Helical guide and advancement flange with radially loaded lip

Information

  • Patent Grant
  • 8870928
  • Patent Number
    8,870,928
  • Date Filed
    Monday, April 29, 2013
    12 years ago
  • Date Issued
    Tuesday, October 28, 2014
    10 years ago
  • Inventors
  • Examiners
    • Robert; Eduardo C
    • Comstock; David
    Agents
    • McMahon; John C.
Abstract
A spinal fixation device combines an open-headed anchor member, such as a bone screw or a hook, with a closure member to thereby clamp a spinal fixation rod to the anchor member. The anchor member has spaced apart arms forming a rod receiving channel. The closure member and inner surfaces of the arms and tabs have helical anti-splay guide and advancement interlocking flanges formed thereon which cooperate to prevent splaying the arms and extensions as the closure member is advanced into the rod receiving channel.
Description
BACKGROUND OF THE INVENTION

The present invention relates to improvements in interlocking or interconnecting helical guide and advancement structures such as helical flanges and, more particularly, to mating helical flange arrangements having an anti-splay lip on one flange and a cooperating and interlocking anti-splay groove on the other flange, the flanges being configured so that when radial loading or engagement occurs, the lip and groove resist splaying of an outer one of the members having one of the cooperating flanges on it. Such flanges with anti-splay contours are particularly advantageous when used in combination with open headed bone screws formed with extended arms or tabs to facilitate the capture and reduction of spinal fixation rods, after which the arm extensions or tabs are broken off at weakened areas to from a low profile implant. In the present invention, the interlocking anti-splay components are also found on the extensions such that force can be applied to a closure and through the closure to a rod positioned between the extensions without splaying the extensions, since the closure holds them in fixed position relative to each other as the closure traverses between the extensions.


Medical implants present a number of problems to both surgeons installing implants and to engineers designing them. It is always desirable to have an implant that is strong and unlikely to fail or break during usage. Further, if one of a set of cooperating components is likely to fail during an implant procedure, it is desirable to control which particular component fails and the manner in which it fails, to avoid injury and to minimize surgery to replace or repair the failed component. It is also desirable for the implant to be as small and lightweight as possible so that it is less intrusive to the patient. These are normally conflicting goals, and often difficult to resolve.


One type of implant presents special problems. In particular, spinal anchors such as monoaxial and polyaxial bone screws, hooks, and the like are used in many types of back surgery for repair of problems and deformities of the spine due to injury, developmental abnormalities, disease or congenital defects. For example, spinal bone screws typically have one end that threads into a vertebra and a head at an opposite end. The head is formed with an opening to receive a rod or rod-like member which is then both captured in the channel and locked in the head to prevent relative movement between the various elements subsequent to installation.


A particularly useful type of head for such above referenced bone screws is an open head wherein an open, generally U-shaped channel is formed in the head, and the rod is simply laid in the open channel. The channel is then closed with some type of a closure member which engages the walls or arms forming the head and clamps the rod in place within the channel. While the open headed devices are often necessary and preferred for usage, there is a significant problem associated with them. The open headed devices conventionally have two upstanding arms that are on opposite sides of the channel that receives the rod member. The top of the channel is closed by a closure member after the rod member is placed in the channel. Many open headed implants are closed by plugs that screw into threads formed on internal surfaces between the arms, because such configurations have low profiles.


However, such threaded plugs have encountered problems in that they produce radially outward forces that lead to splaying of the arms or at least do not prevent splaying that in turn may lead to loosening of parts and failure of the implant. In order to lock the rod member in place, a significant force must be exerted on the relatively small plug or on a set screw of some type. The forces are required to provide enough torque to insure that the rod member is clamped or locked securely in place relative to the bone screw, so that the rod does not move axially or rotationally therein. This typically requires torques on the order of 100 to 125 inch-pounds.


Because open headed implants such as bone screws, hooks and the like are relatively small, the arms that extend upwardly at the head can be spread by radially outwardly directed forces in response to the application of the substantial torquing force required to clamp the rod member. Historically, early closures were simple plugs that were threaded with V-shaped threads and which screwed into mating threads on the inside of each of the arms. The outward flexure of the arms of the head is caused by mutual camming action of the V-shaped threads of the plug and head as advancement of the plug is resisted by clamping engagement with the rod while rotational urging of the plug continues. If the arms are sufficiently spread, they can allow the threads to loosen, slip, or even disengage and the closure to fail. To counter this, various engineering techniques were applied to the head to increase its resistance to the spreading force. For example, the arms were significantly strengthened by increasing the width of the arms by many times. This is undesirable since it leads to a larger profile implant which is always undesirable and may limit the working space available to the surgeon during implant procedures. Alternatively, external caps were devised which engaged external surfaces of the head. In either case, the unfortunate effect was to substantially increase the bulk, size, and profile of the implant, especially when external nuts are used which may take up so much space along the rod as to leave too little space for all the implants needed.


The radial expansion problem of V-threads has been recognized in various other applications of threaded joints. To overcome this problem, so-called “buttress” threadforms were developed. In a buttress thread, the trailing or thrust surface, also known as the load flank, is oriented perpendicular to the thread axis, while the leading or clearance surface, also known as the stab flank, remains angled. This results in a neutral radial reaction of a threaded receptacle to torque on the threaded member received. However, even buttress threaded closures may fail since they do not structurally resist splaying of the arms. The same is true for square threads that are sometimes used on closures of open headed implants.


Development of threadforms proceeded by applicant from buttress and square threadforms, which have a neutral radial effect on the screw receptacle, to reverse angled threadforms which can positively draw the threads of the receptacle radially inward toward the thread axis when the plug is torqued. In a reverse angle threadform, the trailing side of the external thread is angled toward the thread axis instead of away from the thread axis, as in conventional V-threads and provide an interference fit. However, outward radial forces on the arms at higher torques can lead to slipping from an interference fit. A positive mechanically interlocking structure between the arms and the closure is more desirable and structurally secure. In the present invention, such positive interlocking is also provided in vertical extensions of the arms that are eventually broken away and removed.


When rods are used in spinal fixation systems, it is often necessary to shape the rod in various ways to properly position vertebrae into which open headed bone screws have been implanted. The bone screw or implant heads are minimized in length and height to thereby minimize the impact of the implanted system on the patient. However, it is often difficult to capture a portion of a straight or curved rod in a short implant head to clamp it within the arms. The extensions allow the arms to extend upwardly and capture the rod therebetween. In this way, the closure can be more easily inserted and rotated to drive the rod downwardly into the head of the implant and reduce or realign a vertebra up to the rod.


SUMMARY OF THE INVENTION

The present invention provides improved mating guide and advancement flange interlocking structure for guiding and advancing an inner member into an outer member in response to relative rotation of the inner to the outer member. The structure includes an inner flange on the inner member and an outer flange on the outer member which have complementary contours cooperating on engagement to helically guide the inner member into the outer member by relative rotation about a helical axis and which radially interlock with the opposite structure as the closure is rotated. The inner flange has a radially outward crest and a radially inward root. Conversely, the outer flange has a radially inward crest and a radially outward root.


Each of the inner and outer flange has a respective stab flank on a leading side relative the direction of advancement of the inner member into the outer member and a respective load flank on the trailing side of the flange. At least one of the flanks on one member has anti-splay contours forming a lip or bead which projects axially and extends helically therealong while a corresponding one of the flanks has anti-splay contours forming a complementary groove depressed in an axial direction and positioned to receive the lip. For example, if the lip is formed on the load flank of the inner member at its radial crest, the corresponding groove is formed into the load flank of the outer member near its root.


The lip and groove have radially oppositely facing anti-splay surfaces which are positioned to enable radial engagement or loading of the anti-splay surfaces to resist or prevent splaying of the outer member when the inner member is strongly torqued into the outer member. Preferably, while the anti-splay surfaces on the inner member are continuous, the outer member is divided into two parts which are spaced from one another, and the anti-splay surfaces thereon are discontinuous but helically aligned.


In a first embodiment of the flange, a lip is formed on the load flank of the inner flange adjacent a crest of the flange. The lip has an anti-splay surface or shoulder which faces inwardly toward coincident helical axes of the inner and outer members which form a joint axis common to both members when so engaged. A corresponding groove is formed into the load flank of the outer flange near the root of the outer flange. The groove has an anti-splay surface or shoulder which faces outwardly away from the joint axis of the members. The anti-splay surfaces of the lip and groove are positioned to mutually engage in a radial direction to resist splaying of the outer member when the inner member is strongly torqued into the outer member.


In the first embodiment, the load flanks of the inner and outer flanges are angled in a slightly “positive” direction; that is, in cross section the load flanks form slightly obtuse angles with the joint axis of the members. Alternatively, the load flanks could be substantially perpendicular to the joint axis or slightly “negative”; that is, with the load flanks forming slightly acute angles with the joint axis. Load flanks oriented at a positive angle tend to cause the outer flange to expand when the inner member is advanced into the outer member and strongly torqued. Such expansion can be used to cause the anti-splay surfaces to positively engage. Conversely, a negative angle of the load flanks provides some resistance to expansion tendencies of the outer member at high torque levels and tends to draw the outer flange toward the helical axis. A substantially perpendicular orientation of the load flanks to the joint axis, similar to the load flanks of a buttress or square thread, causes the inner flange to have a substantially neutral radial effect on the outer flange when the inner member is strongly torqued within the outer member. At extremely high levels of torque, it has been found that there is an outward splaying tendency in virtually all orientations of the load flanks.


Assuming that the inner and outer flanges have relatively equal cross sections with generally similar shapes, the outer flange tends to be somewhat stronger than the inner flange. As a result of this, when the inner member is very strongly torqued into the outer member, the inner flange is likely to fail before the outer flange.


The load flanks of the inner and outer flanges can be parallel, outwardly diverging, or outwardly converging. Generally, if the load flanks diverge outwardly, contact between the load flanks occurs near the root of the inner flange and the crest of the outer flange. Such radially inward contact tends to stress the outer flange, in an axial direction, more than the inner flange when the inner member is very strongly torqued in the outer member, since the effective moment arm of contact from the respective root is relatively short for the inner flange and relatively long for the outer flange. Conversely, if the load flanks converge outwardly, the area of contact is spaced a greater distance from the root of the inner flange and a lesser distance from the root of the outer flange. Thus, for outwardly converging load flanks, greater stress is applied to the inner flange. With parallel load flanks, the axial stresses are distributed relatively evenly along the load flanks, such that the inner and outer flanges are stressed relatively evenly. Thus, the proportioning of stresses between the inner and outer flanges can be controlled to some degree by the relative angles of the load flanks of the inner and outer flanges.


Although the preceding description of the load flanges describes the load flank of the inner flange as having a lip and the load flank of the outer flange as having a groove, each load flank could be accurately described as having both a lip and a groove. The lip of the inner flange is defined by a radially inward groove while the groove formed in the outer flange defines a radially inward lip. In any case, the lip of one flange enters the groove of the other flange so that the anti-splay surfaces of the flanges are placed in mutually facing relation when the inner member is advanced into the outer member.


The present invention does not limit the anti-splay contours solely to the load flanks of the inner and outer flanges. There are advantages to be gained by forming the lips and grooves on the respective stab flanks of the inner and outer flanges, on leading sides of the flanges as the inner member is advanced into the outer member. When the inner member is strongly torqued into the outer member, some axial flexure or deformation of the flanges can occur. The flexure results from strong axial loading of the load flanks against one another and is directed away from the load flanks and toward the direction of advancement of the inner member into the outer member. With the anti-splay contours formed on the stab flanks, such flexure tends to force the lip of the inner flange deeper into the groove of the outer flange, thereby reducing any tendency of the lip and groove to slip past one another under high levels of torque.


The present invention also contemplates providing an anti-splay lip on both the load flank and the stab flank of the inner flange and, similarly, an anti-splay groove on both the load flank and the stab flank of the outer flange. Such double sided anti-splay contours benefit from the advantages of both anti-splay contours formed on the load flanks and anti-splay contours provided on the stab flanks of the inner and outer flanges, while providing increased resistance to slippage of the flanges past one another in response to high levels of torque. Additionally, the increased axial dimension of the crest regions of both the inner and outer flanges makes cross engagement or mutual stripping of the flanges virtually impossible.


Although it is desirable to form the arms of an open-headed bone screw and related implants as short as possible to result in a low profile implant, it is often difficult to urge a spinal fixation rod into the U-shaped channel between the arms of such a bone screw head. In general, the rods are shaped to determine the shaped of the corrected curvature of the spinal column and are anchored along their length to open-headed bone screws implanted into individual vertebrae. Because of the complex curvature that must be applied to the rods, it is sometimes difficult to reduce a portion of such a rod toward a selected bone screw or implant in a vertebra with a conventionally formed open-head with spaced arms for receiving both the rod and a closure.


The present invention solves this problem by forming arm extensions or tabs on the screw head which are connected to main portions of the arms by weakened break regions. Inner surfaces of the extensions have the helical guide and advancement flanges formed thereon to receive a closure with a flange complementary to the flange of the arms of the screw head. In particular, the extensions have the same anti-splay structure thereon as is found on the arms and the structure on the extensions is aligned with that on the arms so as to provide a continuous helical path for the mating structure on the closure to follow. The extensions or tabs enable the rod to be captured at a greater distance from the anchoring vertebra and urged toward the vertebra by advancement of the closure toward the open head. When the rod has been seated in the rod receiving channel and in the head sufficiently clamped, the tabs can be broken off the main portions of the arms to provide the desired low profile implant. Just as the anti-splay guide and advancement structure on the closure and arms cooperate to prevent splaying of the arms, the anti-splay structure on the extensions engages with the cooperating anti-splay structure on the closure to prevent unwanted splaying of the extension and guides the closure to allow mating with the guide and advancement structure on the arms simply by rotating the closure. That is, the guide and advancement structure on the closure does not have to be realigned with the cooperating structure on the arms, and pressure applied to the rod while between the extensions is continued as the rod passes between the arms.


The anti-splay lip and groove of the flanges of the present invention make the use of such extended arms or tabs possible, even when substantial force must be applied to the rod. This is a substantial improvement over use of V-threads, as well as buttress, square, and reverse angle threads that may cause outward splaying of the extensions as force is applied to the rod by the closure.


