engine.





FIG. 2

is a top plan view of a cylinder bore of a heavy-duty high power density diesel engine.





FIG. 3

is a diagrammatic view of a turbocharged unthrottled engine with exhaust gas recirculation.





FIG. 4

is a perspective view of one embodiment of the valve assembly of the present invention.





FIG. 5

is a perspective view of another embodiment of the valve assembly of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




As noted above, reducing the displacement of heavy-duty engines causes a corresponding reduction in a cylinder bore area. In

FIG. 1

, a side plan view of a reduced area cylinder bore


10


is shown.

FIG. 1

also shows, in plan view, a fuel injector


12


, and two valves


14


,


16


corresponding respectively to intake and exhaust valves. As may be appreciated from

FIG. 1

, the valves


14


,


16


extend generally perpendicular to the cross-sectional area of the cylinder bore


10


, and are not angled with respect to the combustion chamber. In comparison to a conventionally sized heavy-duty engine cylinder bore, shown in phantom as reference


18


, the reduced area bore


10


provides substantially less area above the bore


10


for placement of both the fuel injector


12


and the valves


14


,


16


.




The space constraints associated with heavy-duty high power density engines are further illustrated with reference to

FIG. 2

, which shows the reduced diameter bore


10


from the top. In

FIG. 2

, the fuel injector


12


shares the area directly above the cylinder bore


10


with two pairs of valve assemblies


14


,


16


(two intake and two exhaust valves). Again, because the valve assemblies


14


,


16


and the fuel injector


12


extend generally perpendicular to the cross-sectional area of the cylinder bore


10


, the area allowed for each valve assembly


14


,


16


is severely constrained. As may be appreciated, it is not practical to reduce the size of the fuel injector


12


. To enable the four valve assemblies


14


,


16


and the fuel injector


12


to fit within the allocated space above each cylinder bore


10


, the corresponding cross-sectional area of the valve assemblies


14


,


16


must be reduced.




Additionally, some manufacturers have attempted to design a turbocharged unthrottled (i.e. diesel) engine including an exhaust gas recirculation (EGR) system, shown diagrammatically in FIG.


3


. In such an engine, air is drawn through an air intake


100


into a compressor


102


that feeds compressed air through an intake manifold


104


to an intake valve


14


. Air within intake manifold


104


is pressurized by the compressor to a first pressure P


1


, typically on the order of 30 psi. After the intake air is mixed with fuel and burned within cylinder


106


, exhaust valve


16


opens to vent the exhaust gases from cylinder


106


into exhaust manifold


108


. A portion of the exhaust gases flow across turbine


110


, thereby driving compressor


102


, after which the gases are discharged through exhaust port


112


. However, to improve the efficiency of the engine while reducing emissions, an EGR system


114


may be used to inject a portion of the exhaust gases back into the intake manifold. Of course, to overcome the intake manifold pressure P


1


, the pressure P


2


within exhaust manifold must be exceed P


1


. In practice, the P


2


must be significantly higher than P


1


, on the order of 75-100 percent higher, to achieve reduced emissions. Thus, if the intake manifold pressure is set at 30 psi, the exhaust manifold pressure must be between 50-60 psi to achieve the desired EGR level.




Typical valve seal assemblies have been unable to withstand the increased exhaust manifold pressure, and have been found to fail in test engines. One particularly harmful failure, called “bursting”, involves the elastomeric valve stem seal failing along a radial path, generally at the radially thinnest point of the elastomeric seal. To combat seal bursting, a fully-supported valve stem seal assembly is disclosed.




A valve assembly, corresponding either to an intake valve


14


or an exhaust valve


16


, is shown in FIG.


4


. For purposes of the following description, the valve assembly in

FIG. 4

will be referred to as an intake valve


14


, but it should be understood that the following description applies to exhaust valves as well.




In general, the components that most contribute to the cross-sectional area of the valve assembly


14


include a valve stem


20


, a valve guide


22


, and a valve spring


24


. In addition, the valve assembly further includes a valve stem seal


26


and a valve stem seal retainer


28


. When assembled, the valve stem


20


is seated in and surrounded by the annular valve guide


22


. In reducing the cross-sectional area of the valve assembly


14


, it is generally not possible to reduce the outer diameter of the valve stem


20


for structural reasons. Instead, reducing the outer diameter of both the valve guide


22


and the valve spring


24


achieves most of the cross-sectional area reduction. However, reducing the outer diameter of the valve guide


22


results in a relatively thin-walled valve guide. It is possible that the length of the valve guide


