Helical guide and advancement flange with radially loaded lip

Information

  • Patent Grant
  • 8876868
  • Patent Number
    8,876,868
  • Date Filed
    Friday, April 8, 2005
    20 years ago
  • Date Issued
    Tuesday, November 4, 2014
    10 years ago
  • Inventors
  • Examiners
    • Philogene; Pedro
    • Comstock; David
    Agents
    • McMahon; John C.
Abstract
A spinal fixation device combines an open-headed anchor member, such as a bone screw or a hook, with a closure member to thereby clamp a spinal fixation rod to the anchor member. The anchor member has spaced apart arms forming a rod receiving channel. The arms have arm extensions or tabs connected to main portions of the arms by weakened regions to enable the tabs to be broken-off or separated after the rod is clamped. The closure member and inner surfaces of the arms and tabs have helical anti-splay guide and advancement interlocking flanges formed thereon which cooperate to prevent splaying the arms and extensions as the closure member is advanced into the rod receiving channel. The flanges have anti-splay contours which can be formed on load flanks or stab flanks of the flanges. The load flanks can be oriented in such a manner as to aid in the anti-splay characteristics of the flanges or to control the proportioning of axial stresses between the flanges.
Description
BACKGROUND OF THE INVENTION

The present invention relates to improvements in interlocking or interconnecting helical guide and advancement structures such as helical flanges and, more particularly, to mating helical flange arrangements having an anti-splay lip on one flange and a cooperating and interlocking anti-splay groove on the other flange, the flanges being configured so that when radial loading or engagement occurs, the lip and groove resist splaying of an outer one of the members having one of the cooperating flanges on it. Such flanges with anti-splay contours are particularly advantageous when used in combination with open headed bone screws formed with extended arms or tabs to facilitate the capture and reduction of spinal fixation rods, after which the arm extensions or tabs are broken off at weakened areas to from a low profile implant. In the present invention, the interlocking anti-splay components are also found on the extensions such that force can be applied to a closure and through the closure to a rod positioned between the extensions without splaying the extensions, since the closure holds them in fixed position relative to each other as the closure traverses between the extensions.


Medical implants present a number of problems to both surgeons installing implants and to engineers designing them. It is always desirable to have an implant that is strong and unlikely to fail or break during usage. Further, if one of a set of cooperating components is likely to fail during an implant procedure, it is desirable to control which particular component fails and the manner in which it fails, to avoid injury and to minimize surgery to replace or repair the failed component. It is also desirable for the implant to be as small and lightweight as possible so that it is less intrusive to the patient. These are normally conflicting goals, and often difficult to resolve.


One type of implant presents special problems. In particular, spinal anchors such as monoaxial and polyaxial bone screws, hooks, and the like are used in many types of back surgery for repair of problems and deformities of the spine due to injury, developmental abnormalities, disease or congenital defects. For example, spinal bone screws typically have one end that threads into a vertebra and a head at an opposite end. The head is formed with an opening to receive a rod or rod-like member which is then both captured in the channel and locked in the head to prevent relative movement between the various elements subsequent to installation.


A particularly useful type of head for such above referenced bone screws is an open head wherein an open, generally U-shaped channel is formed in the head, and the rod is simply laid in the open channel. The channel is then closed with some type of a closure member which engages the walls or arms forming the head and clamps the rod in place within the channel. While the open headed devices are often necessary and preferred for usage, there is a significant problem associated with them. The open headed devices conventionally have two upstanding arms that are on opposite sides of the channel that receives the rod member. The top of the channel is closed by a closure member after the rod member is placed in the channel. Many open headed implants are closed by plugs that screw into threads formed on internal surfaces between the arms, because such configurations have low profiles.


However, such threaded plugs have encountered problems in that they produce radially outward forces that lead to splaying of the arms or at least do not prevent splaying that in turn may lead to loosening of parts and failure of the implant. In order to lock the rod member in place, a significant force must be exerted on the relatively small plug or on a set screw of some type. The forces are required to provide enough torque to insure that the rod member is clamped or locked securely in place relative to the bone screw, so that the rod does not move axially or rotationally therein. This typically requires torques on the order of 100 to 125 inch-pounds.