Objects and Advantages of the Invention

The principal objects of the present invention include: providing an improved helical guide and advancement flange structure for guiding and advancing an inner member into an outer member; providing, particularly, improvements in helical guide and advancement flanges incorporating radially loaded lip and groove contours; providing such flange structure wherein the outer member is subject to being splayed in reaction to advancement and strong torquing of the inner member within the outer member and wherein an inner flange of the inner member and an outer flange of the outer member are particularly configured to cooperate in such a manner as to resist such splaying; providing such flange structure in which the inner and outer flanges are provided with contours including mutually facing surfaces which radially engage when the inner member is advanced into the outer member to resist splaying of the outer member; providing such flange structure in which anti-splay contours are formed on a trailing load flank of each flange to form an anti-splay lip near a crest region of the inner flange and a cooperating anti-splay groove near a root region of the outer flange; providing such flange structure in which the anti-splay contours are alternatively applied to a leading stab flank of each flange to form an anti-splay lip near a crest region of the inner flange and a cooperating anti-splay groove near a root region of the outer flange; providing such flange structure in which the anti-splay contours are alternatively formed on both the load and stab flanks of each flange to form anti-splay lips near a crest region of the inner flange and cooperating anti-splay grooves near a root region of the outer flange; providing such flange structure in which proportioning of mutual axial stresses on the engaged flanged can be controlled by selectively adapting the mutual angles of the engaged load flanks relative to a helical axis in such a manner as to control the region of engagement of the load flanks, with parallel load flanks distributing the axial stresses evenly along the flanks, with converging flanks applying a greater proportion of the axial stresses on the inner flange, and diverging flanks applying a greater proportion of the axial stresses to the outer flange; providing alternative embodiments of such flange structure in which the load flanks of the flanges can be angled positively with respect to the helical axis to positively engage the anti-splay surfaces of the flanges, angled negatively relative to the helical axis so that engagement of the load flanks contributes additional resistance to splaying of the outer member, or angled substantially perpendicular to the helical axis to have a neutral effect on the anti-splay properties of the flanges; providing such flange structure which is particularly well adapted for use in surgically implanted structure, such as spinal fixation hardware and, particularly, to receivers and cooperating closure plugs which are used to receive and clamp spinal fixation rods; providing such flange structure which is particularly well adapted for use with open headed bone screws which have extended arms for facilitating the capture and reduction of spinal fixation rods and which are afterwards separated from the screw heads to provide low profile implants; and providing such improved helical guide and advancement flanges with radially loaded lips which are economical to manufacture, which are strong and effective in use, and which are particularly well adapted for their intended purpose.


Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention.


The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an enlarged fragmentary side elevational view of a spinal implant incorporating the helical guide and advancement flange with a radially loaded lip which embodies the present invention.



FIG. 2 is a view similar to FIG. 1 and shows the implant with a closure having the flange clamping a spinal fixation rod within an open headed screw head.



FIG. 3 is a greatly enlarged fragmentary sectional view at a right angle to the view shown in FIG. 2 and illustrates details of the cooperating flanges with the closure strongly torqued into the open headed screw.



FIG. 4 is a further enlarged fragmentary sectional view of a preferred flange structure according to the present invention and illustrates an anti-splay lip on a load flank of an inner flange and an anti-splay groove on a load flank of an outer flange, the load flanks being parallel and somewhat positive in angular orientation relative to a helical axis.



FIG. 5 is a view similar to FIG. 4 and illustrates the preferred flange structure with the inner member strongly torqued within the outer member, thereby mutually engaging the anti-splay surfaces of the lip and groove.



FIG. 6 is a view similar to FIG. 4 and illustrates an alternative embodiment of the flange structure in which the load flanks are parallel and substantially perpendicular to the helical axis.



FIG. 7 is a view similar to FIG. 4 and illustrates an alternative embodiment of the flange structure in which the load flanks are parallel and somewhat negative in angular orientation relative to the helical axis.



FIG. 8 is a view similar to FIG. 4 and illustrates an alternative embodiment of the flange structure in which the load flanks of the inner and outer flanges are orientated in an outwardly diverging relationship to locate an area of engagement of the load flanks radially inward near a root region of the inner flange.



FIG. 9 is a view similar to FIG. 4 and illustrates an alternative embodiment of the flange structure in which the load flanks of the inner and outer flanges are orientated in an outwardly converging relationship to locate an area of engagement of the load flanks radially outward near a crest region of the inner flange.



FIG. 10 is a further enlarged fragmentary sectional view illustrating an alternative embodiment of the flange structure of the present invention with an anti-splay lip on a stab flank of an inner flange and an anti-splay groove on a stab flank of an outer flange, the load flanks being parallel and somewhat positive in angular orientation relative to the helical axis.



FIG. 11 is a view similar to FIG. 10 and illustrates the flange structure with the inner member strongly torqued within the outer member, thereby mutually engaging the anti-splay surfaces of the lip and groove.



FIG. 12 is a view similar to FIG. 10 and illustrates an alternative embodiment of the flange structure with the load flanks parallel and substantially perpendicular to the helical axis.



FIG. 13 is a view similar to FIG. 10 and illustrates an alternative embodiment of the flange structure with the load flanks parallel and somewhat negative in angular orientation to the helical axis.



FIG. 14 is a view similar to FIG. 10 and illustrates an alternative embodiment of the flange structure in which the load flanks of the inner and outer flanges are orientated in an outwardly diverging relationship to locate an area of engagement of the load flanks radially inward near a root region of the inner flange.



FIG. 15 is a view similar to FIG. 10 and illustrates an alternative embodiment of the flange structure in which the load flanks of the inner and outer flanges are orientated in an outwardly converging relationship to locate an area of engagement of the load flanks radially outward near a crest region of the inner flange.



FIG. 16 is a further enlarged fragmentary sectional view illustrating an alternative embodiment of the flange structure of the present invention with an anti-splay lip on a load flank of an outer flange and an anti-splay groove on a load flank of an inner flange, the lip and groove being positioned at radial location intermediate the root and crest regions of the flanges.



FIG. 17 is a view similar to FIG. 16 and illustrates the flange structure with the inner member strongly torqued within the outer member, thereby mutually engaging the anti-splay surfaces of the lip and groove.



FIG. 18 is a further enlarged fragmentary sectional view illustrating an alternative embodiment of the flange structure of the present invention with an anti-splay lip on both the load flank and the stab flank of an inner flange and an anti-splay groove on both load flank and a stab flank of an outer flange.



FIG. 19 is a view similar to FIG. 18 and illustrates the flange structure with the inner member strongly torqued within the outer member, thereby mutually engaging the anti-splay surfaces of the lips and grooves.



FIG. 20 is an enlarged fragmentary side elevational view of a spinal implant incorporating the helical guide and advancement flange with a radially loaded lip which embodies the present invention and including a polyaxial bone screw.





DETAILED DESCRIPTION OF THE INVENTION

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.


Referring to the drawings in more detail, the reference numeral 1 generally designates a helical guide and advancement flange structure with radially loaded lips and grooves incorporated in a medical implant 3 and embodying the present invention. The implant 3 can be of a fixed or monoaxial nature or, alternatively, it can have a polyaxial mechanism. The flange structure, or flange form, 1 generally includes an inner flange 4 (FIG. 3) extending helically on an inner member 6 and an outer flange 9 extending helically within an outer member 11. The flanges 4 and 9 cooperate to helically guide the inner member 6 into the outer member 11 when the inner member 6 is rotated and advanced into the outer member 11. The inner and outer flanges 4 and 9 have respective anti-splay contours 14 and 16 which cooperate to prevent splaying tendencies of the outer member 11 when the inner member 6 is strongly torqued therein.


In the illustrated embodiment, the implant 3 includes an open-headed bone screw 20 forming the outer member 11 and having a threaded shank 22 adapted for threaded implanting into a bone, such as a vertebra 24. The screw 20 has a U-shaped open head 26 formed by spaced apart arms 28 defining a rod receiving channel 30 which is configured to receive a rod 35 therein to clamp the rod within the head 26 to thereby fix the position of the vertebra 24 relative to the rod 35 or other vertebrae.


The illustrated inner member 6 is a closure plug or closure 33 which is helically advanced by rotation into the head 26 of the screw 20 and torqued against the rod 35 to clamp the rod within the head 26. Although embodiments of the outer member 11 and inner member 6 are illustrated herein as the screw head 26 and the closure 33, the flange structure 1 is not intended to be limited to such an application. The implant 3 could alternatively be a hook, connector, or other type of implant structure having a rod receiving channel. Also, while the illustrated screw 20 is shown as a fixed one-piece or monoaxial screw, it is intended that the flange structure 1 be adaptable for use with a polyaxial type of screw.


The inner flange 4 has a load flank 39 on a trailing side relative to a direction of advancement along a helical axis 41 (FIG. 3) and a stab flank 43 on an opposite leading side. Similarly, the outer flange 9 has a load flank 46 on a trailing side and a stab flank 48 on an opposite leading side. The load flanks 39 and 46 may also be referred to as thrust surfaces of the flanges 4 and 6, while the stab flanks 42 and 48 may also be referred to as clearance surfaces. In general, the load flanks 39 and 46 are positively engaged and axially loaded, that is loaded in the direction of the axis 41, when the inner member 4 is advanced into the inner member 6. As relative torque between the inner member 4 and the outer member 6 increases, by engagement with a clamped member such as the rod 35, there is a tendency for the arms 28 of the outer member 11 to splay outward, away from the axis 41. In the flange structure 1 of the present invention, the inner and outer anti-splay contours 14 and 16 include respective anti-splay surfaces 52 and 54 which are mutually engaged in a radial direction to resist such splaying tendencies. Because of the anti-splay configuration of the flange structure 1, the relative torque between the inner and outer members 4 and 6 can be much higher than with conventional V-threads or with guide and advancement structures which do not have anti-splay contours, thereby resulting in a considerably higher, more positive and more secure clamping force applied to the rod 35 by a more highly torqued closure member 33.


In the illustrated flange structure 1, the inner anti-splay surface 52 is formed by an anti-splay lip 55 extending axially from the load flank 39 of the inner flange 4. Similarly, the outer anti-splay surface 54 is formed by a groove 56 formed into the load flank 46 of the outer flange 9. The lip 55 and groove 56 are shaped in a complementary manner so that the lip 55 is received within the groove 56 when the inner member 6 is advanced into the outer member 11. Although FIGS. 3-5 illustrate a flange structure 1 of a particular configuration and contour, other configurations and contours are contemplated, as disclosed in Ser. No. 10/236,123 referenced above and incorporated herein by reference and as disclosed in FIGS. 6-19 and described below.


The closure 33 illustrated in FIG. 1 has a break-off installation head 58 which is provided with a non-round installation socket 59, such as a Torx shaped socket, a hexagonal Allen socket, or the like to receive an appropriately configured installation tool (not shown). The break-off head 58 is joined to the main body of the closure 33 by a weakened region 60 which is configured to limit the torque that can be applied to the head 58, relative to the closure 33, without the head separating from the closure 33 by failure of the weakened region 60. By this means, the head 58 separates from the closure 33 when a selected torque is reached in clamping the rod 35, to thereby provide a low profile implant. Alternatively, the closure 33 could be provided without the break-off head 58. The closure 33 has a non-round socket 61 (FIG. 2) to receive a tool to enable removal of the closure 33 from the screw head 26, if necessary. Such a socket 61 could also be employed for installation of the closure 33 into the screw head 26.


Referring particularly to FIG. 1, the bone screw 20 is provided with the arm tabs on extensions 2 to increase the initial length of the arms 28 and, thus, forming a rod receiving passageway between the extensions 2 and thereby increasing the length of the rod receiving channel 30 by the length of the passageway. The purpose for the lengthened channel 30 is to enable capture of the rod 35 within the channel 30 at a greater distance from the vertebra 24, whereby the rod 35 can be captured by the closure 33 and “reduced” or urged toward a seated position within the channel 30 by advancement of the closure 33. This provides effective leverage in reducing the position of the rod 35 or the vertebra itself. For this purpose, inner surfaces 64 of the tabs 2 are provided with the helical outer flange 9 which extends continuously from main portions 66 of the arms 28 and along the extensions 2 to form a continuous and uniform helical pathway therebetween.


The break-off extensions 2 are connected to the main portions 66 of the arms 28 by reduced or otherwise weakened regions 68. The bone screw 20 illustrated in FIG. 1 shows the weakened regions 68 as regions adjacent V-shaped notches formed into external surfaces 70 of the arms 28 which diminish the thickness of the material forming the arms 28. Alternatively, other shapes or configurations could be employed to form the weakened regions 68. The weakened regions 68 are strong enough to enable the rod 35 to be urged toward its seated position (FIG. 2). However, the extensions 2 can be broken off or separated from the main portions 66 of the arms 28 by pivoting or bending the extensions 2 back and forth about the regions 68 while the main portions 66 are held in place, after the closure 33 has passed between the extensions 2. The resulting low-profile implanted structure 3 is shown in FIG. 2.


In addition to resisting splaying of the outer member 11, the configuration of the anti-splay contours 14 and 16 and the general configuration of the inner and outer flanges 4 and 9 can be varied to achieve other beneficial effects in the engagement of the inner and outer members 6 and 11.


Referring FIGS. 3-5, the load flanks 39 and 46 are angled in a slightly “positive” direction. A positive angular direction for the load flanks, as defined herein, is an obtuse angle, that is, an angle of greater than 90 degrees relative to the helical axis 41. A somewhat positive angle is desirable in the load flanks 39 and 46 for relative ease of manufacture of the flange structure 1. A disadvantage of positively angled load flanks 39 and 46 is that there is an outward camming reaction between the engaged load flanks 39 and 46 when the inner and outer members 6 and 11 are strongly torqued, thus causing an outward splaying of the outer member 11, as is shown in FIG. 5. However, engagement of the anti-splay surfaces 52 and 54 limits splaying of the outer member 11.