22


might be increased to provide effective support for the valve stem


20


. Unfortunately, increasing the length of the valve guide


22


results in more of the valve guide projecting above the engine head, which would require a deeper stamping operation to fabricate the valve stem seal retainer


28


. However, even if the length of the valve guide


22


is not increased, it is relatively difficult for the valve stem seal


26


to remain in constant contact with the outer circumference of the valve stem


20


. Moreover, it is also difficult for seal


26


to remain in constant contact with the top portion of the valve guide


22


while at the same time remaining free from interference from the valve spring


24


. As seen in

FIG. 4

, the valve stem seal


26


is supported by the valve stem seal retainer


28


. Generally, when the valve guide


22


projects upwardly a relatively large amount, the valve stem seal retainer


28


includes at least two pieces, including an upper portion for fixing the valve stem seal in place and a lower portion for preventing migration of the upper portion when the valve stem


20


reciprocates during engine operation. The lower portion may also include a flange for supporting a lower end of the valve spring


24


.




According to the present invention and as shown in

FIG. 4

, a one-piece steel retainer


28


is provided to both support and reinforce the valve stem seal


26


. Retainer


28


includes a lower portion


30


, an intermediate portion


32


and an upper portion


34


. Lower portion


30


is separated from intermediate portion


32


by a first transition area


36


that is located at approximately the top of valve guide


22


that serves to reduce the inner diameter of the retainer


28


between a lower diameter D


1


and an intermediate diameter D


2


. First transition area


36


is preferably formed as an inwardly extending radial ledge located at approximately half the axial height of retainer


28


. An inner surface


38


of the first transition area


36


is adapted to snugly rest against an upper surface


40


of the valve guide


22


.




A second transition area


42


separates and reduces the inner diameter between intermediate portion


32


and upper portion


34


of retainer


28


from intermediate diameter D


2


to upper diameter D


3


. Again, the second transition area


42


is preferably formed as a generally inwardly extending radial ledge that serves to support seal


26


in place and prevent lifting of the seal from contact with upper surface


40


of guide


22


.




The lower portion


30


of the retainer


28


further includes a radially outwardly projecting annular flange


43


that acts to locate the retainer


28


against the upper surface


44


of the cylinder head


46


. An upper surface


48


of the flange


43


acts as a seat for a lower end of the valve spring


24


. By including the flange


43


with the valve stem seal retainer


28


, the valve seal may be fabricated and installed as a single subassembly comprising the valve stem seal


26


and the valve stem seal retainer


28


. The sealing subassembly is easier to install, especially given the space constraints above the cylinder bore as described above.




Likewise, because the retainer


28


is unitary in construction, the inner diameter D


1


of the retainer


28


lower portion


30


is less than if the retainer lower portion were a separate piece. Additionally, the retainer lower portion may include a plurality of radially inwardly projecting indentations or tangs


50


that act to secure the retainer to the outer surface


52


of the valve guide


22


. The tangs


50


also act to prevent the valve seal retainer


28


from lifting or rotating as the valve reciprocates during engine operation.




As noted above, an annular, elastomeric valve stem seal


26


engages the outer circumference


54


of the valve stem


20


to provide a tight seal. A lower outer circumference


56


of seal


26


is supported by and engages an inner circumference of intermediate retainer portion


32


, while a seal upper outer circumference


58


is supported by and engages an inner circumference of the upper retainer portion


34


. An inner circumference of second transition area


42


also engages seal


26


, and prevents upward movement of the seal under high pressures.




In practice, the valve stem seal


26


includes an upper seal


60


and a lower seal


62


. The upper seal


60


includes a plurality of continuous ribs


64


defining a number of recesses


66


in the face of the seal


26


. The ribs


64


contact the outer circumference


54


of the valve stem


20


to prevent ingress of excessive amounts of lubricant, while the recesses


66


provide a reservoir of lubricant to the valve stem as well as a location for excess oil to flow.




The lower portion


62


of the valve stem seal


26


includes a frustoconical end


72


that extends axially downwardly from the upper seal to contact the upper surface


40


of the valve guide. The outer diameter of the base


74


of the frustoconical end


72


is substantially equal to or slightly larger than D


2


, the inner diameter of the retainer intermediate portion


32


and is therefore greater than the inner diameter D


3


of the retainer upper portion


34


, so that the valve stem seal


26


is tightly held against the valve stem outer circumference


54


. By configuring the valve stem seal in this manner, the amount of elastomeric material needed to create effective sealing is reduced over conventional two-piece valve stem seal assemblies, thereby allowing for a seal having a reduced diameter. Moreover, when properly installed, second transition area


42


exerts a downward force on seal


26


such that end


72


maintains contact with surface


40


even when subjected to high pressures tending to lift the seal from the valve guide. Finally, the upper portion


34


of retainer


28


helps to prevent deformation of the seal


26


over its lifetime.




