Heavy-duty valve stem seal

Information

  • Patent Grant
  • 6209504
  • Patent Number
    6,209,504
  • Date Filed
    Tuesday, September 14, 1999
    25 years ago
  • Date Issued
    Tuesday, April 3, 2001
    24 years ago
Abstract
An integral valve stem seal retainer and spring seat for a reduced diameter valve seal subassembly is disclosed having lower and upper portions. An annular sealing member is bonded to the upper portion of the metal retainer and an annular flange extends radially outwardly of the lower portion of the retainer to engage at least one coil of a reduced diameter valve spring. The annular sealing member further includes upper and lower portions, wherein the upper portion engages an outer surface of a valve stem while the lower portion engages a top of a thin-wall valve guide.
Description




FIELD OF THE INVENTION




The present invention relates to internal combustion engine valve seal retainers, and more particularly to a unitary annular retainer having an integral spring seat and close clearance for use with high power density heavy-duty engines.




BACKGROUND OF THE INVENTION




In conventional overhead valve internal combustion engines, at least two valves reciprocate to provide intermittent communication between intake and exhaust manifolds and a combustion chamber. The valves include valve stems that are commonly disposed in valve stem guides, supporting axial motion in an engine component such as an engine head. Lubrication is provided to upper portions of the valve stems by a spray of lubricating oil within a valve cover disposed over the engine head or by gravity flow from an associated rocker arm. Oil flows along a free upper end of the valve stem toward the manifolds and valve heads by the force of gravity and may be encouraged by a pressure differential in the manifold versus crankcase pressure.




Annular valve stem seals are generally urged into contact with the outer surface of the valve stem and an upper portion of the valve guide by a valve stem seal retainer, and serve various purposes. First, valve stem seals minimize engine oil consumption by restricting oil entry into the manifold and the combustion chamber. Second, they help to minimize exhaust particulates that contribute to pollution. Third, they are helpful in minimizing guide wear, which is of particular importance in large diesel engines due to the nature of their operation. The valve stem, valve guide, and valve stem seals are annularly wrapped by a helical compression valve spring that serves to bias the valve into a closed position. The longitudinal ends of the valve spring are restrained by flanges on corresponding valve spring retainers and/or spring seats, thereby maintaining proper alignment and position of the valve and valve spring.




In the heavy-duty engine market a number of changes are being made to comply with recent and prospective emissions standards. As the construction of the engine changes, engine designers must nevertheless maintain a robust engine design with a sufficient level of dependability. One of the more prominent changes being implemented is the increase of the power rating of the engine in an effort to reduce the size of the engine. In particular, engine manufacturers are attempting to reduce the displacement of heavy-duty engines while still providing ample horsepower and torque for heavy-duty applications. As is well-known, engine displacement is calculated by multiplying cylinder bore area times the piston stroke length. In reducing the displacement of heavy-duty engines, manufacturers are reducing both the bore area and the stroke length while increasing the compression within the combustion chamber. Increasing the required amount of compression, in turn, places greater stress on the valve seal. Many of these engines are increasing their compression by up to 50-60 psig, which is a far greater pressure than many prior art valve seals can handle while being properly retained on a valve guide. For such cases, an integral valve seal with a metal retainer is normally recommended.




However, as the bore area of an engine is reduced, the area provided for valve assemblies above a combustion chamber is correspondingly reduced. The problem is especially significant in heavy-duty diesel engines because all valve assemblies are typically oriented perpendicular to the engine head. Additionally, a fuel injector occupies a large portion of the area above the cylinder bore. Thus, in high efficiency heavy-duty diesel engines having more than two valves (intake and exhaust valves) per cylinder, the area directly above the engine bore must be shared by a fuel injector and the valves. Since the size of the fuel injector is substantially fixed, a reduction in engine bore generally requires a reduction in the valve assembly diameter, including corresponding reductions in the diameter of valve stem seals, valve guides, and valve stem seal retainers. There is thus a need for a valve seal assembly capable of withstanding increased compression loads while providing a seal having close clearance and durability.




SUMMARY OF THE INVENTION




The present invention is directed to an integral valve stem seal retainer and spring seat for a reduced diameter valve seal assembly. The retainer includes lower and upper portions. An annular sealing member is bonded to the upper portion of the metal retainer and an annular flange extends radially outwardly of the lower portion of the retainer to engage at least one coil of a reduced diameter valve spring. The annular sealing member further includes upper and lower seals, wherein the upper seal engages an outer surface of a valve stem while the lower seal engages a top of a thin-wall valve guide. The lower portion of the retainer may include a plurality of radially inwardly extending tangs to positively engage an outer surface of the valve guide against axial and rotational movement.




The integral valve stem seal retainer and spring seat of the present invention allows a reduced diameter valve seal subassembly and provides a seal capable of withstanding high pressure while reducing wear in heavy-duty engines.