It should be noted that the inner and outer load flanks 39 and 46 are locally parallel, resulting in relative even distribution of stresses in an axial direction over the surfaces of the load flanks 39 and 46. It should also be noted that a height of the anti-splay lip 55 is slightly less than the depth of the anti-splay groove 56. The result of this is that axial engagement between the inner and outer flanges 4 and 9 is restricted to the load flanks 39 and 46 and does not occur between a peak surface of the lip 55 and a trough surface of the groove 56. It is foreseen that the lip and groove 55 and 56 could alternatively be configured so that axial engagement between the peak of the lip 55 and the trough of the groove 56 could occur.



FIGS. 6 and 7 show alternative configurations of the load flanks 6 and 11. In the embodiment of FIG. 6, inner and outer load flanks 39′ and 46′ are mutually parallel and perpendicular to the helical axis 41. Perpendicular load flanks have virtually no outward camming reaction to strong torquing of the inner and outer members 6 and 11, resulting in no tendency of the outer member 11 to splay outwardly. In FIG. 7, inner and outer load flanks 39″ and 46″ are oriented at a slightly negative angle relative to the helical axis 41. A negative angle of a load flank is defined herein as an acute angle or angle of less than 90 degrees relative to the helical axis 41. A negative angling of the load flanks 39″ and 46″ causes the outer member 11 to be drawn toward the helical axis 41 when the inner and outer members 6 and 11 are strongly torqued, by camming action of the load flanks 39″ and 46″. The load flanks 39″ and 46″ are mutually parallel so that axial stresses between the inner and outer flanges 4 and 9 is distributed relatively evenly over the surfaces of the load flanks 39″ and 46″.



FIGS. 8 and 9 illustrate variations in the guide and advancement flange structure 1 in which the load flanks 39 and 46 are non-parallel. Proportioning of the axial stresses between the inner flange 4 and the outer flange 9 can be controlled, to some extent, by controlling the location of engagement between the flanges 4 and 9. FIG. 8 shows the flange structure 1 with load flanks 39a and 46a diverging in a radially outward direction. Such a relative orientation moves the location of contact between the load flanks 39a and 46a radially inward, as compared to a flange structure 1 with parallel load flanks 39 and 46. The result of this variation is that the effective local moment arm of stress between the flanges 4 and 9 is shortened for the inner flange 4 and lengthened for the outer flange 9. The outwardly diverging load flanks 39a and 46a, thus, increase the proportion of axial stress that is applied to the outer flange 9 where it is connected to the outer member 11. In contrast, FIG. 9 shows a configuration of the flange structure 1 in which the load flanks 39b and 46b converge in an outward radial direction. Outward convergence of the load flanks 39b and 46b moves the location of axial engagement between the flanges 4 and 9 outward, as compared to parallel load flanks 39 and 46, thereby increasing the effective local moment arm of axial stress on the inner flange 4 and decreasing it for the outer flange 9. The capability of controlling the proportioning of axial stress on the flanges 4 and 9 gives the flange designer control of which flange is more likely to fail in a situation of extreme torque between the inner and outer members 6 and 11.



FIGS. 10-15 illustrate modified embodiments of an anti-splay helical guide and advancement flange structure 80 in which anti-splay contours 82 and 83 are formed on stab flanks 85 and 86 of an inner flange 88 and an outer flange 89 respectively of an inner member 91 and an outer member 92. The illustrated anti-splay contour 82 of the inner flange 88 forms a lip 94 including an anti-splay shoulder 95. Similarly, the anti-splay contour 83 of the outer flange 89 forms a groove 97 including an anti-splay shoulder 98. Radial engagement of the shoulders 95 and 98 limits splaying of the outer member 92 when the inner member 91 is strongly torqued therein, as shown in FIG. 11.


Referring to FIGS. 10 and 11, the inner flange 88 includes a load flank 100, while the outer flange 89 has a load flank 101. The load flanks 100 and 101 are mutually parallel and oriented at a slightly positive or obtuse angle relative to a helical axis analogous to the helical axis 41 of FIG. 3. FIG. 12 illustrates a flange structure 80′, similar to the flange structure 80, in which load flanks 100′ and 101′ are mutually parallel and oriented perpendicular to the helical axis of the structure 80′. In FIG. 13, a flange structure 80″ is illustrated in which load flanks 100″ and 101″ are mutually parallel and oriented at a slight negative angle relative to the helical axis of the flange structure 80″. FIGS. 14 and 15 illustrate variations of the flange structure 80 with anti-splay contours 82 and 83 on the respective stab flanks 85 and 86 in which the load flanks 100 and 101 are non-parallel. In the flange structure 80a, shown in FIG. 14, load flanks 100a and 101a diverge in a radially outward direction. In FIG. 15, a flange structure 80b is shown in which load flanks 100b and 101b converge in a radially outward direction.


In the flange structures 1 and 80 and variations thereof, the anti-splay lip and groove are positioned at the inner or outer extremes of the flanges. However, it is foreseen that the lip and groove could also be positioned at any radial position on the flanges. FIGS. 16 and 17 illustrate a configuration of an anti-splay helical guide and advancement flange structure 110 formed on an inner member 112 and an outer member 114. The inner member 112 has an inner flange 117 with a load flank 118 and an opposite stab flank 119. Similarly, the outer member 114 has an outer flange 121 with a load flank 122 and a stab flank 123. The inner flange 117 has an anti-splay contour on the load flank 118 forming an anti-splay groove 125 including an anti-splay shoulder 126. The groove is positioned radially between inner and outer extremes of the inner flange 117. The illustrated outer flange 121 has an anti-splay contour on the load flank 122 forming an anti-splay lip 128 including an anti-splay shoulder 129. The lip 128 is positioned radially to align with the groove 125 when the inner member 112 is advanced into the outer member 114. The groove 117 and lip 128 could alternatively be formed on the stab flanks 119 and 123. Additionally, the groove 117 could alternatively be formed on the outer flange 121 with the lip 128 on the inner flange 117. Finally, the load flanks 118 and 122 could alternatively be angled positively or negatively or be formed in diverging or converging relation within the present invention.



FIGS. 18 and 19 illustrate a modified embodiment of an anti-splay helical guide and advancement flange structure 135 in which anti-splay contours are formed on both load flanks and stab flanks of the flanges. An inner member 137 has an inner flange 138 with a load flank 139 and a stab flank 140. Similarly, an outer member 143 has an outer flange 144 with a load flank 145 and a stab flank 146. An anti-splay lip 149 is formed on both the load flank the load flank 139 and the stab flank 140 of the illustrated inner flange 138. A complementary anti-splay groove 150 is formed on both the load flank 145 and the stab flank 146 of the outer flange 144. Radial engagement of the lips 149 with the grooves 150 limits splaying of the outer member 143 when the inner member 137 is strongly torqued therein. The load flanks 139 and 145 of the flange structure 135 could alternatively be angled neutrally or negatively or diverging or converging.



FIG. 20 illustrates a polyaxial medical implant 150 which incorporates the helical guide and advancement flange structure 1 of the present invention. The illustrated polyaxial implant 150 includes an open headed receiver 152, a threaded shank 154, and a closure 156 which cooperate to fix the position of another implant member, such as a spinal fixation rod 158. The receiver or head 152 is configured internally with a spherical socket (not shown) which receives a shank retainer member 162 having a spherical outer surface. The retainer member 162 is connected to a capture end 164 of the shank 154 and, in cooperation with the receiver socket, enables the shank 154 to be positioned at any desired angle relative to the receiver 152, within a conical range of movement. The shank 154 is secured at the desired angle by engagement of the rod 158 with the capture end 164 when the rod is clamped within the receiver 152 by the closure 156. Additional information about polyaxial bone screws can be found in U.S. Pat. No. 6,716,214 which is incorporated herein by reference.


The receiver 152 includes spaced apart arms 166 and preferably includes break-off extensions 168 which are separable from the arms 166 by breaking the extensions 168 off at weakened regions 170. The flange structure 1 includes an anti-splay closure guide and advancement flange 172 formed on the closure 156 which cooperates with a discontinuous receiver anti-splay guide and advancement flange 174 formed on inner surfaces of the arms 166 and extensions 168. The flanges 172 and 174 are substantially similar to the flanges 4 and 9 of the implant 3 and benefit from the same variations in configuration as described in connection therewith. The flanges 172 and 174 enable the closure 156 to be advanced into clamping contact with the rod 158 by rotation within the receiver 152. In other respects, the implant 150 is substantially similar to the implant 3.


It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.

Claims
  • 1. In a medical implant having a closure member adapted to rotatably mate with an outer member and wherein the closure has an axis of rotation and a helical guide and advancement structure, the improvement wherein the helical guide and advancement structure comprises: a) a trailing surface with a load flank; andb) an axially extending lip with a top surface, such that when the helical guide and advancement structure mates with the outer member the top surface of the lip remains unloaded.
  • 2. The improvement of claim 1 wherein a peak surface of the lip is unloaded in an axial direction and the lip is partially defined by an inner anti-splay surface loaded in a radial direction.
  • 3. In a spinal implant having an open head forming a channel for receiving a longitudinal connecting member and a closure member for closing the channel and capturing the longitudinal connecting member in the channel, the closure member having an axis of rotation and a first helical guide and advancement structure and the head having a second guide and advancement structure following a helically wound path, the first guide and advancement structure mating with the second guide and advancement structure under rotation, the improvement wherein: the first helical guide and advancement structure has an axially extending lip with a top surface, such that when mated the top surface of the lip is unloaded and does not engage the second guide and advancement structure.
  • 4. The improvement of claim 3 wherein the first helical guide and advancement structure has an axially loaded flank and the unloaded lip extends axially upwardly from the loaded flank.
  • 5. The improvement of claim 3 wherein the first helical guide and advancement structure has an axially loaded flank and the unloaded lip extends axially downwardly from the loaded flank.
  • 6. The improvement of claim 3, wherein the lip is partially defined by an inner anti-splay surface loaded in a direction perpendicular to the axis of rotation.
  • 7. The improvement of claim 3, wherein the second guide and advancement structure is partially defined by a groove having a trough surface, the top surface being spaced from the trough surface.
  • 8. The improvement of claim 3 wherein the open head has spaced apart arms defining the channel, each arm having a main portion and an extended portion connected to the main portion by a weakened region, the second guide and advancement structure being located on both the main and extended portion of each arm, the arm extended portions guiding the closure member into the channel during rotation of the closure into the channel and thereafter being separable from the main portions.
  • 9. The improvement of claim 8 wherein the closure member further comprises a body and a break-off head having a drive feature for mating with an insertion tool and to break off of the body at a preselected torque.
  • 10. The improvement of claim 8 wherein the spinal implant is a polyaxial bone screw.
  • 11. The improvement of claim 8 wherein the spinal implant is a fixed headed bone screw.
  • 12. A closure for engagement with a structural member having spaced apart upright arms, the closure comprising: a) a substantially cylindrical body having a central axis, a drive feature located at a top surface of the body and a first guide and advancement structure extending helically about the body from near the top surface to near a bottom surface of the body, the first guide and advancement structure comprising a loading flank having an axially extending lip with a peak surface, the lip receivable in a groove of a second guide and advancement structure located on inner surfaces of the structural member upright arms, a height of the lip being slightly less than a depth of the groove, such that the peak surface does not engage the second guide and advancement structure.
  • 13. In a spinal implant having an open head forming a channel for receiving a longitudinal connecting member and a closure member for closing the channel and capturing the longitudinal connecting member in the channel, the closure member having an axis of rotation and a first helical guide and advancement structure and the head having a second guide and advancement structure following a helically wound path, the first guide and advancement structure mating with the second guide and advancement structure under rotation, the improvement wherein: a) the closure member has a substantially cylindrical body having a central axis, a drive feature located one of at and near a top surface of the body and the first guide and advancement structure extends helically about the body from near the top surface to near a bottom surface of the body, the first guide and advancement structure comprising a loading flank having an axially extending lip with a peak surface, the lip receivable in a groove of the second guide and advancement structure and wherein a height of the lip is slightly less than a depth of the groove, such that the peak surface does not engage the second guide and advancement structure; andb) the open head has spaced apart arms defining the channel, each arm having a main portion and an extended portion connected to the main portion by a weakened region, the second guide and advancement structure being located on an inner surface of both the main and extended portion of each arm, the arm extended portions guiding the closure member into the channel during rotation of the closure into the channel and thereafter being separable from the main portions.
  • 14. The improvement of claim 13 wherein the closure member further comprises a break-off head having the drive feature that mates with an insertion tool and is configured to break off of the body at a preselected torque.
  • 15. The improvement of claim 13 wherein the spinal implant is a polyaxial bone screw.
  • 16. The improvement of claim 13 wherein the spinal implant is a fixed headed bone screw.
  • 17. In a spinal implant having an open head forming a channel for receiving a longitudinal connecting member and a closure member for closing the channel and capturing the longitudinal connecting member in the channel, the closure member having an axis of rotation and a first helical guide and advancement structure and the head having a second guide and advancement structure following a helically wound path along the axis of rotation, the first guide and advancement structure mating with the second guide and advancement structure under rotation, the improvement wherein: a) the first helical guide and advancement structure has a loading flank surface facing in an upward direction with respect to the axis of rotation and positioned adjacent a root of the loading flank, the structure having a crest with an adjacent axially extending lip with a top surface facing in the upward direction, wherein the loading flank surface is loaded, the top surface of the lip is unloaded and does not engage the second guide and advancement structure.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/101,859, filed Apr. 8, 2005 that claims the benefit of U.S. Provisional Application Ser. No. 60/627,000 filed Nov. 10, 2004 and which is a continuation-in-part of U.S. patent application Ser. No. 10/831,919 filed Apr. 26, 2004, now U.S. Pat. No. 8,273,109, which is a continuation-in-part of U.S. patent application Ser. No. 10/236,123 filed Sep. 6, 2002, now U.S. Pat. No. 6,726,689, all of the disclosures of which are incorporated herein by reference.

