This invention relates generally to structural foundations, and in particular to height-adjustable, structurally suspended slabs for structural foundations.
Structural foundations for residential and light commercial construction are typically designed as either “slab-on-grade” or as “structurally suspended slabs.” Slab-on-grade designs, in which a foundation is constructed and supported directly on the ground, is very cost effective but is also heavily dependent on soil strength and soil stability. Slab-on-grade is also very maintenance intensive and, due to a variety of issues, has historically resulted in a significant amount of litigation. Suspended slabs, on the other hand, are isolated from soil movement and/or problematic soils because they do not sit directly on the ground, but they are very costly relative to slab-on-grade foundations. Suspended slabs involve over-excavating a site and constructing extensive, temporary form work and/or using void boxes to create a void or space between the foundation and the soil. The concrete is poured over the temporary form or void box and allowed to set. This process is labor intensive, adds significantly to construction time and costs, and has no provision for future adjustments of the foundation's height.
To avoid the problems associated with existing foundation technologies, including the slab-on-grade and structurally suspended slab types, embodiments of the invention incorporate a lifting process that allows slabs for a foundation to be formed on a ground surface and then lifted to a desired height. This enables the slabs to be formed like the cheaper slab-on-grade type but perform like the more expensive suspended slab type. In this way, the construction cost for the foundation may be kept relatively low, yet the foundation may perform like more expensive systems.
In one embodiment for forming a new foundation, a flat-slab is formed on a graded pad site so that it rests on structural support base. Various structures may be used for the structural support base, including but not limited to piers, spread footings, and rock. Lifting mechanisms are attached to the support base and mechanically coupled to the slab. Various types of lifting mechanisms may be used. By actuating the lifting mechanisms, the foundation can be raised above the ground, thereby creating a void between the foundation and the ground. This provides an economical concrete slab foundation that can be installed on top of the ground and then elevated or suspended a certain distance above the supporting grade.
In another embodiment, an existing foundation can be retrofitted with a lifting mechanism. A support base and a set of lifting mechanisms are installed in an existing foundation. Once installed, the lifting mechanisms allow the foundation to be raised and/or lowered to facilitate adjustment or repair of the foundation. These lifting mechanisms provide a relatively simple and inexpensive method to adjust the height of a foundation at a later time if needed.
The features and advantages described in this summary and the following detailed description are not all-inclusive. Many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims hereof. For example, embodiments of the invention incorporate various types of structural supports and lifting mechanisms, and they may include seismic damping and/or isolated plumbing with the suspended slabs.
The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.
Forming a New Foundation
As shown in
Before the concrete for the slab 50 is poured, perimeter form boards are set in place around the slab 50 to be formed. In one embodiment, post-tension cables and/or rebar reinforcement members are installed as desired. As described in more detail below, piping for sewer drainage and water supply may be installed before the concrete is poured. Any electrical conduits may also have “leave outs” or other mechanisms allowing for lifting of the slab 50. Once forms are built around the desired foundation, concrete is poured to cast the slab 50 on top of the pad site 20, using the fill soil as the bottom of the form. A concrete perimeter skirt may be cast around the perimeter of the slab 50 at this time or may be added later.
In one embodiment, “lightweight” concrete is used, allowing the slab 50 to be more easily lifted above the ground. Fiber additives may also be useful to control stresses and surface cracking, especially in areas where there are perimeter setbacks or where the pier spacing is not uniform. However, various types of concrete, mixtures, or other appropriate slab materials may be used in other embodiments.
In one embodiment, the slab 50 is designed as a post-tensioned, two-way flat slab having column capitals (thickened slab depth) but no stiffener beams except for the perimeter beam. The slab thickness may vary depending on loads, span, and strength of the concrete, where a typical thickness in one embodiment ranges from 5 to 7 inches. The added depth of slab makes it possible to place the cables with a profile or drape over and between the pier supports. In this way, the cables exert a net uplift onto the slab system along the tendon path in addition to the pre-compression that the tendons impart to the slab at the slab edges. Alternatively, the slab may comprise conventionally reinforced concrete.
Once the poured concrete reaches adequate strength, the slab 50 will become fixed to the lifting assemblies 40, which in turn are supported by the support structures 30 fixed in the ground 10. The slab 50 may then be lifted above the level pad site 20 by actuation of the lifting assemblies 40. As shown in
As described above, an elevated structural slab 50 is constructed, permanently supported by a set of lifting mechanisms 40, which, in turn, transfer the load to the support structures 30 and into the supporting soil.
For example, the perimeter structural supports 30 may be offset a certain distance from the outside edge of the slab 50 (e.g., inset by about 15 inches) to avoid conflicting with the exterior walls of the structure to be built on the slab 50. This is designed so that any future exterior walls will not interfere with the placement of the lifting mechanisms 40, thereby allowing access to the lifting mechanisms 40 after the structure is built.
