The present invention generally relates fastening tools having a canister for storing fasteners that are dispensed as the fastening tool is operated and more particularly to a canister for storing fasteners that may be readily adjusted when changing between fasteners of different lengths.
In one form, the present teachings provide a fastening tool that includes a magazine housing, a nail plate in the magazine housing and an actuator that is disposed between the nail plate and the magazine housing. The actuator extends outwardly from the nail plate so as to be movable by a user to cause the nail plate to move axially with respect to the magazine housing.
In another form, the present teachings provide a fastening tool that includes a magazine housing having a housing top, a nail plate disposed in the magazine housing, and a nail plate adjuster for axially adjusting a position of the nail plate relative to the housing top. The nail plate adjuster is user-adjustable from the exterior of the magazine housing.
In yet another form, the present teachings provide a fastening tool that includes a tool housing and a magazine assembly which is coupled to the tool housing and has a magazine housing, a nail plate, a rotary cam and a spring. The magazine housing includes a first portion, which has a central post, and a second portion that is hingedly coupled to the first portion. The nail plate is disposed over the central post and is axially but non-rotatably movable thereon. The rotary cam is disposed about the central post between the nail plate and a bottom member of the first portion of the magazine housing. The rotary cam includes an adjustment lever that extends outwardly of the first portion of the magazine housing. The spring biases the nail plate toward the rotary cam such that a plurality of feet that are coupled to the nail plate contact the rotary cam. Rotation of the rotary cam about the central post effects a change in a position of the nail plate relative to the central post.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Additional advantages and features of the present invention will become apparent from the subsequent description and the appended claims, taken in conjunction with the accompanying drawings, wherein:
With reference to
With additional reference to
The magazine housing 40 may include a first housing portion 50, a second housing portion 52 and a hinge pin 54. The first housing portion 50 may include a housing bottom 60, a first sidewall 62, a central post 64, first and second magazine mounts 66 and 68, respectively, and a first hinge mount 70, while the second housing portion 52 may include a second sidewall 72, a housing top 74, a second hinge mount 76 and a latch 78.
The first sidewall 62 may be coupled to the housing bottom 60 so as to wrap around a portion of the perimeter of the housing bottom 60. The central post 64 may extend upwardly from the housing bottom and may be a generally cylindrically hollow structure having one or more radially extending tabs 80 that extend therefrom. A receiving aperture 82 may be formed through an upper flange 84 of the central post 64 and may have one or more keying features, such as a pair of tab slots 88. The first and second magazine mounts 66 and 68 are configured to facilitate the mounting of the magazine housing 40 to the fastening tool 10 at convenient points. In the particular example provided, the first magazine mount 66 is configured to permit the magazine housing 40 to be coupled to the handle 90 of the fastening tool 10 at a first point, while the second magazine mount 68 is configured to permit the magazine housing 40 to be coupled to the exhaust outlet 92 of a feed mechanism 94 that feeds fasteners from the magazine housing 40 into the nosepiece 22.
The second sidewall 72 may be coupled to the housing top 74 so as to wrap around a portion of the perimeter of the housing top 74. The hinge pin 54 cooperates with the first and second hinge mounts 70 and 76 to pivotally mount the second housing portion 52 on the first housing portion 50 so that the second housing portion 52 may be moved between a closed position and an open position which permits access to the interior 100 of the magazine housing 40.
The nail plate 42 may include a plate-like structure 110, a central upper hub 112, which is configured to extend through and support a coil of the collated fasteners, and a central lower hub 114, which is received into the receiving aperture 82 of the central post 64. In the particular example provided, the central lower hub 114 includes a pair of tab members 120 that are configured to be received into the tab slots 88. The tab members 120 and the tab slots 88 may cooperate so that the plate-like structure 110 of the nail plate 42 may be axially but non-rotatably moveable relative to the magazine housing 40. In the embodiment illustrated, the central lower hub 114 is slidingly received into the central post 64 and the tab members 120 and the tab slots 88 cooperate to both inhibit relative rotation therebetween and to “key” or align the nail plate 42 to the magazine housing 40 in a predetermined orientation.
With brief reference to
The nail plate height adjuster 44 may include an actuator 130 and a plurality of legs 132, which may be coupled to and extend downwardly from the plate-like structure 110 of the nail plate 42. The actuator 130 may include a cam 140 and a lever 142. The cam 140 may include a cam body 150 having a central aperture 152, which is sized to receive the central post 64, and a cam profile 158.
The central aperture 152 may include a quantity of tab recesses 160 that are configured to permit the cam 140 to slide over the radially extending tabs 80 (that are coupled to the central post 64) when the cam 140 is oriented in a predetermined position. Rotation of the cam 140 out of the predetermined position when the cam 140 has been slid over the radially extending tabs 80 and abutted against the housing bottom 60 permits the radially extending tabs 80 to limit upward axial movement of the cam 140 along the central post 64.
The cam profile 158 may include a plurality of identically-configured profile segments 170 that cooperate with the legs 132 to axially position the nail plate 42 relative to the magazine housing 40. Each profile segment 170 may include a plurality of adjustment lands 172, a pair of end abutments 174 and 176, and an intermediate ramp 178 between each adjacent pair of adjustment lands 172. Each adjustment land 172 may be located at a vertically different position relative to the remaining adjustment lands 172. In the example provided, each of the adjustment lands 172 differs in height by about ¼″ (6.35 mm). The end abutments 174 and 176 may be disposed on opposite sides of the profile segment 170 and border the first or highest adjustment land 172a and the last or lowest adjustment land 172b, respectively. Each intermediate ramp 178 may include a point 190, which may be located proximate a higher one of the adjacent adjustment lands 172, a first ramp section 192, which may extend between the higher one of the adjacent adjustment lands 172 and the point 190, and a second ramp section 194, which may extend between the lower one of the adjacent adjustment lands 172 and the point 190.