US Referenced Citations (1234)
Number Name Date Kind
154864 Harvey Sep 1874 A
791548 Fischer Jun 1905 A
1300275 Johnson Apr 1919 A
1330673 Anderson Feb 1920 A
1472464 Ellison Oct 1923 A
2083092 Richer Jun 1937 A
2201087 Hallowell May 1940 A
2239352 Cherry Apr 1941 A
2243717 Moreira May 1941 A
2295314 Whitney Sep 1942 A
2346346 Anderson Apr 1944 A
2362999 Elmer Nov 1944 A
2445978 Stellin Jul 1948 A
2531892 Reese Nov 1950 A
2532815 Kindsvatter et al. Dec 1950 A
2537029 Cambern Jan 1951 A
2553337 Shafer May 1951 A
2778265 Brown Jan 1957 A
2813450 Dzus Nov 1957 A
2877681 Brown Mar 1959 A
2927332 Moore Mar 1960 A
2969250 Kull Jan 1961 A
3013244 Rudy Dec 1961 A
3143029 Brown Aug 1964 A
D200217 Curtiss Feb 1965 S
3236275 Smith Feb 1966 A
3370341 Allsop Feb 1968 A
3444775 Hills May 1969 A
3498174 Schuster et al. Mar 1970 A
3584667 Reiland Jun 1971 A
3604487 Gilbert Sep 1971 A
3640416 Temple Feb 1972 A
3812757 Reiland May 1974 A
3963322 Gryctko Jun 1976 A
3989284 Blose Nov 1976 A
3997138 Crock et al. Dec 1976 A
4013071 Rosenberg Mar 1977 A
4033139 Frederick Jul 1977 A
4041939 Hall Aug 1977 A
4103422 Weiss et al. Aug 1978 A
4190091 Colognori Feb 1980 A
4269246 Larson et al. May 1981 A
4347845 Mayfield Sep 1982 A
4369769 Edwards Jan 1983 A
4373754 Bollfrass et al. Feb 1983 A
4409968 Drummond Oct 1983 A
4448191 Rodnyansky et al. May 1984 A
4484570 Sutter et al. Nov 1984 A
4492500 Ewing Jan 1985 A
4506917 Hansen Mar 1985 A
4577448 Howorth Mar 1986 A
4600224 Blose Jul 1986 A
4600225 Blose Jul 1986 A
4641636 Cotrel Feb 1987 A
4653481 Howland et al. Mar 1987 A
4653486 Coker Mar 1987 A
4703954 Ortloff et al. Nov 1987 A
4707001 Johnson Nov 1987 A
4743260 Burton May 1988 A
4748260 Marlett May 1988 A
4759672 Nilsen et al. Jul 1988 A
4763644 Webb Aug 1988 A
4764068 Crispell Aug 1988 A
4790297 Luque Dec 1988 A
4805602 Puno et al. Feb 1989 A
4815453 Cotrel Mar 1989 A
4836196 Park et al. Jun 1989 A
4838264 Bremer et al. Jun 1989 A
4850775 Lee et al. Jul 1989 A
4877020 Vich Oct 1989 A
4887596 Sherman Dec 1989 A
4917606 Miller Apr 1990 A
4946458 Harms et al. Aug 1990 A
4950269 Gaines, Jr. Aug 1990 A
4961740 Ray et al. Oct 1990 A
5005562 Cotrel Apr 1991 A
5019080 Hemer May 1991 A
5022791 Isler Jun 1991 A
5034011 Howland Jul 1991 A
5056492 Banse Oct 1991 A
5067428 Dickerson et al. Nov 1991 A
5067955 Cotrel Nov 1991 A
5073074 Corrigan et al. Dec 1991 A
5084048 Jacob et al. Jan 1992 A
5092635 DeLange et al. Mar 1992 A
5102412 Rogozinski Apr 1992 A
5129388 Vignaud et al. Jul 1992 A
5129899 Small et al. Jul 1992 A
5147360 Dubousset Sep 1992 A
5147363 Harle Sep 1992 A
5154719 Cotrel Oct 1992 A
5176483 Baumann et al. Jan 1993 A
5176678 Tsou Jan 1993 A
5176680 Vignaud et al. Jan 1993 A
5180393 Commarmond Jan 1993 A
5201734 Cozad et al. Apr 1993 A
5207678 Harms et al. May 1993 A
5217497 Mehdian Jun 1993 A
5257993 Asher et al. Nov 1993 A
5261907 Vignaud et al. Nov 1993 A
5263953 Bagby Nov 1993 A
5275601 Gogolewski et al. Jan 1994 A
5282707 Palm Feb 1994 A
5282862 Baker et al. Feb 1994 A
5282863 Burton Feb 1994 A
5306275 Bryan Apr 1994 A
5312404 Asher et al. May 1994 A
5321901 Kelly Jun 1994 A
5330472 Metz-Stavenhagen Jul 1994 A
5334203 Wagner Aug 1994 A
5346493 Stahurski et al. Sep 1994 A
5354292 Braeuer et al. Oct 1994 A
5354299 Coleman Oct 1994 A
5358289 Banker et al. Oct 1994 A
5360431 Puno et al. Nov 1994 A
5364400 Rego, Jr. et al. Nov 1994 A
5375823 Navas Dec 1994 A
5382248 Jacobson et al. Jan 1995 A
5385583 Cotrel Jan 1995 A
5387211 Saadatmanesh et al. Feb 1995 A
5387212 Yuan et al. Feb 1995 A
5395371 Miller et al. Mar 1995 A
5409489 Sioufi Apr 1995 A
5415661 Holmes May 1995 A
5423816 Lin Jun 1995 A
5427418 Watts Jun 1995 A
5429639 Judet Jul 1995 A
5434001 Yamada et al. Jul 1995 A
5443467 Biedermann et al. Aug 1995 A
5466237 Byrd, III et al. Nov 1995 A
5468241 Metz-Stavenhagen et al. Nov 1995 A
5474551 Finn et al. Dec 1995 A
5474555 Puno et al. Dec 1995 A
5476462 Allard et al. Dec 1995 A
5476464 Metz-Stavenhagen et al. Dec 1995 A
5480401 Navas Jan 1996 A
5484440 Allard Jan 1996 A
5487742 Cotrel Jan 1996 A
5489307 Kuslich et al. Feb 1996 A
5490750 Gundy Feb 1996 A
5499892 Reed Mar 1996 A
5501684 Schlapfer et al. Mar 1996 A
5505731 Tornier Apr 1996 A
5507745 Logroscino et al. Apr 1996 A
5507747 Yuan et al. Apr 1996 A
5534001 Schlapfer et al. Jul 1996 A
5540688 Navas Jul 1996 A
5545165 Biedermann et al. Aug 1996 A
5549607 Olson et al. Aug 1996 A
5549608 Errico et al. Aug 1996 A
5554157 Errico et al. Sep 1996 A
5562660 Grob Oct 1996 A
5562663 Wisnewski et al. Oct 1996 A
5569247 Morrison Oct 1996 A
5569251 Baker et al. Oct 1996 A
5578033 Errico et al. Nov 1996 A
5584834 Errico et al. Dec 1996 A
5586984 Errico et al. Dec 1996 A
5591166 Bernhardt et al. Jan 1997 A
5601553 Trebing et al. Feb 1997 A
5605458 Bailey et al. Feb 1997 A
5607304 Bailey et al. Mar 1997 A
5607425 Rogozinski Mar 1997 A
5607426 Ralph et al. Mar 1997 A
5607428 Lin Mar 1997 A
5609593 Errico et al. Mar 1997 A
5609594 Errico et al. Mar 1997 A
5611800 Davis et al. Mar 1997 A
5628740 Mullane May 1997 A
5630817 Rokegem May 1997 A
5641256 Gundy Jun 1997 A
5643260 Doherty Jul 1997 A
5643261 Schafer et al. Jul 1997 A
5647873 Errico et al. Jul 1997 A
5653710 Harle Aug 1997 A
5662652 Schafer et al. Sep 1997 A
5662653 Songer et al. Sep 1997 A
5667508 Errico et al. Sep 1997 A
5669909 Zdeblick et al. Sep 1997 A
5669911 Errico et al. Sep 1997 A
5672175 Martin Sep 1997 A
5672176 Biedermann Sep 1997 A
5676665 Bryan Oct 1997 A
5676703 Gelbard Oct 1997 A
5681319 Biedermann et al. Oct 1997 A
5683390 Metz-Stavenhagen et al. Nov 1997 A
5683391 Boyd Nov 1997 A
5690630 Errico et al. Nov 1997 A
5702393 Pfaifer Dec 1997 A
5711709 McCoy Jan 1998 A
5713705 Grunbichler Feb 1998 A
5713898 Stucker et al. Feb 1998 A
5716356 Biedermann et al. Feb 1998 A
5720751 Jackson Feb 1998 A
5723013 Jeanson et al. Mar 1998 A
5725527 Biedermann et al. Mar 1998 A
5725528 Errico et al. Mar 1998 A
5728098 Sherman et al. Mar 1998 A
5733286 Errico et al. Mar 1998 A
5738685 Halm et al. Apr 1998 A
5741254 Henry et al. Apr 1998 A
5752957 Ralph et al. May 1998 A
5782833 Haider Jul 1998 A
5797911 Sherman et al. Aug 1998 A
5800435 Errico et al. Sep 1998 A
5800547 Schafer et al. Sep 1998 A
5817094 Errico et al. Oct 1998 A
5863293 Richelsoph Jan 1999 A
5873878 Harms et al. Feb 1999 A
D407302 Lawson Mar 1999 S
5876402 Errico et al. Mar 1999 A
5879351 Viart Mar 1999 A
5882350 Ralph et al. Mar 1999 A
5902303 Eckhof et al. May 1999 A
RE36221 Breard et al. Jun 1999 E
5910141 Morrison et al. Jun 1999 A
5910142 Tatar Jun 1999 A
5928236 Augagneur et al. Jul 1999 A
5938663 Petreto Aug 1999 A
5941880 Errico et al. Aug 1999 A
5944465 Janitzki Aug 1999 A
5951553 Betz et al. Sep 1999 A
5961517 Biedermann et al. Oct 1999 A
5964760 Richelsoph Oct 1999 A
5964767 Tapia et al. Oct 1999 A
5997539 Errico et al. Dec 1999 A
6001098 Metz-Stavenhagen et al. Dec 1999 A
6004349 Jackson Dec 1999 A
6010503 Richelsoph et al. Jan 2000 A
6019759 Rogozinski Feb 2000 A
6022350 Ganem Feb 2000 A
6053078 Parker Apr 2000 A
6056753 Jackson May 2000 A
6063088 Winslow May 2000 A
6074391 Metz-Stavenhagen et al. Jun 2000 A
6077262 Schlapfer et al. Jun 2000 A
6086588 Ameil et al. Jul 2000 A
6090110 Metz-Stavenhagen Jul 2000 A
6090111 Nichols Jul 2000 A
6099528 Saurat Aug 2000 A
6110172 Jackson Aug 2000 A
6113601 Tatar Sep 2000 A
6117137 Halm et al. Sep 2000 A
6129763 Chauvin et al. Oct 2000 A
6132431 Nilsson et al. Oct 2000 A
6136002 Shih et al. Oct 2000 A
6136003 Hoeck et al. Oct 2000 A
6143032 Schafer et al. Nov 2000 A
6146383 Studer et al. Nov 2000 A
6149533 Finn Nov 2000 A
6162223 Orsak et al. Dec 2000 A
6168597 Biedermann et al. Jan 2001 B1
6183472 Lutz Feb 2001 B1
6186718 Fogard Feb 2001 B1
6193719 Gournay et al. Feb 2001 B1
6193720 Yuan et al. Feb 2001 B1
6214012 Karpman et al. Apr 2001 B1
RE37161 Michelson et al. May 2001 E
6224596 Jackson May 2001 B1
6224598 Jackson May 2001 B1
6235028 Brumfield et al. May 2001 B1
6235034 Bray May 2001 B1
6241730 Alby Jun 2001 B1
6241731 Fiz Jun 2001 B1
6248105 Schlapfer et al. Jun 2001 B1
6248107 Foley et al. Jun 2001 B1
6251112 Jackson Jun 2001 B1
6254602 Justis Jul 2001 B1
6261039 Reed Jul 2001 B1
6267764 Elberg Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6280445 Morrison et al. Aug 2001 B1
6287308 Betz et al. Sep 2001 B1
6296643 Hopf et al. Oct 2001 B1
6299613 Ogilvie et al. Oct 2001 B1
6299616 Beger Oct 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6309391 Crandall et al. Oct 2001 B1
6315564 Levisman Nov 2001 B1
6322108 Riesselmann et al. Nov 2001 B1
RE37665 Ralph et al. Apr 2002 E
6368321 Jackson Apr 2002 B1
6379356 Jackson Apr 2002 B1
6402757 Moore et al. Jun 2002 B1
6440133 Beale et al. Aug 2002 B1
6443956 Ray Sep 2002 B1
6467958 Sasaki et al. Oct 2002 B1
6471703 Ashman Oct 2002 B1
6478797 Paul Nov 2002 B1
6478798 Howland Nov 2002 B1
6485491 Farris et al. Nov 2002 B1
6485492 Halm et al. Nov 2002 B1
6485494 Haider Nov 2002 B1
6520962 Taylor et al. Feb 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6533786 Needham et al. Mar 2003 B1
6554831 Rivard et al. Apr 2003 B1
6554834 Crozet et al. Apr 2003 B1
6562040 Wagner May 2003 B1
6565565 Yuan et al. May 2003 B1
6565567 Haider May 2003 B1
6595992 Wagner et al. Jul 2003 B1
6602255 Campbell et al. Aug 2003 B1
6613050 Wagner et al. Sep 2003 B1
6616667 Steiger et al. Sep 2003 B1
6648885 Friesem Nov 2003 B1
6652526 Arafiles Nov 2003 B1
6652765 Beaty Nov 2003 B1
6656179 Schaefer et al. Dec 2003 B1
6663632 Frigg Dec 2003 B1
6673073 Schaefer Jan 2004 B1
6676661 Benlloch et al. Jan 2004 B1
6712818 Michelson Mar 2004 B1
6716214 Jackson Apr 2004 B1
6740086 Richelsoph May 2004 B2
6743231 Gray et al. Jun 2004 B1
6755829 Bono et al. Jun 2004 B1
6778861 Liebrecht et al. Aug 2004 B1
6872208 McBride et al. Mar 2005 B1
6896677 Lin May 2005 B1
7001389 Navarro et al. Feb 2006 B1
RE39035 Finn et al. Mar 2006 E
RE39089 Ralph et al. May 2006 E
7081116 Carly Jul 2006 B1
7316684 Baccelli et al. Jan 2008 B1