Because open headed implants such as bone screws, hooks and the like are relatively small, the arms that extend upwardly at the head can be spread by radially outwardly directed forces in response to the application of the substantial torquing force required to clamp the rod member. Historically, early closures were simple plugs that were threaded with V-shaped threads and which screwed into mating threads on the inside of each of the arms. The outward flexure of the arms of the head is caused by mutual camming action of the V-shaped threads of the plug and head as advancement of the plug is resisted by clamping engagement with the rod while rotational urging of the plug continues. If the arms are sufficiently spread, they can allow the threads to loosen, slip, or even disengage and the closure to fail. To counter this, various engineering techniques were applied to the head to increase its resistance to the spreading force. For example, the arms were significantly strengthened by increasing the width of the arms by many times. This is undesirable since it leads to a larger profile implant which is always undesirable and may limit the working space available to the surgeon during implant procedures. Alternatively, external caps were devised which engaged external surfaces of the head. In either case, the unfortunate effect was to substantially increase the bulk, size, and profile of the implant, especially when external nuts are used which may take up so much space along the rod as to leave too little space for all the implants needed.


The radial expansion problem of V-threads has been recognized in various other applications of threaded joints. To overcome this problem, so-called “buttress” threadforms were developed. In a buttress thread, the trailing or thrust surface, also known as the load flank, is oriented perpendicular to the thread axis, while the leading or clearance surface, also known as the stab flank, remains angled. This results in a neutral radial reaction of a threaded receptacle to torque on the threaded member received. However, even buttress threaded closures may fail since they do not structurally resist splaying of the arms. The same is true for square threads that are sometimes used on closures of open headed implants.


Development of threadforms proceeded by applicant from buttress and square threadforms, which have a neutral radial effect on the screw receptacle, to reverse angled threadforms which can positively draw the threads of the receptacle radially inward toward the thread axis when the plug is torqued. In a reverse angle threadform, the trailing side of the external thread is angled toward the thread axis instead of away from the thread axis, as in conventional V-threads and provide an interference fit. However, outward radial forces on the arms at higher torques can lead to slipping from an interference fit. A positive mechanically interlocking structure between the arms and the closure is more desirable and structurally secure. In the present invention, such positive interlocking is also provided in vertical extensions of the arms that are eventually broken away and removed.


When rods are used in spinal fixation systems, it is often necessary to shape the rod in various ways to properly position vertebrae into which open headed bone screws have been implanted. The bone screw or implant heads are minimized in length and height to thereby minimize the impact of the implanted system on the patient. However, it is often difficult to capture a portion of a straight or curved rod in a short implant head to clamp it within the arms. The extensions allow the arms to extend upwardly and capture the rod therebetween. In this way, the closure can be more easily inserted and rotated to drive the rod downwardly into the head of the implant and reduce or realign a vertebra up to the rod.


SUMMARY OF THE INVENTION

The present invention provides improved mating guide and advancement flange interlocking structure for guiding and advancing an inner member into an outer member in response to relative rotation of the inner to the outer member. The structure includes an inner flange on the inner member and an outer flange on the outer member which have complementary contours cooperating on engagement to helically guide the inner member into the outer member by relative rotation about a helical axis and which radially interlock with the opposite structure as the closure is rotated. The inner flange has a radially outward crest and a radially inward root. Conversely, the outer flange has a radially inward crest and a radially outward root.


Each of the inner and outer flange has a respective stab flank on a leading side relative the direction of advancement of the inner member into the outer member and a respective load flank on the trailing side of the flange. At least one of the flanks on one member has anti-splay contours forming a lip or bead which projects axially and extends helically therealong while a corresponding one of the flanks has anti-splay contours forming a complementary groove depressed in an axial direction and positioned to receive the lip. For example, if the lip is formed on the load flank of the inner member at its radial crest, the corresponding groove is formed into the load flank of the outer member near its root.


The lip and groove have radially oppositely facing anti-splay surfaces which are positioned to enable radial engagement or loading of the anti-splay surfaces to resist or prevent splaying of the outer member when the inner member is strongly torqued into the outer member. Preferably, while the anti-splay surfaces on the inner member are continuous, the outer member is divided into two parts which are spaced from one another, and the anti-splay surfaces thereon are discontinuous but helically aligned.


In a first embodiment of the flange, a lip is formed on the load flank of the inner flange adjacent a crest of the flange. The lip has an anti-splay surface or shoulder which faces inwardly toward coincident helical axes of the inner and outer members which form a joint axis common to both members when so engaged. A corresponding groove is formed into the load flank of the outer flange near the root of the outer flange. The groove has an anti-splay surface or shoulder which faces outwardly away from the joint axis of the members. The anti-splay surfaces of the lip and groove are positioned to mutually engage in a radial direction to resist splaying of the outer member when the inner member is strongly torqued into the outer member.