In addition to the added ability to profile the cables, embodiments of the invention offer other design advantages that may result in maximizing the economy of the structural materials used. In the past, “assumed” soil forces, rather than the actual loads supported by the structure, governed a typical slab-on-grade design. In embodiments of the invention, the soil forces are essentially removed from the equation, and the design may be based solely on the more accurate dead and live loading from the structure itself. Moreover, the entire foundation system can be designed as a single, homogeneous unit. By varying the slab thickness and the structural support spacing, a significant economy of materials can be obtained for different foundation sizes and shapes. Typically, much less concrete is required, and the supports can be spaced significantly farther apart compared to previous suspended slab designs.
As another benefit, additional time can be saved by eliminating the need to dig trenches for stiffener beams. The absence of trenches means fewer delays due to rain. Moreover, in an embodiment utilizing a post-tensioned, two-way flat slab, much greater quality control and control over construction tolerances is possible than with previous void box construction methods.
Moreover, water supply piping may be installed above the top of the slab 30 through the walls and attic space. This system allows all of the piping to be tied to or run above the slab, and it essentially isolates the piping from the affects of soil movements.
Structural Supports
The structural supports 30 in the embodiment of
In another embodiment of the invention,
Lifting Assemblies
The anchor portion 730 of the lifting assembly comprises a short length of pipe 735 that includes stud anchors 750 welded along the outside. The stud anchors 750 are designed to be cast into the concrete slab so that the anchor portion 730 of the lifting assembly is firmly fixed to the slab. A plate 740 is welded within the pipe 735. The plate 740 is welded to a nut 745 on the opposite end of the pipe 735, and a hole is drilled through the plate 740 that is large enough to allow a threaded rod to pass through and mate with the nut 745. The nut 745 is designed to fit within the section of pipe 715 of the pier cap portion 705 of the lifting assembly.
To install the lifting assemblies, each lifting assembly is placed over a pier. A protective cap 755 is temporarily placed over the pipe 735 to prevent entry of concrete into the lifting assembly. In one embodiment, the lifting assemblies are set over each pier so as to be cast into the concrete slab about one half inch below the finished surface of the slab. The assemblies are adjusted to a plumb position and for helical piers, the adjustment screws 725 are tightened to secure the assemblies in position and to prevent movement when the concrete is placed. Once the concrete is poured and cured, the anchor portion 730 becomes structurally secured to the slab.
To raise the slab, as illustrated in
In the embodiment described herein, the pier cap portion 705 serves as the interface between the lifting assembly and the support structure. The lifting assembly illustrated in
The length of the lifting bolts 760 can be selected according to the required void height. The length is preferably set at a dimension such that, once the required void height is attained, the center of the head of each bolt 760 is situated in a position equidistant from the bottom and top of the upper pipe portion of the lifting mechanism. In this way, should future foundation movement occur, the bolt 760 can be accessed from above and the foundation can be raised or lowered to compensate for this movement. The equidistant positioning provides an equal ability to raise and lower the slab.
Preferably, the lifting bolts 760 are turned at the same time so that the slab is raised in a uniform fashion. In one embodiment, electric or hydraulic torque wrenches are placed onto the head of each lifting bolt 760. By applying power to all of the wrenches at the same time, the entire slab can be lifted, as one unit, to the desired height. The wrenches may be connected to a central monitoring assembly so that each wrench can be monitored and caused to turn in unison. This minimizes any torque placed on the slab that may otherwise be induced into the slab during the raising process. Alternatively, each bolt 760 may be turned by hand with a drive socket wrench.
In one embodiment, the lifting assemblies are coupled to a programmable automatic lifting system, which comprises a computer system that controls the actuation of the lifting bolts 760 or any other lifting mechanism used by the lifting assembly. The automatic lifting system receives a user selection for a desired amount of lifting of the slab. The system further includes elevation sensors to measure the amount that the slab has been raised at one or more of the lifting assemblies. This measured elevation is used as a feedback signal to control more precisely the lifting of each lifting assembly. The system then actuates each of the lifting assemblies to maintain a level condition during the lifting process until the slab is raised to the desired elevation. This reduces any potential for racking and binding of the slab during the lifting process. The automatic lifting system may be powered by electric, battery, fuel, or any other power means and may actuate the lifting assemblies using air, hydraulic, or other pressure type devices.
In one embodiment, the lifting bolts 760 are specially designed so that only corresponding specially designed torque wrenches can be used to turn the lifting bolts 760. This helps to disallow people who were not involved with building the foundation from adjusting the lifting bolts 760, since these people are less likely to understand how to adjust the bolts 760 properly. In this way, liability and danger from improper use of the adjustable slabs can be reduced. The lifting bolts 760 and torque wrenches can be specially designed, for example, by designing a customer interface between the bolt head and wrench so that normal wrenches cannot be used to turn the bolts 760.