BRIEF DESCRIPTION OF THE DRAWINGS




The features and inventive aspects of the present invention will become more apparent upon reading the following detailed description, claims, and drawings, of which the following is a brief description:





FIG. 1

is a side plan view of a cylinder bore of a heavy-duty high power density diesel engine.





FIG. 2

is a top plan view of a cylinder bore of a heavy-duty high power density diesel engine.





FIG. 3

is a perspective view of the valve assembly of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




As noted above, reducing the displacement of heavy-duty engines causes a corresponding reduction in a cylinder bore area. In

FIG. 1

, a side plan view of a reduced area cylinder bore


10


is shown.

FIG. 1

also shows in plan view a fuel injector


12


, and two valves


14


,


16


corresponding respectively to intake and exhaust valves. As may be appreciated from

FIG. 1

, the valves


14


,


16


extend generally perpendicular to the cross-sectional area of the cylinder bore


10


, and are not angled with respect to the combustion chamber. In comparison to a conventionally sized heavy-duty engine cylinder bore, shown in phantom as reference


18


, the reduced area bore


10


provides substantially less area above the bore


10


for placement of both the fuel injector


12


and the valves


14


,


16


.




The space constraints associated with heavy-duty high power density engines are further illustrated with reference to

FIG. 2

, which shows the reduced diameter bore


10


from the top. In

FIG. 2

, the fuel injector


12


shares the area directly above the cylinder bore


10


with two pairs of valve assemblies


14


,


16


(two intake and two exhaust valves). Again, because the valve assemblies


14


,


16


and the fuel injector


12


extend generally perpendicular to the cross-sectional area of the cylinder bore


10


, the area allowed for each valve assembly


14


,


16


is severely constrained. As may be appreciated, it is not practical to reduce the size of the fuel injector


12


. To enable the four valve assemblies


14


,


16


and the fuel injector


12


to fit within the allocated space above each cylinder bore


10


, the corresponding cross-sectional area of the valve assemblies


14


,


16


must be reduced.




One valve assembly, corresponding either to an intake valve


14


or an exhaust valve


16


, is shown in FIG.


3


. For purposes of the following description, the valve assembly in

FIG. 3

will be referred to as an intake valve


14


, but it should be understood that the following description applies to exhaust valves as well.




In general, the components that most contribute to the cross-sectional area of the valve assembly


14


include a valve stem


20


, a valve guide


22


, and a valve spring


24


. In addition, the valve assembly further includes a valve stem seal


26


and a valve stem seal retainer


28


. When assembled, the valve stem


20


is seated in and surrounded by the annular valve guide


22


. In reducing the cross-sectional area of the valve assembly


14


, it is generally not possible to reduce the outer diameter of the valve stem


20


for structural reasons. Instead, reducing the outer diameter of both the valve guide


22


and the valve spring


24


achieves most of the cross-sectional area reduction. However, reducing the outer diameter of the valve guide


22


results in a relatively thin-walled valve guide. It is possible that the length of the valve guide


22


might be increased to provide effective support for the valve stem


20


. Unfortunately, increasing the length of the valve guide


22


results in more of the valve guide projecting above the engine head, which would require a deeper stamping operation to fabricate the valve stem seal retainer


28


. Even if the length of the valve guide


22


is not increased, however, it is relatively difficult for the valve stem seal


26


to remain in constant contact with the outer circumference


30


of the valve stem


20


, and also with the top portion


32


of the valve guide


22


while at the same time remaining free from interference from the valve spring


24


. As seen in

FIG. 3

, the valve stem seal


26


is supported by the valve stem seal retainer


28


. Generally, when the valve guide


22


projects upwardly a relatively large amount, the valve stem seal retainer


28


includes at least two pieces, including an upper portion for fixing the valve stem seal in place and a lower portion for preventing migration of the upper portion when the valve stem


20


reciprocates during engine operation. The lower portion may also include a flange for supporting a lower end of the valve spring


24


.




However, a multiple piece valve stem seal is inappropriate when cross-sectional area of the valve assembly is critical. Instead, according to the present invention, an annular integral valve stem seal retainer


28


is shown having upper and lower portions


34


,


36


respectively. The upper portion


34


of the valve stem seal retainer


28


supports and is bonded to the elastomeric valve stem seal


26


along an outer circumference


38


thereof. The inner diameter D


1


of the retainer upper portion


34


is less than the inner diameter D


2


of the retainer lower portion


36


so that the valve stem seal


26


is firmly biased radially inwardly to make contact with the outer circumference


30


of the valve stem


20


. The lower portion


36


of the valve stem seal retainer


28


further includes a radially outwardly projecting annular flange


40


that acts to locate the retainer


28


against the upper surface


42


of the cylinder head


44


. An upper surface


46


of the flange


40


acts as a seat for a lower end of the valve spring


24


. By including the flange


40


with the valve stem seal retainer


28


, the valve seal may be fabricated and installed as a single subassembly comprising the valve stem seal


26


, the valve stem seal retainer


28


, and the spring


24


. The sealing subassembly is easier to install, especially given the space constraints above the cylinder bore as described above.