In the first embodiment, the load flanks of the inner and outer flanges are angled in a slightly “positive” direction; that is, in cross section the load flanks form slightly obtuse angles with the joint axis of the members. Alternatively, the load flanks could be substantially perpendicular to the joint axis or slightly “negative”; that is, with the load flanks forming slightly acute angles with the joint axis. Load flanks oriented at a positive angle tend to cause the outer flange to expand when the inner member is advanced into the outer member and strongly torqued. Such expansion can be used to cause the anti-splay surfaces to positively engage. Conversely, a negative angle of the load flanks provides some resistance to expansion tendencies of the outer member at high torque levels and tends to draw the outer flange toward the helical axis. A substantially perpendicular orientation of the load flanks to the joint axis, similar to the load flanks of a buttress or square thread, causes the inner flange to have a substantially neutral radial effect on the outer flange when the inner member is strongly torqued within the outer member. At extremely high levels of torque, it has been found that there is an outward splaying tendency in virtually all orientations of the load flanks.


Assuming that the inner and outer flanges have relatively equal cross sections with generally similar shapes, the outer flange tends to be somewhat stronger than the inner flange. As a result of this, when the inner member is very strongly torqued into the outer member, the inner flange is likely to fail before the outer flange.


The load flanks of the inner and outer flanges can be parallel, outwardly diverging, or outwardly converging. Generally, if the load flanks diverge outwardly, contact between the load flanks occurs near the root of the inner flange and the crest of the outer flange. Such radially inward contact tends to stress the outer flange, in an axial direction, more than the inner flange when the inner member is very strongly torqued in the outer member, since the effective moment arm of contact from the respective root is relatively short for the inner flange and relatively long for the outer flange. Conversely, if the load flanks converge outwardly, the area of contact is spaced a greater distance from the root of the inner flange and a lesser distance from the root of the outer flange. Thus, for outwardly converging load flanks, greater stress is applied to the inner flange. With parallel load flanks, the axial stresses are distributed relatively evenly along the load flanks, such that the inner and outer flanges are stressed relatively evenly. Thus, the proportioning of stresses between the inner and outer flanges can be controlled to some degree by the relative angles of the load flanks of the inner and outer flanges.


Although the preceding description of the load flanges describes the load flank of the inner flange as having a lip and the load flank of the outer flange as having a groove, each load flank could be accurately described as having both a lip and a groove. The lip of the inner flange is defined by a radially inward groove while the groove formed in the outer flange defines a radially inward lip. In any case, the lip of one flange enters the groove of the other flange so that the anti-splay surfaces of the flanges are placed in mutually facing relation when the inner member is advanced into the outer member.


The present invention does not limit the anti-splay contours solely to the load flanks of the inner and outer flanges. There are advantages to be gained by forming the lips and grooves on the respective stab flanks of the inner and outer flanges, on leading sides of the flanges as the inner member is advanced into the outer member. When the inner member is strongly torqued into the outer member, some axial flexure or deformation of the flanges can occur. The flexure results from strong axial loading of the load flanks against one another and is directed away from the load flanks and toward the direction of advancement of the inner member into the outer member. With the anti-splay contours formed on the stab flanks, such flexure tends to force the lip of the inner flange deeper into the groove of the outer flange, thereby reducing any tendency of the lip and groove to slip past one another under high levels of torque.


The present invention also contemplates providing an anti-splay lip on both the load flank and the stab flank of the inner flange and, similarly, an anti-splay groove on both the load flank and the stab flank of the outer flange. Such double sided anti-splay contours benefit from the advantages of both anti-splay contours formed on the load flanks and anti-splay contours provided on the stab flanks of the inner and outer flanges, while providing increased resistance to slippage of the flanges past one another in response to high levels of torque. Additionally, the increased axial dimension of the crest regions of both the inner and outer flanges makes cross engagement or mutual stripping of the flanges virtually impossible.


Although it is desirable to form the arms of an open-headed bone screw and related implants as short as possible to result in a low profile implant, it is often difficult to urge a spinal fixation rod into the U-shaped channel between the arms of such a bone screw head. In general, the rods are shaped to determine the shaped of the corrected curvature of the spinal column and are anchored along their length to open-headed bone screws implanted into individual vertebrae. Because of the complex curvature that must be applied to the rods, it is sometimes difficult to reduce a portion of such a rod toward a selected bone screw or implant in a vertebra with a conventionally formed open-head with spaced arms for receiving both the rod and a closure.