The combination of the above-described features therefore enables construction of a valve seal assembly for use with valve guides


22


. The shape of the valve seal retainer allows an extremely small clearance T between the lower portion


30


of the retainer


28


and the outer surface


52


of the valve guide


22


. At the same time, the flange


43


on retainer lower portion


30


provides an integral spring seat for use with a valve spring


24


. Integral flange


43


and spring


24


also cooperate to maintain the seal in position on the guide under high pressure conditions that may tend to lift the seal from the guide. The valve seal subassembly of the present invention therefore provides a more compact assembly while not compromising sealability or durability of the seal, and at the same time providing a high resistance against seal failure due to bursting.




In another embodiment shown in

FIG. 5

, a one-piece steel retainer


128


is provided to both support and reinforce the valve stem seal


126


. The retainer


128


includes a lower portion


130


and an upper portion


134


. The lower portion


130


is separated from the upper portion


134


by a transition area


136


. The transition area


136


serves to reduce the inner diameter of the retainer


128


between a lower diameter D


1


and an upper diameter D


3


. The transition area


136


is preferably formed as an inwardly extending radial ledge located approximately on the valve guide


22


where the diameter of the valve guide


22


is reduced from a first diameter


137


to a smaller, second diameter


139


. An inner surface


138


of the transition area


136


engages an upper surface


140


of first diameter


137


of the valve guide


22


.




The valve stem seal


126


engages the outer circumference


54


of the valve stem


20


to provide a tight seal. An outer circumference


158


of seal


126


is supported by and engages an inner circumference of the upper retainer portion


134


. The valve stem seal


126


includes an upper seal


160


and a lower seal


162


. The upper seal


160


includes a inner surface


145


, adapted to engage an upper surface


147


of the second diameter


139


of the valve guide


22


.




The lower portion


162


of the valve stem seal


126


includes a frustoconical end


172


that extends axially downwardly from the upper seal


160


to contact the upper surface


140


of the first diameter


137


of the valve guide


22


. By configuring the valve stem seal


126


in the manner shown in

FIG. 5

, the amount of elastomeric material needed to create effective sealing is reduced over conventional two-piece valve stem seal assemblies, thereby allowing for a seal having a reduced diameter.




Moreover, when properly installed, transition area


136


exerts a downward force on seal


126


such that end


172


maintains contact with surface


140


even when subjected to high pressures tending to lift the seal from the valve guide. Furthermore, the upper portion


134


of retainer


128


helps to prevent deformation of the seal


126


over its lifetime. Finally, using a retainer


128


with only the lower and the upper portion,


130


and


134


, respectively, the oil metering rate of the seal


126


becomes smaller, which in turn means less deformation of the seal


126


on the downstroke of the stem.




The valve guide


22


with the stepped configuration, i.e. with the first diameter


137


and the second diameter


139


, may also be utilized in the embodiment of the retainer


28


and valve stem seal


26


shown in FIG.


4


.




Preferred embodiments of the present invention have been disclosed. A person of ordinary skill in the art would realize, however, that certain modifications would come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention.