The lever 142 may extend outwardly from the cam body 150 and may be shaped in any desired manner. In the particular example provided, the lever 142 is generally L-shaped and defines a finger or thumb tab 200 which may be used by the operator of the fastening tool 10 to rotate the cam 140 about the central post 64.
With the cam 140 located about the central post 64 and the central lower hub 114 disposed in the receiving aperture 82, a compression spring 210 may be fitted about the central lower hub 114. A washer 212 and a threaded fastener 214, which may be threadably coupled to the central lower hub 114, may be employed to capture the spring 210 between the upper flange 84 and the lower end of the central lower hub 114. The spring 210 may operably bias the nail plate 42 downwardly toward the housing bottom 60 to thereby maintain a lower contact surface 220 of the legs 132 in contact with the cam profile 158. As best shown in
While the nail plate height adjuster has been illustrated in the attached figures and described above as including a cam and a plurality of legs, those of ordinary skill in the art will appreciate from this disclosure that the invention, in its broader aspects, may be constructed somewhat differently. In this regard, the magazine assembly may be constructed as shown in
In a second or intermediate setting, the leg 132a is positioned on an adjustment land 172a″ that is formed on the cam 140a. An intermediate ramp 178a may be formed on the cam 140a and may be similar to the intermediate ramp discussed above in that it may include a point, a first portion, which may be located proximate the higher one of the adjustment lands and taper between the point and the higher one of the adjacent adjustment lands, and a second portion, which tapers between the point and the lower one of the adjustment lands. An end abutment 176a cooperates with the point 190a to trap the leg 132a on the adjustment land 172a″ when the leg 132a has been positioned thereon.
In a third or highest setting, both the cam 140a and the nail plate 42a may be rotated. The cam 140a may include a tapered abutting surface 250 that rides over a mating abutting surface 252 that may be formed on the housing bottom 60a. A detent 254 that may be formed on the housing bottom 60a may engage a mating feature 256 that is formed on the cam 140a; engagement of the detent 254 and mating feature 256 inhibits rotation of the cam 140a relative to the housing bottom 60a.
From the foregoing, those of ordinary skill in the art will appreciate that by rotating both the cam 140a and the nail plate 42a, a height savings may be realized which renders the magazine assembly 14a somewhat more compact as compared with the embodiment of
A third magazine assembly 14b constructed in accordance with the teachings of the present invention is illustrated in
The central upper hub 112b of the nail plate 42b meshingly engages the central post 64b and includes a plurality of positioning apertures 316 that are configured to receive the plunger 310 of the detent device 302. More specifically, rotation of the nail plate 42b on the central post 64b permits the plate-like structure 110 of the nail plate 42b to be moved axially along the central post 64b. As the plunger 310 is biased outwardly of the central post 64b, alignment of the plunger 310 with one of the positioning aperture 316 permits the plunger 310 to travel outwardly and into the positioning aperture 316. Engagement of the plunger 310 to the central upper hub 112b inhibits further rotation of the nail plate 42b so that the plate-like structure 110 is maintained in at a predetermined elevation. To change the elevation of the plate-like structure 110, the plunger 310 may be pushed into a retracted condition. Additionally or alternatively, the plunger 310 and the central upper hub 112b may be configured such that the plunger 310 automatically retracts when a torque that exceeds a predetermined torque is applied to the nail plate 42b.
A fourth magazine assembly 14c constructed in accordance with the teachings of the present invention is illustrated in
A fifth magazine assembly 14d constructed in accordance with the teachings of the present invention is illustrated in
The first set of teeth 500 may be arranged about a first pitch circle 510 that is generally perpendicular to an axis 512 along which the nail plate 42d translates. The second set of teeth 502 may be divided into a quantity of tooth groups 514 that is equal in number to the quantity of teeth in the first set of teeth 500. Each tooth group 514 includes a plurality of teeth that are arranged about a second pitch circle 520 that is tilted to the first pitch circle 510. Adjustment of the elevation of the nail plate 42d relative to the housing top 74d may be effected by unlatching the latch 518, rotating the second set of teeth 502 relative to the first set of teeth 500, and re-latching the latch 518. A spring 530 may be employed to bias the nail plate 42d away from the housing top 74d.
A sixth magazine assembly 14e constructed in accordance with the teachings of the present invention is illustrated in
The embodiment of
A seventh magazine assembly 14f constructed in accordance with the teachings of the present invention is illustrated in
An eighth magazine assembly 14g constructed in accordance with the teachings of the present invention is illustrated in
While the invention has been described in the specification and illustrated in the drawings with reference to various embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention as defined in the claims. Furthermore, the mixing and matching of features, elements and/or functions between various embodiments is expressly contemplated herein so that one of ordinary skill in the art would appreciate from this disclosure that features, elements and/or functions of one embodiment may be incorporated into another embodiment as appropriate, unless described otherwise, above. Moreover, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out this invention, but that the invention will include any embodiments falling within the foregoing description and the appended claims.