7686833 Muhanna et al. Mar 2010 B1
7766943 Fallin et al. Aug 2010 B1
7833251 Ahlgren et al. Nov 2010 B1
8043340 Law Oct 2011 B1
8092499 Roth Jan 2012 B1
8167914 Hunt et al. May 2012 B1
8197517 Lab et al. Jun 2012 B1
8211110 Corin et al. Jul 2012 B1
8236035 Bedor Aug 2012 B1
8388659 Lab et al. Mar 2013 B1
8439924 McBride et al. May 2013 B1
8470009 Rezach Jun 2013 B1
20010007941 Steiner et al. Jul 2001 A1
20010010000 Gertzbein et al. Jul 2001 A1
20010011172 Orbay et al. Aug 2001 A1
20010012937 Schaffler-Wachter et al. Aug 2001 A1
20010023350 Choi Sep 2001 A1
20010037111 Dixon et al. Nov 2001 A1
20010041894 Campbell et al. Nov 2001 A1
20010047173 Schlapfer et al. Nov 2001 A1
20010047174 Donno et al. Nov 2001 A1
20010047175 Doubler et al. Nov 2001 A1
20010052438 Spencer Dec 2001 A1
20020004683 Michelson Jan 2002 A1
20020007184 Ogilvie et al. Jan 2002 A1
20020010467 Cooper et al. Jan 2002 A1
20020013586 Justis et al. Jan 2002 A1
20020016594 Schlapfer et al. Feb 2002 A1
20020022764 Smith et al. Feb 2002 A1
20020022842 Horvath et al. Feb 2002 A1
20020029040 Morrison et al. Mar 2002 A1
20020035365 Kumar et al. Mar 2002 A1
20020035366 Walder et al. Mar 2002 A1
20020035367 Ritland Mar 2002 A1
20020045898 Freid et al. Apr 2002 A1
20020045899 Errico et al. Apr 2002 A1
20020049446 Harkey, III et al. Apr 2002 A1
20020055740 Lieberman May 2002 A1
20020055741 Schlapfer et al. May 2002 A1
20020058942 Biedermann et al. May 2002 A1
20020068975 Teitelbaum et al. Jun 2002 A1
20020072750 Jackson Jun 2002 A1
20020072751 Jackson Jun 2002 A1
20020082602 Biedermann et al. Jun 2002 A1
20020082603 Dixon et al. Jun 2002 A1
20020087159 Thomas Jul 2002 A1
20020087161 Randall et al. Jul 2002 A1
20020091386 Martin et al. Jul 2002 A1
20020095153 Jones et al. Jul 2002 A1
20020095154 Atkinson et al. Jul 2002 A1
20020095881 Shreiner Jul 2002 A1
20020103487 Errico et al. Aug 2002 A1
20020111627 Vincent-Prestigiacomo Aug 2002 A1
20020116001 Schafer et al. Aug 2002 A1
20020120270 Trieu et al. Aug 2002 A1
20020123752 Schultheiss et al. Sep 2002 A1
20020133154 Saint Martin Sep 2002 A1
20020133158 Saint Martin Sep 2002 A1
20020133159 Jackson Sep 2002 A1
20020138076 Biedermann et al. Sep 2002 A1
20020138077 Ferree Sep 2002 A1
20020143328 Shluzas et al. Oct 2002 A1
20020143330 Shluzas Oct 2002 A1
20020143332 Lin et al. Oct 2002 A1
20020143338 Orbay et al. Oct 2002 A1
20020143341 Biedermann et al. Oct 2002 A1
20020161368 Foley et al. Oct 2002 A1
20020161370 Frigg et al. Oct 2002 A1
20020173791 Howland Nov 2002 A1
20020183747 Jao et al. Dec 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030004519 Torode et al. Jan 2003 A1
20030023243 Biedermann et al. Jan 2003 A1
20030028191 Shluzas Feb 2003 A1
20030032957 McKinley Feb 2003 A1
20030055426 Carbone et al. Mar 2003 A1
20030055427 Graf Mar 2003 A1
20030060826 Foley et al. Mar 2003 A1
20030073995 Reed Apr 2003 A1
20030073996 Doubler et al. Apr 2003 A1
20030073998 Pagliuca et al. Apr 2003 A1
20030078580 Shitoto Apr 2003 A1
20030083657 Drewry et al. May 2003 A1
20030083667 Ralph et al. May 2003 A1
20030093077 Schlapfer et al. May 2003 A1
20030093078 Ritland May 2003 A1
20030100896 Biedermann et al. May 2003 A1
20030100897 Metz-Stavenhagen May 2003 A1
20030100904 Biedermann May 2003 A1
20030105460 Crandall et al. Jun 2003 A1
20030109880 Shirado et al. Jun 2003 A1
20030114852 Biedermann et al. Jun 2003 A1
20030120275 Lenke et al. Jun 2003 A1
20030125741 Biedermann et al. Jul 2003 A1
20030125749 Yuan et al. Jul 2003 A1
20030130659 Haider Jul 2003 A1
20030130661 Osman Jul 2003 A1
20030135210 Dixon et al. Jul 2003 A1
20030135217 Buttermann et al. Jul 2003 A1
20030139745 Ashman Jul 2003 A1
20030149431 Varieur Aug 2003 A1
20030149432 Frigg et al. Aug 2003 A1
20030149435 Baynham et al. Aug 2003 A1
20030153912 Graf Aug 2003 A1
20030153920 Ralph et al. Aug 2003 A1
20030163133 Altarac et al. Aug 2003 A1
20030167058 Shluzas Sep 2003 A1
20030171749 Le Couedic et al. Sep 2003 A1
20030176863 Ueyama et al. Sep 2003 A1
20030181913 Lieberman Sep 2003 A1
20030187433 Lin Oct 2003 A1
20030187434 Lin Oct 2003 A1
20030191470 Ritland Oct 2003 A1
20030199872 Markworth et al. Oct 2003 A1
20030199873 Richelsoph Oct 2003 A1
20030208204 Bailey et al. Nov 2003 A1
20030212398 Jackson Nov 2003 A1
20030216735 Altarac et al. Nov 2003 A1
20030220642 Freudiger Nov 2003 A1
20030220643 Ferree Nov 2003 A1
20030225408 Nichols et al. Dec 2003 A1
20030229345 Stahurski Dec 2003 A1
20030229347 Sherman et al. Dec 2003 A1
20030236529 Shluzas et al. Dec 2003 A1
20040006342 Altarac et al. Jan 2004 A1
20040039384 Boehm, Jr. et al. Feb 2004 A1
20040039385 Mazda et al. Feb 2004 A1
20040049189 Le Couedic et al. Mar 2004 A1
20040049190 Biedermann et al. Mar 2004 A1
20040073215 Carli Apr 2004 A1
20040073218 Dahners Apr 2004 A1
20040078051 Davison et al. Apr 2004 A1
20040078082 Lange Apr 2004 A1
20040087949 Bono et al. May 2004 A1
20040087950 Teitelbaum May 2004 A1
20040087952 Borgstrom et al. May 2004 A1
20040092934 Howland May 2004 A1
20040092938 Carli May 2004 A1
20040097933 Lourdel et al. May 2004 A1
20040106925 Culbert Jun 2004 A1
20040111091 Ogilvie et al. Jun 2004 A1
20040122442 Lewis Jun 2004 A1
20040127904 Konieczynski et al. Jul 2004 A1
20040133207 Abdou Jul 2004 A1
20040138660 Serhan Jul 2004 A1
20040138662 Landry et al. Jul 2004 A1
20040147928 Landry et al. Jul 2004 A1
20040147929 Biedermann et al. Jul 2004 A1
20040147937 Dunbar, Jr. et al. Jul 2004 A1
20040153068 Janowski et al. Aug 2004 A1
20040158245 Chin Aug 2004 A1
20040158247 Sitiso et al. Aug 2004 A1
20040158258 Bonati et al. Aug 2004 A1
20040162560 Raynor et al. Aug 2004 A1
20040167523 Jackson Aug 2004 A1
20040167525 Jackson Aug 2004 A1
20040172025 Drewry et al. Sep 2004 A1
20040172031 Rubecamp et al. Sep 2004 A1
20040172032 Jackson Sep 2004 A1
20040176776 Zubok et al. Sep 2004 A1
20040186473 Cournoyer et al. Sep 2004 A1
20040186474 Matthis et al. Sep 2004 A1
20040186475 Falahee Sep 2004 A1
20040210216 Farris et al. Oct 2004 A1
20040210227 Trail et al. Oct 2004 A1
20040215190 Nguyen et al. Oct 2004 A1
20040215191 Kitchen Oct 2004 A1
20040220567 Eisermann et al. Nov 2004 A1
20040220671 Ralph et al. Nov 2004 A1
20040225289 Biedermann et al. Nov 2004 A1
20040230100 Shluzas Nov 2004 A1
20040236327 Paul et al. Nov 2004 A1
20040236328 Paul et al. Nov 2004 A1
20040236330 Purcell et al. Nov 2004 A1
20040249378 Saint Martin et al. Dec 2004 A1
20040254574 Morrison et al. Dec 2004 A1
20040260283 Wu et al. Dec 2004 A1
20040267264 Konieczynski et al. Dec 2004 A1
20050010219 Dalton Jan 2005 A1
20050027296 Thramann et al. Feb 2005 A1
20050033298 Hawkes et al. Feb 2005 A1
20050033436 Schlapfer et al. Feb 2005 A1
20050033439 Gordon et al. Feb 2005 A1
20050038430 McKinley Feb 2005 A1
20050038432 Shaolian et al. Feb 2005 A1
20050038433 Young Feb 2005 A1
20050049588 Jackson Mar 2005 A1
20050049589 Jackson Mar 2005 A1
20050055026 Biedermann et al. Mar 2005 A1
20050065514 Studer Mar 2005 A1
20050065515 Jahng Mar 2005 A1
20050065516 Jahng Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070899 Doubler et al. Mar 2005 A1
20050070901 David Mar 2005 A1
20050080415 Keyer et al. Apr 2005 A1
20050085812 Sherman et al. Apr 2005 A1
20050085813 Spitler et al. Apr 2005 A1
20050085815 Harms et al. Apr 2005 A1
20050085816 Michelson Apr 2005 A1
20050090821 Berrevoets et al. Apr 2005 A1
20050096652 Burton May 2005 A1
20050096653 Doubler et al. May 2005 A1
20050096654 Lin May 2005 A1
20050107788 Beaurain et al. May 2005 A1
20050113927 Malek May 2005 A1
20050119658 Ralph et al. Jun 2005 A1
20050124991 Jahng Jun 2005 A1
20050131404 Mazda et al. Jun 2005 A1
20050131405 Molz, IV et al. Jun 2005 A1
20050131406 Reiley et al. Jun 2005 A1
20050131407 Sicvol et al. Jun 2005 A1
20050131408 Sicvol et al. Jun 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050131419 McCord et al. Jun 2005 A1
20050131421 Anderson et al. Jun 2005 A1
20050131422 Anderson Jun 2005 A1
20050137594 Doubler et al. Jun 2005 A1
20050137597 Butler et al. Jun 2005 A1
20050141986 Flesher Jun 2005 A1
20050143737 Pafford et al. Jun 2005 A1
20050143823 Boyd et al. Jun 2005 A1
20050149020 Jahng Jul 2005 A1
20050149053 Varieur Jul 2005 A1
20050154389 Selover et al. Jul 2005 A1
20050154390 Biedermann et al. Jul 2005 A1
20050154391 Doherty et al. Jul 2005 A1
20050159750 Doherty Jul 2005 A1
20050165400 Fernandez Jul 2005 A1
20050171540 Lim et al. Aug 2005 A1
20050171543 Timm et al. Aug 2005 A1
20050177154 Moumene et al. Aug 2005 A1
20050177166 Timm et al. Aug 2005 A1
20050182401 Timm et al. Aug 2005 A1
20050182410 Jackson Aug 2005 A1
20050187548 Butler et al. Aug 2005 A1
20050187555 Biedermann et al. Aug 2005 A1
20050192571 Abdelgany Sep 2005 A1
20050192572 Abdelgany et al. Sep 2005 A1
20050192573 Abdelgany et al. Sep 2005 A1
20050192579 Jackson Sep 2005 A1
20050192580 Dalton Sep 2005 A1
20050192589 Raymond et al. Sep 2005 A1
20050203511 Wilson-MacDonald et al. Sep 2005 A1
20050203513 Jahng et al. Sep 2005 A1
20050203514 Jahng et al. Sep 2005 A1
20050203516 Harm et al. Sep 2005 A1
20050203518 Biedermann et al. Sep 2005 A1
20050203519 Harms et al. Sep 2005 A1
20050215999 Birkmeyer et al. Sep 2005 A1
20050216000 Colleran et al. Sep 2005 A1
20050216001 David Sep 2005 A1
20050216003 Biedermann et al. Sep 2005 A1
20050228326 Kalfas et al. Oct 2005 A1
20050228379 Jackson Oct 2005 A1
20050228385 Lee et al. Oct 2005 A1
20050228400 Chao Oct 2005 A1
20050228501 Miller et al. Oct 2005 A1
20050234450 Barker Oct 2005 A1
20050234451 Markworth Oct 2005 A1
20050234452 Malandain Oct 2005 A1
20050234453 Shaolian et al. Oct 2005 A1
20050234454 Chin Oct 2005 A1
20050234456 Malandain Oct 2005 A1
20050234459 Falahee et al. Oct 2005 A1
20050240181 Boomer et al. Oct 2005 A1
20050240183 Vaughan Oct 2005 A1
20050245930 Timm et al. Nov 2005 A1
20050251137 Ball Nov 2005 A1
20050251139 Roh Nov 2005 A1
20050251140 Shaolian et al. Nov 2005 A1
20050251141 Frigg et al. Nov 2005 A1
20050260058 Cassagne, III Nov 2005 A1