The lifting assembly may be coated to prevent corrosion, or it can be constructed of a non-corrosive material. The protective cap 755 is may be replaced on the top of the lifting assembly to provide additional protection after the slab is raised. A protective coating may also be applied to the lower portion of the bolt 760 under the slab to ensure that the bolt will turn freely in the future if later adjustments to the slab elevation are desired.
Although lifting assemblies incorporating lifting bolts have been described, other embodiments of the invention may incorporate other types of mechanisms to lift the slab. For example, the lifting systems may comprise jacking systems that are installed under the slab before the concrete is poured. The jack is placed over a support structure, such as a pier, and then used to raise the slab after the concrete is set. The jacks thus supply the force necessary at each lift point to lift the slab.
For example,
Adjusting the Height of a Suspended Slab
An embodiment of the invention allows for simple and inexpensive future adjustments to the slab's height, as needed. Although some foundation repair systems may allow for limited adjustment of a slab at perimeter piers (and at significant expense), they have no provision for adjusting the slab over interior pier supports. Embodiments of the invention thus allow for the slab to be adjusted over interior piers as easily as over perimeter piers.
The adjustments are relatively simple to make in all embodiments for new construction and for repair or improvement (retrofit) of existing foundations. The height of the foundation at any or all piers can be adjusted in either direction by removing the protective cap, accessing the lifting bolts, and turning them up or down to adjust the elevation of the affected portion of the slab. It is even possible to set the foundation back to the grade, remove the bolt and install longer bolts to obtain even higher adjustments.
Seismic Damping for a Suspended Foundation
As illustrated in
In this way, residential and commercial constructions can be protected from seismic forces. This technique is more economical than many existing solutions.
Suspended Plumbing for Sanitary Sewer Piping
When the slab is raised, as discussed above, the entire sewer plumbing 1210 is raised by the same amount. The final connection is made between the sewer pipe 1220 exiting the foundation and the main sewer pipe at the street after the foundation is raised.
Repairing and/or Retrofitting an Existing Foundation
An existing foundation can also be repaired and/or retrofitted using lifting assemblies and techniques similar to that described above.
Applications
As will be appreciated to those of skill in the art, the embodiments described herein for forming new foundations for structures and repairing or retrofitting existing ones have useful applications in a number of environments and situations. Listed below are some of the possible applications and benefits for the embodiments described above.
Summary
The foregoing description of the embodiments of the invention has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above teachings. It is therefore intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
This application is a continuation of U.S. application Ser. No. 11/462,031, filed Aug. 2, 2006, now U.S. Pat. No. 7,823,341, which claims the benefit of U.S. Provisional Application No. 60/705,846, filed Aug. 4, 2005, each of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1948600 | Templeton | Feb 1934 | A |
2115824 | McRorey | May 1938 | A |
2380692 | Gunnison | Jul 1945 | A |
2686420 | Youtz | Aug 1954 | A |
3036816 | Stubbs et al. | May 1962 | A |
3040411 | Messenger | Jun 1962 | A |
3152366 | McCrory et al. | Oct 1964 | A |
3371902 | Hartwick | Mar 1968 | A |
3594965 | Saether | Jul 1971 | A |
3713265 | Wysocki et al. | Jan 1973 | A |
3722169 | Boehmig | Mar 1973 | A |
3852970 | Cassidy | Dec 1974 | A |
4011705 | Vanderklaauw | Mar 1977 | A |
4067448 | Bergeron, Jr. | Jan 1978 | A |
4204711 | Lancelot et al. | May 1980 | A |
4301630 | Burkland | Nov 1981 | A |
4549385 | Cohen et al. | Oct 1985 | A |
4800700 | May | Jan 1989 | A |
4832315 | Vanderklaauw | May 1989 | A |
5120163 | Holdeman et al. | Jun 1992 | A |
5155954 | Roire | Oct 1992 | A |
5174083 | Mussell | Dec 1992 | A |
5205673 | Bolin et al. | Apr 1993 | A |
5269630 | Bolin et al. | Dec 1993 | A |
5623792 | Crumpacker | Apr 1997 | A |
5724781 | Matthias et al. | Mar 1998 | A |
5800094 | Jones | Sep 1998 | A |
5860254 | Westhoff et al. | Jan 1999 | A |
6082058 | Deng | Jul 2000 | A |
6094873 | Hoffman et al. | Aug 2000 | A |
6142710 | Holland et al. | Nov 2000 | A |
6193442 | May | Feb 2001 | B1 |
6260311 | Vladikovic | Jul 2001 | B1 |
6434893 | Quenzi | Aug 2002 | B1 |
6503024 | Rupiper | Jan 2003 | B2 |
6705053 | Dimitrijevic | Mar 2004 | B2 |
6767167 | Rials | Jul 2004 | B1 |
6792734 | Zambelli et al. | Sep 2004 | B2 |
6814524 | Peterson | Nov 2004 | B1 |
6923599 | Kelso | Aug 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20110020068 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
60705846 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11462031 | Aug 2006 | US |
Child | 12896182 | US |