Claims
  • 1. An integral valve stem seal subassembly comprising:a unitary metal annular valve seal retainer including lower, intermediate and upper annular portions, wherein the inner diameter of said upper portion is less than the inner diameter of said intermediate portion, and the inner diameter of said intermediate portion is less than the inner diameter of said lower portion; and an annular sealing member having upper and lower seals, said sealing member engages said retainer intermediate and upper portions, said upper seal includes an inner circumferential surface for sealing engagement with an outer surface of a valve stem, said lower seal including a frustoconical end extending axially from said upper seal to contact an upper surface of a transitional portion of a valve guide.
  • 2. The valve stem seal subassembly of claim 1, wherein said retainer lower and intermediate portions are separated by a first transition area and said retainer intermediate and upper portions are separated by a second transition area, wherein said first and second transition areas are generally inwardly extending radial ledges.
  • 3. The valve stem seal subassembly of claim 2, wherein said retainer lower portion further includes a plurality of radially inwardly extending tangs to positively engage an outer surface of the valve guide.
  • 4. The valve stem seal subassembly of claim 3, wherein said sealing member has an outer circumference which is supported by said retainer.
  • 5. in a valve assembly of a heavy-duty engine, an integral valve stem seal subassembly comprising:a unitary metal annular valve seal retainer, said retainer including lower, intermediate and upper annular portions, wherein the inner diameter of said upper portion is less than the inner diameter of said intermediate portion, and the inner diameter of said intermediate portion is less than the inner diameter of said lower portion; and an annular sealing member having upper and lower seals and an outer circumference, said sealing member engages said retainer intermediate and upper portions such that said outer circumference of said sealing member is supported by said retainer, said upper seal including an inner circumferential surface for sealing engagement with an outer surface of a valve stem, said lower seal including a frustoconical end extending axially from said upper seal to contact an upper surface of a transitional portion of a valve guide.
  • 6. The valve stem seal subassembly of claim 5, wherein said retainer lower and intermediate portions are separated by a first transition area and said retainer intermediate and upper portions are separated by a second transition area, wherein said first and second transition areas are generally inwardly extending radial ledges.
  • 7. The valve stem seal subassembly of claim 6, where said retainer lower portion further includes a plurality of radially inwardly extending tangs to positively engage an outer surface of the valve guide.
  • 8. The valve stem seal subassembly as in claim 7, wherein said upper seal comprises a plurality of inwardly projecting ribs in sealing engagement with the valve stem outer surface, said ribs defining a plurality of recesses therebetween.
  • 9. An integral valve stem seal subassembly, comprising:a unitary metal annular valve seal retainer including lower and upper annular portions, wherein the inner diameter of said upper portion is less than the inner diameter of said lower portion; and an annular sealing member having upper and lower seals, said sealing member engages said retainer upper portion, said upper seal includes an inner circumferential surface for sealing engagement with an outer surface of a valve stem, said lower seal including a frustoconical end extending axially from said upper seal to contact an upper surface of a transitional portion of a valve guide.
  • 10. The valve stem seal subassembly of claim 9, wherein said retainer lower and upper portions are separated by a transition area, wherein said transition area is generally an inwardly extending radial ledge.
  • 11. The valve stem seal subassembly of claim 10, wherein said retainer lower portion further includes a plurality of radially inwardly extending tangs to positively engage an outer surface of the valve guide.
  • 12. The valve stem seal subassembly of claim 11, wherein said sealing member has an outer circumference which is supported by said retainer.
  • 13. In a valve assembly of a heavy-duty engine, an integral valve stem seal subassembly comprising:a unitary metal annular valve seal retainer, said retainer including lower and upper annular portions, wherein the inner diameter of said upper portion is less than the inner diameter of said lower portion; and an annular sealing member having upper and lower seals and an outer circumference, said sealing member engages said retainer upper portion such that said outer circumference of said sealing member is supported by said retainer, said upper seal including an inner circumferential surface for sealing engagement with an outer surface of a valve stem, said lower seal including a frustoconical end extending axially from said upper seal to contact an upper surface of a transitional portion of a valve guide.
  • 14. The valve stem seal subassembly of claim 13, wherein said lower and upper portions are separated by a transition area, wherein said transition area is generally an inwardly extending radial ledge.
  • 15. The valve stem seal subassembly of claim 14, where said retainer lower portion further includes a plurality of radially inwardly extending tangs to positively engage an outer surface of the valve guide.
  • 16. The valve stem seal subassembly as in claim 15, wherein said upper seal comprises a plurality of inwardly projecting ribs in sealing engagement with the valve stem outer surface, said ribs defining a plurality of recesses therebetween.
Parent Case Info

The present application is a continuation-in-part of U.S. application Ser. No. 09/522,447, filed Apr. 18, 2000, now U.S. Pat. No. 6,244,235, issued Jun. 12, 2001, which in turn is related to U.S. application Ser. No. 09/395,579, filed Sep. 14, 1999, now U.S. Pat. No. 6,209,504, issued Apr. 3, 2001, the disclosure of which is hereby incorporated by reference.

US Referenced Citations (11)
Number Name Date Kind
2821973 Guhman Feb 1958 A
3699942 Moray Oct 1972 A
4325558 Poggio Apr 1982 A
4909202 Binford et al. Mar 1990 A
4919090 Deuring et al. Apr 1990 A
4947811 Binford Aug 1990 A
5072950 Littleproud et al. Dec 1991 A
5174256 Binford Dec 1992 A
5237971 Worsley Aug 1993 A
5381765 Rhodes Jan 1995 A
5775284 Kirchner et al. Jul 1998 A
Continuation in Parts (2)
Number Date Country
Parent 09/552447 Apr 2000 US
Child 09/859926 US
Parent 09/395579 Sep 1999 US
Child 09/552447 US