20050261687 Garamszegi et al. Nov 2005 A1
20050267470 McBride Dec 2005 A1
20050267471 Biedermann et al. Dec 2005 A1
20050267472 Biedermann et al. Dec 2005 A1
20050267474 Dalton Dec 2005 A1
20050267477 Jackson Dec 2005 A1
20050273099 Baccelli et al. Dec 2005 A1
20050273101 Schumacher Dec 2005 A1
20050277919 Slivka et al. Dec 2005 A1
20050277922 Trieu et al. Dec 2005 A1
20050277923 Sweeney Dec 2005 A1
20050277925 Mujwid Dec 2005 A1
20050277927 Guenther et al. Dec 2005 A1
20050277928 Boschert Dec 2005 A1
20050277931 Sweeney et al. Dec 2005 A1
20050277934 Vardiman Dec 2005 A1
20050278023 Zwirkoski Dec 2005 A1
20050283152 Lindemann et al. Dec 2005 A1
20050283157 Coates et al. Dec 2005 A1
20050283238 Reiley Dec 2005 A1
20050283244 Gordon et al. Dec 2005 A1
20050288669 Abdou Dec 2005 A1
20050288670 Panjabi Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20050288673 Catbagan et al. Dec 2005 A1
20060004359 Kramer et al. Jan 2006 A1
20060004363 Brockmeyer et al. Jan 2006 A1
20060009767 Kiester Jan 2006 A1
20060009769 Lieberman Jan 2006 A1
20060009770 Speirs et al. Jan 2006 A1
20060009780 Foley et al. Jan 2006 A1
20060015099 Cannon et al. Jan 2006 A1
20060025767 Khalili Feb 2006 A1
20060025768 Iott et al. Feb 2006 A1
20060025770 Schlapfer et al. Feb 2006 A1
20060025771 Jackson Feb 2006 A1
20060030850 Keegan et al. Feb 2006 A1
20060036240 Colleran et al. Feb 2006 A1
20060036242 Nilsson et al. Feb 2006 A1
20060036243 Sasso et al. Feb 2006 A1
20060036244 Spitler et al. Feb 2006 A1
20060036246 Carl et al. Feb 2006 A1
20060036252 Baynham et al. Feb 2006 A1
20060036254 Lim Feb 2006 A1
20060036256 Carl et al. Feb 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060052780 Errico et al. Mar 2006 A1
20060052783 Dant et al. Mar 2006 A1
20060052784 Dant et al. Mar 2006 A1
20060052786 Dant et al. Mar 2006 A1
20060058788 Hammer et al. Mar 2006 A1
20060058790 Carl et al. Mar 2006 A1
20060064090 Park Mar 2006 A1
20060064091 Ludwig et al. Mar 2006 A1
20060064092 Howland Mar 2006 A1
20060069390 Frigg et al. Mar 2006 A1
20060074418 Jackson Apr 2006 A1
20060074419 Taylor et al. Apr 2006 A1
20060079894 Colleran et al. Apr 2006 A1
20060079895 McLeer Apr 2006 A1
20060079896 Kwak et al. Apr 2006 A1
20060079898 Ainsworth et al. Apr 2006 A1
20060079899 Ritland Apr 2006 A1
20060084977 Lieberman Apr 2006 A1
20060084980 Melkent et al. Apr 2006 A1
20060084981 Shluzas Apr 2006 A1
20060084982 Kim Apr 2006 A1
20060084983 Kim Apr 2006 A1
20060084984 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060084989 Dickinson et al. Apr 2006 A1
20060084991 Borgstrom et al. Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060089643 Mujwid Apr 2006 A1
20060089644 Felix Apr 2006 A1
20060089645 Eckman Apr 2006 A1
20060095035 Jones et al. May 2006 A1
20060095037 Jones et al. May 2006 A1
20060095038 Jackson May 2006 A1
20060100621 Jackson May 2006 A1
20060100622 Jackson May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106394 Colleran May 2006 A1
20060111713 Jackson May 2006 A1
20060111715 Jackson May 2006 A1
20060116677 Burd et al. Jun 2006 A1
20060122597 Jones et al. Jun 2006 A1
20060122599 Drewry et al. Jun 2006 A1
20060129147 Biedermann et al. Jun 2006 A1
20060129149 Iott et al. Jun 2006 A1
20060129239 Kwak Jun 2006 A1
20060142758 Petit Jun 2006 A1
20060142760 McDonnell Jun 2006 A1
20060149228 Schlapfer et al. Jul 2006 A1
20060149229 Kwak et al. Jul 2006 A1
20060149238 Sherman et al. Jul 2006 A1
20060149240 Jackson Jul 2006 A1
20060149241 Richelsoph et al. Jul 2006 A1
20060149251 Ziolo et al. Jul 2006 A1
20060155277 Metz-Stavenhagen Jul 2006 A1
20060161152 Ensign et al. Jul 2006 A1
20060166535 Brumfield et al. Jul 2006 A1
20060167454 Ludwig et al. Jul 2006 A1
20060167455 Clement et al. Jul 2006 A1
20060173456 Hawkes et al. Aug 2006 A1
20060184171 Biedermann Aug 2006 A1
20060184180 Augostino Aug 2006 A1
20060189983 Fallin et al. Aug 2006 A1
20060189985 Lewis Aug 2006 A1
20060195090 Suddaby Aug 2006 A1
20060195093 Jahng Aug 2006 A1
20060195198 James Aug 2006 A1
20060200023 Melkent et al. Sep 2006 A1
20060200130 Hawkins et al. Sep 2006 A1
20060200131 Chao et al. Sep 2006 A1
20060200132 Chao et al. Sep 2006 A1
20060200133 Jackson Sep 2006 A1
20060200149 Hoy et al. Sep 2006 A1
20060212033 Rothman et al. Sep 2006 A1
20060212034 Triplett et al. Sep 2006 A1
20060217713 Serhan et al. Sep 2006 A1
20060217716 Baker et al. Sep 2006 A1
20060217719 Albert et al. Sep 2006 A1
20060229608 Foster et al. Oct 2006 A1
20060229609 Wang Oct 2006 A1
20060229613 Timm Oct 2006 A1
20060229614 Foley et al. Oct 2006 A1
20060229615 Abdou Oct 2006 A1
20060241593 Sherman et al. Oct 2006 A1
20060241595 Molz et al. Oct 2006 A1
20060241600 Ensign et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060247624 Banouskou et al. Nov 2006 A1
20060247630 Iott et al. Nov 2006 A1
20060247631 Ahn et al. Nov 2006 A1
20060247632 Winslow et al. Nov 2006 A1
20060247633 Winslow et al. Nov 2006 A1
20060247658 Pond, Jr. et al. Nov 2006 A1
20060260483 Hartmann et al. Nov 2006 A1
20060264933 Baker et al. Nov 2006 A1
20060264934 Fallin Nov 2006 A1
20060264935 White Nov 2006 A1
20060264936 Partin et al. Nov 2006 A1
20060264962 Chin et al. Nov 2006 A1
20060276787 Zubok et al. Dec 2006 A1
20060276789 Jackson Dec 2006 A1
20060276791 Shluzas Dec 2006 A1
20060276792 Ensign et al. Dec 2006 A1
20060282075 Labrom et al. Dec 2006 A1
20060282076 Labrom et al. Dec 2006 A1
20060282077 Labrom et al. Dec 2006 A1
20060282078 Labrom et al. Dec 2006 A1
20060282079 Labrom et al. Dec 2006 A1
20060282080 Albert et al. Dec 2006 A1
20060293657 Hartmann Dec 2006 A1
20060293659 Alvarez Dec 2006 A1
20060293663 Walkenhorst Dec 2006 A1
20060293666 Matthis et al. Dec 2006 A1
20060293693 Farr et al. Dec 2006 A1
20070005062 Lange et al. Jan 2007 A1
20070005063 Bruneau et al. Jan 2007 A1
20070005137 Kwak Jan 2007 A1
20070016190 Martinez et al. Jan 2007 A1
20070016194 Shaolian et al. Jan 2007 A1
20070016200 Jackson Jan 2007 A1
20070021750 Shluzas et al. Jan 2007 A1
20070032123 Timm et al. Feb 2007 A1
20070043356 Timm et al. Feb 2007 A1
20070043357 Kirschman Feb 2007 A1
20070043358 Molz, IV et al. Feb 2007 A1
20070043359 Altarac et al. Feb 2007 A1
20070043364 Cawley et al. Feb 2007 A1
20070049931 Justis et al. Mar 2007 A1
20070049933 Ahn et al. Mar 2007 A1
20070049936 Colleran et al. Mar 2007 A1
20070055236 Hudgins et al. Mar 2007 A1
20070055239 Sweeney et al. Mar 2007 A1
20070055240 Matthis et al. Mar 2007 A1
20070055241 Matthis et al. Mar 2007 A1
20070055242 Bailly Mar 2007 A1
20070055244 Jackson Mar 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070073290 Boehm, Jr. Mar 2007 A1
20070073291 Cordaro et al. Mar 2007 A1
20070073293 Martz et al. Mar 2007 A1
20070073294 Chin et al. Mar 2007 A1
20070078460 Frigg et al. Apr 2007 A1
20070078461 Shluzas Apr 2007 A1
20070083199 Baccelli Apr 2007 A1
20070088357 Johnson et al. Apr 2007 A1
20070088359 Woods et al. Apr 2007 A1
20070090238 Justis Apr 2007 A1
20070093813 Callahan et al. Apr 2007 A1
20070093814 Callahan, II et al. Apr 2007 A1
20070093815 Callahan, II et al. Apr 2007 A1
20070093818 Biedermann et al. Apr 2007 A1
20070093819 Albert Apr 2007 A1
20070093824 Hestad et al. Apr 2007 A1
20070093826 Hawkes et al. Apr 2007 A1
20070093833 Kuiper et al. Apr 2007 A1
20070100341 Reglos et al. May 2007 A1
20070118117 Altarac et al. May 2007 A1
20070118118 Kwak et al. May 2007 A1
20070118119 Hestad May 2007 A1
20070118122 Butler et al. May 2007 A1
20070118123 Strausbaugh et al. May 2007 A1
20070118124 Biedermann et al. May 2007 A1
20070123867 Kirschman May 2007 A1
20070123870 Jeon et al. May 2007 A1
20070156142 Rezach et al. Jul 2007 A1
20070161986 Levy Jul 2007 A1
20070161991 Altarac et al. Jul 2007 A1
20070161994 Lowrey et al. Jul 2007 A1
20070161995 Trautwein et al. Jul 2007 A1
20070161996 Biedermann et al. Jul 2007 A1
20070161997 Thramann et al. Jul 2007 A1
20070161999 Biedermann et al. Jul 2007 A1
20070167948 Abdou Jul 2007 A1
20070167949 Altarac et al. Jul 2007 A1
20070173818 Hestad et al. Jul 2007 A1
20070173819 Sandlin Jul 2007 A1
20070173820 Trieu Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173828 Firkins et al. Jul 2007 A1
20070173832 Tebbe et al. Jul 2007 A1
20070191832 Trieu Aug 2007 A1
20070191839 Justis et al. Aug 2007 A1
20070191841 Justis et al. Aug 2007 A1
20070191846 Bruneau et al. Aug 2007 A1
20070198014 Graf et al. Aug 2007 A1
20070208344 Young Sep 2007 A1
20070213720 Gordon et al. Sep 2007 A1
20070225707 Wisnewski et al. Sep 2007 A1
20070225708 Biedermann et al. Sep 2007 A1
20070225711 Ensign Sep 2007 A1
20070233073 Wisnewski et al. Oct 2007 A1
20070233078 Justis et al. Oct 2007 A1
20070233080 Na et al. Oct 2007 A1
20070233085 Biedermann et al. Oct 2007 A1
20070233086 Harms et al. Oct 2007 A1
20070233089 Dipoto et al. Oct 2007 A1
20070233092 Falahee Oct 2007 A1
20070233094 Colleran et al. Oct 2007 A1
20070233095 Schlapfer Oct 2007 A1
20070233155 Lovell Oct 2007 A1
20070244481 Timm Oct 2007 A1
20070244482 Aferzon Oct 2007 A1
20070250061 Chin et al. Oct 2007 A1
20070260243 Kagami Nov 2007 A1
20070270813 Garamszegi Nov 2007 A1
20070270821 Trieu et al. Nov 2007 A1
20070270836 Bruneau et al. Nov 2007 A1
20070270837 Eckhardt et al. Nov 2007 A1
20070270838 Bruneau et al. Nov 2007 A1
20070270843 Matthis et al. Nov 2007 A1
20070270869 Young et al. Nov 2007 A1
20070276371 Baynham et al. Nov 2007 A1
20070276379 Miller et al. Nov 2007 A1
20070276380 Jahng et al. Nov 2007 A1
20070288004 Alvarez Dec 2007 A1
20070288012 Colleran et al. Dec 2007 A1
20070293862 Jackson Dec 2007 A1
20080009862 Hoffman Jan 2008 A1
20080009864 Forton et al. Jan 2008 A1
20080015578 Erickson et al. Jan 2008 A1
20080015579 Whipple Jan 2008 A1
20080015580 Chao Jan 2008 A1
20080015597 Whipple Jan 2008 A1
20080021454 Chao et al. Jan 2008 A1
20080021455 Chao et al. Jan 2008 A1
20080021462 Trieu Jan 2008 A1
20080021464 Morin et al. Jan 2008 A1
20080021465 Shadduck et al. Jan 2008 A1
20080027432 Strauss et al. Jan 2008 A1
20080039843 Abdou Feb 2008 A1
