The invention relates to a heavy hammer type wave power generation method and device.
Never-ending waves on the vast ocean contain a huge amount of energy. Under the effect of wave force, if a cubic meter of rising and falling seawater on the surface of the sea can produce 5 kw power on the condition that the average wave height is 1.5 meters and cycle is 6 seconds and the 5 kw wave power can be all transformed into electricity, 120 kwh per day can be obtained from wave power of one cubic meter of seawater. Provided that a family needs 6 kwh per day, it can meet the demand of 20 families. Therefore, there is a huge amount of cheap renewable resource in waves. And the value of the renewable resource continuously inspirits people to explore all kinds of wave power generation methods and devices.
The world has published thousands of patents and documents about wave power generation methods and devices up to now, and several dozens of wave power generation devices are implemented and operated, and the United Nations listed ocean wave power generation in the first place in the development of the ocean renewable energy sources. However, satisfying wave power generation methods and devices which can be widely used in commercial operation in economic benefits have not yet appeared. Therefore, wave power generation technology with energy density far greater than wind energy is far behind wind power generation technology currently.
The power generation scheme of the invention is realized by providing a heavy hammer type wave power generation method and device, characterized in that the heavy hammer type wave power generation method comprises following steps: arranging a rotating shaft in the middle of a floating box connected to an anchor seat by a cable on sea surface, connecting a vertical shifting rod to the rotating shaft, and the shifting rod can turn along the rotating shaft, fixing a heavy hammer with required weight to a lower end of the shifting rod, and fixedly connecting a chain ring meshed with a plurality of driving sprockets and guiding sprockets to an upper end of the shifting rod, fixing a shaft of the driving sprockets in a speed-increasing box, and meshing gears fixed to the shaft of the driving sprockets by a speed-increasing gear and a gear fixed to the generator shaft.
When the sea surface has no wave, the floating box not swings, under the action of gravity, the heavy hammer enables the shifting rod to be always in vertical state; when the sea surface has wave, if the chain ring is not fixedly connected to the upper end of the shifting rod and only meshed with driving sprockets and guiding sprockets, the chain ring and driving sprockets and guiding sprockets fixed to the framework of the floating box swing up and down towards the left or right along the floating box, and the shifting rod is in vertical state under gravity of the heavy hammer; however, the chain ring is fixedly connected to the upper end of the shifting rod, the chain ring is restrained by the shifting rod, under the reversed torque of the gravity of the heavy hammer, the chain ring cannot swing along the floating box, the driving sprockets and the guiding sprockets turn leftwards or rightwards along the chain ring.
The driving sprockets turn leftwards or rightwards by means of a speed-increasing gear in a speed increaser fixed to the framework of the floating box and a transmission mechanism for converting bidirectional swinging to unidirectional rotation, so that a spindle of a generator always rotates in one direction to generate power, and the rated torque produced on generator shaft is acted on the chain ring by sprockets, so that the gravity of the heavy hammer at the lower end of the shifting rod deviates L distance with reversed direction of rate torque to balance the rate torque of the generator and enable the generator to continuously rotate to one direction as rated rotating speed to generate power. The gravity torque produced by center of gravity shift of the heavy hammer is actually torque balance produced with wave force, the shift of L distance is produced when reversing left and right swinging of the floating box, and the size of L distance depends on rated driving torque of the generator and heavy hammer quality, the shortening of L distance is good for the increase of turning distance of driving sprockets in one swinging route of the floating box.
The torque produced by wave force is dynamic torque to drive the generator to generate power, collected size of wave force torque depends on the size of base area of the floating box and wave height, the wave force torque is acted on the generator shaft to overcome rated driving torque of the generator, however, gravity torque of the heavy hammer and wave force torque should be produced simultaneously to turn the generator shaft. Wave force torque and gravity torque of the heavy hammer enable the generator to turn leftwards or rightwards repeatedly, however, the generator cannot generate power normally. So the speed increaser of the transmission mechanism for converting bidirectional turning to unidirectional rotation is an indispensable requirement to enable the generator to generate power normally.
According to the size of the generated power, a plurality of driving sprockets are arranged in the chain ring within the floating box, one speed-increasing box and generator are connected to each driving sprocket shaft, and the quantity of driving sprockets is determined by required generated power, heavy hammer quality, weight of the floating box and wave energy size that the floating box can be collected.
The significant effects of the invention are as follows: firstly, a wave energy collecting method of the invention is simple and easy and a large amount of wave energy can be collected and energy converting efficiency is high; secondly, the structure is simple and manufacturing costs are low; thirdly, all members related to power generation are all arranged in sealed floating box and not in contact with seawater, so the members have no possibility for seawater corrosion and damage. Proper lubrication measures are adopted for moving members, so that maintenance is simple, maintenance is avoided for a long time, service life is long, durability is good and can be permanent device; fourthly, power generation device floats on the sea surface, only the cable strength is greater than buoyancy of entire floating box, the cable will not be broken by high waves, and the device will not be damaged, so the storm-proof ability is strong and safety is good; fifthly, a wave power generation station can be established by networking, and more electric energies can be obtained.
Based on above-mentioned significant effects, the method and device of the invention has significant economic benefits and comprehensive commercial value.
Compared with current wave power generation method and device, wave energy collecting method of the invention is simpler and easier, and a large amount of wave energy can be collected, besides, the invention has features of high energy converting efficiency, good durability, long service life is long, strong storm-proof ability, good safety, simple structure, easy manufacture, low manufacturing cost, so the invention has significant economic benefits and comprehensive commercial value.
The invention is described in detail in combination with drawings and embodiments.
The preferred embodiments of the invention are shown in
In
As shown in
The breaking strength of the cable (11) shown in
The device of the invention can adopt the structure shown in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/000954 | 10/28/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/065496 | 5/6/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4352023 | Sachs | Sep 1982 | A |
8669668 | Levy | Mar 2014 | B2 |
9790913 | Stewart | Oct 2017 | B2 |
20060028026 | Yim | Feb 2006 | A1 |
20090015013 | Jaer | Jan 2009 | A1 |
20090230684 | Gasendo | Sep 2009 | A1 |
20090295167 | Clidaras | Dec 2009 | A1 |
20100025999 | Kim | Feb 2010 | A1 |
20110012368 | Hahmann | Jan 2011 | A1 |
20110089696 | Davis | Apr 2011 | A1 |
20120001432 | Clement | Jan 2012 | A1 |
20150266549 | Qu | Sep 2015 | A1 |
20160138559 | Bauer | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2466421 | Dec 2001 | CN |
201730729 | Feb 2011 | CN |
102787965 | Nov 2012 | CN |
103807086 | May 2014 | CN |
2535403 | May 1984 | FR |
1981-27075 | Mar 1981 | JP |
1998-18956 | Jan 1998 | JP |
Entry |
---|
Search report of PCT/CN2015/095157. |
Number | Date | Country | |
---|---|---|---|
20170234290 A1 | Aug 2017 | US |