Likewise, because the retainer


28


is unitary in construction, the inner diameter D


2


of the retainer


28


lower portion


36


is less than if the retainer lower portion were a separate piece. Additionally, the retainer lower portion may include a plurality of radially inwardly projecting indentations or tangs


48


that act to secure the retainer to the outer surface


50


of the valve guide


22


. The tangs


48


also act to prevent the valve seal retainer


28


from lifting or rotating as the valve reciprocates during engine operation.




As noted above, an annular valve stem seal


26


is bonded to the outer circumference


30


of the valve stem


20


to provide a tight seal. In practice, the valve stem seal


26


includes an upper seal


52


and a lower seal


54


. The upper seal


52


includes a plurality of radially inwardly extending fingers


56


defining a number of recesses


58


in the face of the seal


26


. The fingers


56


contact the outer circumference


30


of the valve stem


20


to prevent ingress of excessive amounts of lubricant, while the recesses


58


provide a reservoir of lubricant to the valve stem as well as a location for excess oil to flow. The outer circumference


60


of the upper portion


52


of the seal


26


further includes a groove


62


for receiving an o-ring


64


, which prevents the seal upper portion


52


from deforming over the life of the seal.




The lower portion


54


of the valve stem seal


26


includes a frustoconical end


66


that extends axially from the upper seal to contact the top portion


32


of the valve guide. The outer diameter D


3


of the base


68


of the frustoconical end


66


is substantially equal to or slightly smaller than D


2


, and is therefore greater than the inner diameter D


1


of the retainer upper portion


34


, so that the valve stem seal


26


is tightly held against the outer circumference


30


of the valve stem


20


. By configuring the valve stem seal in this manner, the amount of elastomeric material needed to create effective sealing is reduced over conventional two-piece valve stem seal assemblies, thereby allowing for a seal having a reduced diameter.




The combination of the above-described features therefore enables construction of a valve seal assembly for use with reduced diameter valve guides


22


. The shape of the valve seal retainer allows an extremely small clearance T between the lower portion


36


of the retainer


28


and the outer circumference


38


of the valve guide


22


. At the same time, the flange


40


on the lower portion


36


provides an integral spring seat for use with a reduced diameter valve spring


24


. The valve seal subassembly of the present invention therefore provides a more compact assembly while not compromising sealability or durability of the seal.




Preferred embodiments of the present invention have been disclosed. A person of ordinary skill in the art would realize, however, that certain modifications would come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention.



Claims
  • 1. In a valve assembly of a heavy-duty engine, an integral valve stem seal subassembly comprising:a reduced diameter valve spring; a one-piece unitary metal annular valve seal retainer including upper and lower annular portions, wherein the inner diameter of said upper portion is less than the inner diameter of said lower portion, said lower portion axially extending to a height above a top portion of a valve guide, a flange extending radially outwardly of said lower portion for engaging at least one coil of said reduced diameter valve spring; and an annular sealing member having upper and lower seals, said sealing member bonded to said retainer upper portion, said upper seal including an inner circumferential surface for sealing engagement with an outer surface of a valve stem, said lower seal including a frustoconical end extending axially from said upper seal to contact said top portion of said valve guide.
  • 2. The valve subassembly of claim 1, wherein an outer diameter of said frustoconical end is greater than said inner diameter of said retainer upper portion.
  • 3. The valve subassembly of claim 2, where said valve guide has a reduced wall thickness.
  • 4. The valve subassembly of claim 3, where said retainer lower portion further includes a plurality of radially inwardly extending tangs to positively engage an outer surface of the valve guide.
  • 5. The valve subassembly as in claim 1, wherein said upper seal comprises a plurality of inwardly projecting fingers in sealing engagement with said valve stem outer surface, said fingers defining a plurality of recesses therebetween.
US Referenced Citations (10)
Number Name Date Kind
3699942 Moray Oct 1972
4834037 Lafever May 1989
4919090 Deuring et al. Apr 1990
4947811 Binford Aug 1990
5072950 Littleproud et al. Dec 1991
5174256 Binford Dec 1992
5295461 Rao et al. Mar 1994
5381765 Rhodes Jan 1995
5775284 Kirchner et al. Jul 1998
6119645 Hesher Sep 2000
Non-Patent Literature Citations (1)
Entry
Victor Reinz Sealing Products “Precision Engineered Valve Stem Seals for Every Engine Application” brochure, Copyright 1998.