20080045951 Fanger et al. Feb 2008 A1
20080045955 Berrevoets et al. Feb 2008 A1
20080051780 Vaidya et al. Feb 2008 A1
20080051787 Remington et al. Feb 2008 A1
20080058811 Alleyne et al. Mar 2008 A1
20080058812 Zehnder Mar 2008 A1
20080065071 Park Mar 2008 A1
20080065073 Perriello et al. Mar 2008 A1
20080065075 Dant Mar 2008 A1
20080065077 Ferree Mar 2008 A1
20080065079 Bruneau et al. Mar 2008 A1
20080071273 Hawkes et al. Mar 2008 A1
20080071274 Ensign Mar 2008 A1
20080077136 Triplett et al. Mar 2008 A1
20080077138 Cohen et al. Mar 2008 A1
20080077139 Landry et al. Mar 2008 A1
20080077143 Shluzas Mar 2008 A1
20080086131 Daly et al. Apr 2008 A1
20080086132 Biedermann et al. Apr 2008 A1
20080091213 Jackson Apr 2008 A1
20080097441 Hayes et al. Apr 2008 A1
20080103502 Capote et al. May 2008 A1
20080108992 Barry et al. May 2008 A1
20080114362 Justis et al. May 2008 A1
20080114403 Kuester et al. May 2008 A1
20080119849 Beardsley et al. May 2008 A1
20080119857 Potash et al. May 2008 A1
20080125777 Veldman et al. May 2008 A1
20080125787 Doubler et al. May 2008 A1
20080125813 Erickson et al. May 2008 A1
20080132957 Matthis et al. Jun 2008 A1
20080140075 Ensign et al. Jun 2008 A1
20080140076 Jackson Jun 2008 A1
20080140133 Allard et al. Jun 2008 A1
20080140136 Jackson Jun 2008 A1
20080147121 Justis et al. Jun 2008 A1
20080147122 Jackson Jun 2008 A1
20080147129 Biedermann et al. Jun 2008 A1
20080147195 Kwak et al. Jun 2008 A1
20080154279 Schumacher et al. Jun 2008 A1
20080154315 Jackson Jun 2008 A1
20080161857 Hestad et al. Jul 2008 A1
20080161863 Arnold et al. Jul 2008 A1
20080167687 Colleran et al. Jul 2008 A1
20080172090 Molz Jul 2008 A1
20080172091 Anderson Jul 2008 A1
20080172096 Hawkins Jul 2008 A1
20080177316 Bergeron et al. Jul 2008 A1
20080177317 Jackson Jul 2008 A1
20080177321 Drewry et al. Jul 2008 A1
20080177322 Davis et al. Jul 2008 A1
20080177323 Null et al. Jul 2008 A1
20080177388 Patterson et al. Jul 2008 A1
20080183212 Veldman et al. Jul 2008 A1
20080183213 Veldman et al. Jul 2008 A1
20080183215 Altarac et al. Jul 2008 A1
20080183216 Jackson Jul 2008 A1
20080183223 Jeon et al. Jul 2008 A1
20080188898 Jackson Aug 2008 A1
20080195153 Thompson Aug 2008 A1
20080195155 Hoffman et al. Aug 2008 A1
20080195159 Kloss et al. Aug 2008 A1
20080200918 Spitler et al. Aug 2008 A1
20080200956 Beckwith et al. Aug 2008 A1
20080215095 Biedermann et al. Sep 2008 A1
20080215100 Matthis et al. Sep 2008 A1
20080228184 Hestad Sep 2008 A1
20080228228 Hestad et al. Sep 2008 A1
20080234736 Trieu et al. Sep 2008 A1
20080234737 Boschert Sep 2008 A1
20080234738 Zylber et al. Sep 2008 A1
20080234739 Hudgins et al. Sep 2008 A1
20080234744 Zylber et al. Sep 2008 A1
20080234756 Sutcliffe et al. Sep 2008 A1
20080234759 Marino Sep 2008 A1
20080234761 Jackson Sep 2008 A1
20080243052 Pond et al. Oct 2008 A1
20080243185 Felix et al. Oct 2008 A1
20080243193 Ensign et al. Oct 2008 A1
20080249570 Carson et al. Oct 2008 A1
20080262548 Lange et al. Oct 2008 A1
20080262551 Rice et al. Oct 2008 A1
20080262554 Hayes et al. Oct 2008 A1
20080262556 Jacofsky et al. Oct 2008 A1
20080269742 Levy et al. Oct 2008 A1
20080269804 Holt Oct 2008 A1
20080269805 Dekutoski et al. Oct 2008 A1
20080275456 Vonwiller et al. Nov 2008 A1
20080275504 Bonin et al. Nov 2008 A1
20080287994 Perez-Cruet et al. Nov 2008 A1
20080288002 Crall et al. Nov 2008 A1
20080294203 Kovach et al. Nov 2008 A1
20080300630 Bonnema et al. Dec 2008 A1
20080300631 Tornier Dec 2008 A1
20080300633 Jackson Dec 2008 A1
20080306513 Winslow et al. Dec 2008 A1
20080306525 Mitchell et al. Dec 2008 A1
20080306526 Winslow et al. Dec 2008 A1
20080306533 Winslow et al. Dec 2008 A1
20080306536 Frigg et al. Dec 2008 A1
20080306540 Mitchell et al. Dec 2008 A1
20080306543 Cain et al. Dec 2008 A1
20080312655 Kirschman et al. Dec 2008 A1
20080312692 Brennan et al. Dec 2008 A1
20080312696 Butters et al. Dec 2008 A1
20080312701 Butters et al. Dec 2008 A1
20080312703 Hestad et al. Dec 2008 A1
20080312704 Hestad et al. Dec 2008 A1
20080319482 Jackson Dec 2008 A1
20080319490 Jackson Dec 2008 A1
20090005787 Crall et al. Jan 2009 A1
20090005813 Crall et al. Jan 2009 A1
20090005814 Miller et al. Jan 2009 A1
20090012567 Biedermann et al. Jan 2009 A1
20090018557 Pisharodi Jan 2009 A1
20090018583 Song et al. Jan 2009 A1
20090024165 Ferree Jan 2009 A1
20090024169 Triplett et al. Jan 2009 A1
20090030457 Janowski et al. Jan 2009 A1
20090036929 Reglos et al. Feb 2009 A1
20090036932 Rouyer et al. Feb 2009 A1
20090036934 Biedermann et al. Feb 2009 A1
20090048601 Forton et al. Feb 2009 A1
20090048631 Bhatnagar et al. Feb 2009 A1
20090062860 Frasier et al. Mar 2009 A1
20090062865 Schumacher Mar 2009 A1
20090062866 Jackson Mar 2009 A1
20090062867 Schumacher Mar 2009 A1
20090062914 Marino Mar 2009 A1
20090069849 Oh et al. Mar 2009 A1
20090069852 Farris et al. Mar 2009 A1
20090069853 Schumacher Mar 2009 A1
20090076550 Bernhardt, Jr. et al. Mar 2009 A1
20090076552 Tornier Mar 2009 A1
20090082666 Geist et al. Mar 2009 A1
20090082812 Lewis Mar 2009 A1
20090082815 Zylber et al. Mar 2009 A1
20090082819 Blain et al. Mar 2009 A1
20090088769 Poletti Apr 2009 A1
20090088799 Yeh Apr 2009 A1
20090088803 Justis et al. Apr 2009 A1
20090088807 Castaneda et al. Apr 2009 A1
20090093820 Trieu et al. Apr 2009 A1
20090093843 Lemoine et al. Apr 2009 A1
20090093846 Hestad et al. Apr 2009 A1
20090099606 Hestad et al. Apr 2009 A1
20090099608 Szczesny Apr 2009 A1
20090105769 Rock et al. Apr 2009 A1
20090105770 Berrevoets et al. Apr 2009 A1
20090105771 Lei et al. Apr 2009 A1
20090105820 Jackson Apr 2009 A1
20090112265 Hudgins et al. Apr 2009 A1
20090112266 Weng et al. Apr 2009 A1
20090112269 Lieberman et al. Apr 2009 A1
20090118772 Diederich et al. May 2009 A1
20090131983 Biedermann et al. May 2009 A1
20090138044 Bergeron et al. May 2009 A1
20090138052 Biedermann et al. May 2009 A1
20090143827 Levy et al. Jun 2009 A1
20090143828 Stad et al. Jun 2009 A1
20090149885 Durward et al. Jun 2009 A1
20090149892 Stad et al. Jun 2009 A1
20090157120 Marino et al. Jun 2009 A1
20090163901 Fisher et al. Jun 2009 A1
20090163953 Biedermann et al. Jun 2009 A1
20090163954 Kwak Jun 2009 A1
20090163955 Moumene et al. Jun 2009 A1
20090163956 Biedermann et al. Jun 2009 A1
20090163961 Kirschman Jun 2009 A1
20090163963 Berrevoets Jun 2009 A1
20090171392 Garcia-Bengochea et al. Jul 2009 A1
20090171395 Jeon et al. Jul 2009 A1
20090177232 Kiester Jul 2009 A1
20090177237 Zucherman et al. Jul 2009 A1
20090182380 Abdelgany Jul 2009 A1
20090182430 Tyber et al. Jul 2009 A1
20090192548 Jeon et al. Jul 2009 A1
20090192551 Cianfrani et al. Jul 2009 A1
20090198280 Spratt et al. Aug 2009 A1
20090198281 Rice et al. Aug 2009 A1
20090198289 Manderson Aug 2009 A1
20090198291 Kevin et al. Aug 2009 A1
20090216278 Song Aug 2009 A1
20090216280 Hutchinson Aug 2009 A1
20090221877 Woods Sep 2009 A1
20090228045 Hayes et al. Sep 2009 A1
20090240292 Butler et al. Sep 2009 A1
20090248030 Butler et al. Oct 2009 A1
20090248075 Ogilvie et al. Oct 2009 A1
20090248077 Johns Oct 2009 A1
20090248083 Patterson et al. Oct 2009 A1
20090248088 Biedermann Oct 2009 A1
20090254125 Predick Oct 2009 A1
20090259254 Pisharodi Oct 2009 A1
20090259257 Prevost Oct 2009 A1
20090259258 Perez-Cruet et al. Oct 2009 A1
20090264895 Gasperut et al. Oct 2009 A1
20090264896 Biedermann et al. Oct 2009 A1
20090264930 McBride Oct 2009 A1
20090264933 Carls et al. Oct 2009 A1
20090270916 Ramsay et al. Oct 2009 A1
20090270917 Boehm Oct 2009 A1
20090270920 Douget et al. Oct 2009 A1
20090270921 Krause Oct 2009 A1
20090270922 Biedermann et al. Oct 2009 A1
20090275981 Abdelgany et al. Nov 2009 A1
20090275983 Veldman et al. Nov 2009 A1
20090275986 Prevost et al. Nov 2009 A1
20090281542 Justis Nov 2009 A1
20090281571 Weaver et al. Nov 2009 A1
20090281572 White Nov 2009 A1
20090281573 Biedermann et al. Nov 2009 A1
20090281574 Jackson Nov 2009 A1
20090287252 Marik et al. Nov 2009 A1
20090287253 Felix et al. Nov 2009 A1
20090299411 Laskowitz et al. Dec 2009 A1
20090299415 Pimenta Dec 2009 A1
20090306719 Meyer, III et al. Dec 2009 A1
20090306720 Doubler et al. Dec 2009 A1
20090312804 Gamache et al. Dec 2009 A1
20090326582 Songer et al. Dec 2009 A1
20090326583 Moumene et al. Dec 2009 A1
20090326586 Duarte Dec 2009 A1
20100004692 Biedermann et al. Jan 2010 A1
20100004694 Little Jan 2010 A1
20100004695 Stad et al. Jan 2010 A1
20100010540 Park Jan 2010 A1
20100010542 Jackson Jan 2010 A1
20100023061 Randol et al. Jan 2010 A1
20100030224 Winslow et al. Feb 2010 A1
20100030272 Winslow et al. Feb 2010 A1
20100030283 King et al. Feb 2010 A1
20100036417 James et al. Feb 2010 A1
20100036422 Flynn et al. Feb 2010 A1
20100036423 Hayes et al. Feb 2010 A1
20100036425 Barrus et al. Feb 2010 A1
20100036432 Ely Feb 2010 A1
20100036443 Hutton et al. Feb 2010 A1
20100042149 Chao et al. Feb 2010 A1
20100042152 Semler et al. Feb 2010 A1
20100042155 Biedermann et al. Feb 2010 A1
20100042156 Harms et al. Feb 2010 A1
20100057125 Viker Mar 2010 A1
20100057126 Hestad Mar 2010 A1
20100057131 Ely Mar 2010 A1
20100063544 Butler Mar 2010 A1
20100063545 Richelsoph Mar 2010 A1
20100063546 Miller et al. Mar 2010 A1
20100063547 Morin et al. Mar 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100063552 Chin et al. Mar 2010 A1
20100069919 Carls et al. Mar 2010 A1
20100069969 Ampuero et al. Mar 2010 A1
20100082066 Biyani Apr 2010 A1
20100087858 Abdou Apr 2010 A1
20100087862 Biedermann et al. Apr 2010 A1
20100087863 Biedermann et al. Apr 2010 A1
20100087864 Klein et al. Apr 2010 A1
20100087865 Biedermann et al. Apr 2010 A1
20100094343 Pham et al. Apr 2010 A1
20100094348 Biedermann et al. Apr 2010 A1
20100094349 Hammer et al. Apr 2010 A1
20100094352 Iott et al. Apr 2010 A1
20100094353 Shim et al. Apr 2010 A1
20100100136 Won et al. Apr 2010 A1
20100100137 Justis et al. Apr 2010 A1
20100106189 Miller Apr 2010 A1
20100106192 Barry Apr 2010 A1
20100114165 Ely May 2010 A1
20100114170 Barrus et al. May 2010 A1
20100114171 Boachie-Adjei et al. May 2010 A1
20100114179 Moore et al. May 2010 A1
20100114180 Rock et al. May 2010 A1
20100114182 Wilcox et al. May 2010 A1
20100121386 Peultier et al. May 2010 A1
20100125302 Hammill, Sr. et al. May 2010 A1
20100137908 Zhang Jun 2010 A1
20100137912 Alcock et al. Jun 2010 A1
20100137918 Wilcox et al. Jun 2010 A1
20100137920 Hammill, Sr. et al. Jun 2010 A1
20100152776 Keyer et al. Jun 2010 A1
20100152785 Forton et al. Jun 2010 A1
20100160965 Viker Jun 2010 A1
20100160967 Capozzoli Jun 2010 A1
20100160968 Joshi et al. Jun 2010 A1
20100160974 Viker Jun 2010 A1
20100160976 Biedermann et al. Jun 2010 A1
20100168796 Eliasen et al. Jul 2010 A1
20100168800 Biedermann et al. Jul 2010 A1
20100168801 Biedermann et al. Jul 2010 A1
20100168803 Hestad et al. Jul 2010 A1
20100174322 Abdelgany et al. Jul 2010 A1
20100179602 Dauster et al. Jul 2010 A1
20100191293 Jackson Jul 2010 A1
20100204735 Gephart et al. Aug 2010 A1
20100211104 Moumene et al. Aug 2010 A1
20100211105 Moumene et al. Aug 2010 A1
20100211114 Jackson Aug 2010 A1
20100222822 Farris et al. Sep 2010 A1
20100222828 Stad et al. Sep 2010 A1
20100234902 Biedermann et al. Sep 2010 A1
20100249843 Wegrzyn, III Sep 2010 A1
20100249846 Simonson Sep 2010 A1
20100249856 Iott et al. Sep 2010 A1
20100262185 Gelfand et al. Oct 2010 A1
20100262187 Marik et al. Oct 2010 A1
20100262190 Ballard et al. Oct 2010 A1
20100262191 Marik et al. Oct 2010 A1
20100262192 Foley Oct 2010 A1
20100274285 Rouleau Oct 2010 A1
20100274287 Rouleau et al. Oct 2010 A1
20100274288 Prevost et al. Oct 2010 A1
20100298891 Jackson Nov 2010 A1
20100305621 Wang et al. Dec 2010 A1
20100312288 Hammill, Sr. et al. Dec 2010 A1
20100331885 Remington et al. Dec 2010 A1
20110004256 Biedermann et al. Jan 2011 A1
20110009906 Hestad et al. Jan 2011 A1
20110009911 Hammill et al. Jan 2011 A1
20110040338 Jackson Feb 2011 A1
20110046683 Biedermann et al. Feb 2011 A1
20110093015 Ramsay et al. Apr 2011 A1
20110093021 Fanger et al. Apr 2011 A1
20110106174 Rezach May 2011 A1
20110106175 Rezach May 2011 A1
20110130792 Nydegger et al. Jun 2011 A1
20110152939 Aldridge Jun 2011 A1
20110152949 Biedermann et al. Jun 2011 A1
20110160778 Elsbury Jun 2011 A1
20110166610 Altarac et al. Jul 2011 A1
20110178558 Barry Jul 2011 A1
20110178560 Butler et al. Jul 2011 A1
20110184469 Ballard et al. Jul 2011 A1
20110184471 Foley et al. Jul 2011 A1
20110190822 Spitler et al. Aug 2011 A1
20110196430 Walsh Aug 2011 A1
20110202094 Pereira et al. Aug 2011 A1
20110202095 Semler et al. Aug 2011 A1
20110230915 Anderson et al. Sep 2011 A1
20110238119 Moumene et al. Sep 2011 A1
20110251644 Hestad et al. Oct 2011 A1
20110257685 Hay et al. Oct 2011 A1
20110257687 Trieu et al. Oct 2011 A1
20110257689 Fiechter et al. Oct 2011 A1
20110257690 Rezach Oct 2011 A1
20110263945 Peterson et al. Oct 2011 A1
20110313460 Mclean et al. Dec 2011 A1
20110313463 McLean Dec 2011 A1
20110313471 McLean et al. Dec 2011 A1
20120046699 Jones et al. Feb 2012 A1
20120053636 Schmocker Mar 2012 A1
20120078307 Nihalani Mar 2012 A1
20120197314 Farris Aug 2012 A1
20120232598 Hestad et al. Sep 2012 A1
20120310284 Gerchow Dec 2012 A1
20130103097 May et al. Apr 2013 A1
Foreign Referenced Citations (236)
Number Date Country
2012203959 Aug 2012 AU
373809 Apr 1923 DE
3630863 Mar 1988 DE
G9202745.8 Apr 1992 DE
4425392 Nov 1995 DE
29806563 Jun 1998 DE
29810798 Oct 1999 DE
29810798 Dec 1999 DE
19951145 May 2001 DE
102007055745 Jul 2008 DE
0195455 Sep 1986 EP
0172130 Feb 1987 EP
0276153 Jul 1988 EP
0667127 Aug 1995 EP
0669109 Aug 1995 EP
0677277 Oct 1995 EP
1277444 Jan 2003 EP
2082709 Jul 2009 EP
2384773 Jul 2012 ES
2467312 Apr 1981 FR
2715825 Aug 1995 FR
2717370 Sep 1995 FR
2718946 Oct 1995 FR
2799949 Apr 2001 FR
2814936 Apr 2002 FR
2815535 Apr 2002 FR
2856578 Jun 2003 FR
2865377 Jan 2004 FR
2846223 Apr 2004 FR
2857850 Apr 2004 FR
2925288 Jun 2009 FR
203508 Sep 1923 GB
2082709 Mar 1982 GB
2140523 Nov 1984 GB
2365345 Feb 2002 GB
2382304 May 2003 GB
S4867159 Sep 1973 JP
S50106061 Aug 1975 JP
H10277070 Oct 1998 JP
2000325358 Mar 2000 JP
2002052030 Feb 2002 JP
2002221218 Aug 2002 JP
371359 Feb 1973 SU
8909030 Oct 1989 WO
8912431 Dec 1989 WO
9116018 Oct 1991 WO
9116020 Oct 1991 WO
9203100 Mar 1992 WO
9321848 Nov 1993 WO
9325161 Dec 1993 WO
9410927 May 1994 WO
9410944 May 1994 WO
9426191 Nov 1994 WO
9428824 Dec 1994 WO
9501132 Jan 1995 WO
9513755 May 1995 WO
9528889 Nov 1995 WO
9531947 Nov 1995 WO
9535067 Dec 1995 WO
9606576 Mar 1996 WO
9621396 Jul 1996 WO
9625104 Aug 1996 WO
9628105 Sep 1996 WO
9628118 Sep 1996 WO
9641582 Dec 1996 WO
9714366 Apr 1997 WO
9714368 Apr 1997 WO
9727812 Aug 1997 WO
9730649 Aug 1997 WO
9737604 Oct 1997 WO
9737605 Oct 1997 WO
9812977 Apr 1998 WO
9815233 Apr 1998 WO
9825534 Jun 1998 WO
9832386 Jul 1998 WO
9834554 Aug 1998 WO
9834556 Aug 1998 WO
9838924 Sep 1998 WO
9903415 Jan 1999 WO
9905980 Feb 1999 WO
9932084 Jul 1999 WO
9938463 Aug 1999 WO
9947083 Sep 1999 WO
9949802 Oct 1999 WO
0015125 Mar 2000 WO
0022997 Apr 2000 WO
0027297 May 2000 WO
0072769 Jul 2000 WO
0065268 Nov 2000 WO
0066045 Nov 2000 WO
0106940 Feb 2001 WO
0108574 Feb 2001 WO
0110317 Feb 2001 WO
0115612 Mar 2001 WO
0122893 Apr 2001 WO
0128435 Apr 2001 WO
0128436 Apr 2001 WO
0145576 Jun 2001 WO
0149191 Jul 2001 WO
0158370 Aug 2001 WO
0167972 Sep 2001 WO
0167974 Sep 2001 WO
0222030 Mar 2002 WO
0234150 May 2002 WO
02054966 Jul 2002 WO
02102259 Dec 2002 WO
03007828 Jan 2003 WO
03026523 Apr 2003 WO
03037199 May 2003 WO
03047442 Jun 2003 WO
03068083 Aug 2003 WO
03068088 Aug 2003 WO
03084415 Oct 2003 WO
03094699 Nov 2003 WO
2004021900 Mar 2004 WO
2004022108 Mar 2004 WO
2004041100 May 2004 WO
2004075778 Sep 2004 WO
2004089245 Oct 2004 WO
2004098452 Nov 2004 WO
2004105577 Dec 2004 WO
2004107997 Dec 2004 WO
2005000136 Jan 2005 WO
2005000137 Jan 2005 WO
2005013839 Feb 2005 WO
2005018466 Mar 2005 WO
2005018471 Mar 2005 WO
2005020829 Mar 2005 WO
2005030068 Apr 2005 WO
2005065374 Jul 2005 WO
2005072632 Aug 2005 WO
2005082262 Sep 2005 WO
2005087121 Sep 2005 WO
2005099400 Oct 2005 WO
2005102195 Nov 2005 WO
2005104969 Nov 2005 WO
2006005198 Jan 2006 WO
2006017616 Feb 2006 WO
2006020530 Feb 2006 WO
2006042188 Apr 2006 WO
2006047711 May 2006 WO
2006054111 May 2006 WO
2006065607 Jun 2006 WO
2006066685 Jun 2006 WO
2006068711 Jun 2006 WO
2006071742 Jul 2006 WO
2006079531 Aug 2006 WO
2006096240 Sep 2006 WO
2006096351 Sep 2006 WO
2006104874 Oct 2006 WO
2006110463 Oct 2006 WO
2006116437 Nov 2006 WO
2006119447 Nov 2006 WO
2007002409 Jan 2007 WO
2007038350 Apr 2007 WO
2007040750 Apr 2007 WO
2007040888 Apr 2007 WO
2007041702 Apr 2007 WO
2007053566 May 2007 WO
2007060534 May 2007 WO
2007075454 Jul 2007 WO
2007081849 Aug 2007 WO
2007087469 Aug 2007 WO
2007087628 Aug 2007 WO
2007090021 Aug 2007 WO
2007092056 Aug 2007 WO
2007092870 Aug 2007 WO
2007097905 Aug 2007 WO
2007109470 Sep 2007 WO
2007114834 Oct 2007 WO
2007118045 Oct 2007 WO
2007121030 Oct 2007 WO
2007121057 Oct 2007 WO
2007121271 Oct 2007 WO
2007123920 Nov 2007 WO
2007124222 Nov 2007 WO
2007124249 Nov 2007 WO
2007127595 Nov 2007 WO
2007127604 Nov 2007 WO
2007130835 Nov 2007 WO
2007130840 Nov 2007 WO
2007130941 Nov 2007 WO
2007138270 Dec 2007 WO
2007146032 Dec 2007 WO
2008005740 Jan 2008 WO
2008006098 Jan 2008 WO
2008008511 Jan 2008 WO
2008013892 Jan 2008 WO
2008027860 Mar 2008 WO
2008033742 Mar 2008 WO
2008036975 Mar 2008 WO
2008037256 Apr 2008 WO
2008039777 Apr 2008 WO
2008042948 Apr 2008 WO
2008048923 Apr 2008 WO
2008048953 Apr 2008 WO
2008051737 Apr 2008 WO
2008069420 Jun 2008 WO
2008070716 Jun 2008 WO
2008134703 Jun 2008 WO
2008078163 Jul 2008 WO
2008082737 Jul 2008 WO
2008100590 Aug 2008 WO
2008118295 Oct 2008 WO
2008119006 Oct 2008 WO
2008124772 Oct 2008 WO
2008140756 Nov 2008 WO
2008157589 Dec 2008 WO
2009003153 Dec 2008 WO
2009006225 Jan 2009 WO
2009011845 Jan 2009 WO
2009014540 Jan 2009 WO
2009015100 Jan 2009 WO
2009018086 Feb 2009 WO
2009029928 Mar 2009 WO
2009055028 Apr 2009 WO
2009055400 Apr 2009 WO
2009055407 Apr 2009 WO
2009152302 Dec 2009 WO
2009155360 Dec 2009 WO
2010017631 Feb 2010 WO
2010018316 Feb 2010 WO
2010018317 Feb 2010 WO
2010019857 Feb 2010 WO
2010030916 Mar 2010 WO
2010045383 Apr 2010 WO
2010065648 Jun 2010 WO
2010078901 Jul 2010 WO
2010111500 Sep 2010 WO
2010120989 Oct 2010 WO
2010147639 Dec 2010 WO
2011043805 Apr 2011 WO
2011068818 Jun 2011 WO
2012033532 Mar 2012 WO
2012075827 Jun 2012 WO
2012088890 Jul 2012 WO
Non-Patent Literature Citations (15)
Entry
Brochure of Tyco/Healthcare/Surgical Dynamics on Spiral Radius 90D, Publication Date: Sep. 2001, pp. 1-8.
CD Horizon M8 Multi Axial Screw Spinal System Brochure, Medtronic Sofamor Danek, no publish date.
Claris Instrumentation Brochure, G Med, pub. 1997.
Contour Spinal System Brochure, Ortho Development, no publish date.
EBI Omega 21 Brochure, EBI Spine Systems, pub. 1999.
SDRS Surgical Dynamics Rod System Brochure, Surgical Dynamics, pub. 1998-99.
Silhouette Spinal Fixation System Brochure, Sulzer Medica Spine-Tech, no publish date.
Spine, Lipcott, Williams & Wilkins, Inc. vol. 24, No. 15, p. 1495.
The Moss Miami 6.0mm System Advertisement, author unknown, no publish date.
The Rod Plate System Brochure, Stryker Howmedica Osteonics, pub. Oct. 1999.
The Strength of Innovation Advertisement, Blackstone Medical Inc., no publish date.
Versalok Low Back Fixation System Brochure, Wright Medical Technology, Inc., pub. 1997.
VLS System Variable Locking Screw Brochure, Interpore Cross International, 1999.
Xia Spinal System Brochure, Stryker Howmedica Osteonics, no publish date.
Brochure of DePuySpine on Surgical Technique, Published 2004, pp. 1-36.
Related Publications (1)
Number Date Country
20130274806 A1 Oct 2013 US
Provisional Applications (1)
Number Date Country
60627000 Nov 2004 US
Continuations (1)
Number Date Country
Parent 11101859 Apr 2005 US
Child 13872242 US
Continuation in Parts (2)
Number Date Country
Parent 10831919 Apr 2004 US
Child 11101859 US
Parent 10236123 Sep 2002 US
Child 10831919 US