The present invention solves this problem by forming arm extensions or tabs on the screw head which are connected to main portions of the arms by weakened break regions. Inner surfaces of the extensions have the helical guide and advancement flanges formed thereon to receive a closure with a flange complementary to the flange of the arms of the screw head. In particular, the extensions have the same anti-splay structure thereon as is found on the arms and the structure on the extensions is aligned with that on the arms so as to provide a continuous helical path for the mating structure on the closure to follow. The extensions or tabs enable the rod to be captured at a greater distance from the anchoring vertebra and urged toward the vertebra by advancement of the closure toward the open head. When the rod has been seated in the rod receiving channel and in the head sufficiently clamped, the tabs can be broken off the main portions of the arms to provide the desired low profile implant. Just as the anti-splay guide and advancement structure on the closure and arms cooperate to prevent splaying of the arms, the anti-splay structure on the extensions engages with the cooperating anti-splay structure on the closure to prevent unwanted splaying of the extension and guides the closure to allow mating with the guide and advancement structure on the arms simply by rotating the closure. That is, the guide and advancement structure on the closure does not have to be realigned with the cooperating structure on the arms, and pressure applied to the rod while between the extensions is continued as the rod passes between the arms.


The anti-splay lip and groove of the flanges of the present invention make the use of such extended arms or tabs possible, even when substantial force must be applied to the rod. This is a substantial improvement over use of V-threads, as well as buttress, square, and reverse angle threads that may cause outward splaying of the extensions as force is applied to the rod by the closure.


OBJECTS AND ADVANTAGES OF THE INVENTION

The principal objects of the present invention include: providing an improved helical guide and advancement flange structure for guiding and advancing an inner member into an outer member; providing, particularly, improvements in helical guide and advancement flanges incorporating radially loaded lip and groove contours; providing such flange structure wherein the outer member is subject to being splayed in reaction to advancement and strong torquing of the inner member within the outer member and wherein an inner flange of the inner member and an outer flange of the outer member are particularly configured to cooperate in such a manner as to resist such splaying; providing such flange structure in which the inner and outer flanges are provided with contours including mutually facing surfaces which radially engage when the inner member is advanced into the outer member to resist splaying of the outer member; providing such flange structure in which anti-splay contours are formed on a trailing load flank of each flange to form an anti-splay lip near a crest region of the inner flange and a cooperating anti-splay groove near a root region of the outer flange; providing such flange structure in which the anti-splay contours are alternatively applied to a leading stab flank of each flange to form an anti-splay lip near a crest region of the inner flange and a cooperating anti-splay groove near a root region of the outer flange; providing such flange structure in which the anti-splay contours are alternatively formed on both the load and stab flanks of each flange to form anti-splay lips near a crest region of the inner flange and cooperating anti-splay grooves near a root region of the outer flange; providing such flange structure in which proportioning of mutual axial stresses on the engaged flanged can be controlled by selectively adapting the mutual angles of the engaged load flanks relative to a helical axis in such a manner as to control the region of engagement of the load flanks, with parallel load flanks distributing the axial stresses evenly along the flanks, with converging flanks applying a greater proportion of the axial stresses on the inner flange, and diverging flanks applying a greater proportion of the axial stresses to the outer flange; providing alternative embodiments of such flange structure in which the load flanks of the flanges can be angled positively with respect to the helical axis to positively engage the anti-splay surfaces of the flanges, angled negatively relative to the helical axis so that engagement of the load flanks contributes additional resistance to splaying of the outer member, or angled substantially perpendicular to the helical axis to have a neutral effect on the anti-splay properties of the flanges; providing such flange structure which is particularly well adapted for use in surgically implanted structure, such as spinal fixation hardware and, particularly, to receivers and cooperating closure plugs which are used to receive and clamp spinal fixation rods; providing such flange structure which is particularly well adapted for use with open headed bone screws which have extended arms for facilitating the capture and reduction of spinal fixation rods and which are afterwards separated from the screw heads to provide low profile implants; and providing such improved helical guide and advancement flanges with radially loaded lips which are economical to manufacture, which are strong and effective in use, and which are particularly well adapted for their intended purpose.


Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention.


The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an enlarged fragmentary side elevational view of a spinal implant incorporating the helical guide and advancement flange with a radially loaded lip which embodies the present invention.



FIG. 2 is a view similar to FIG. 1 and shows the implant with a closure having the flange clamping a spinal fixation rod within an open headed screw head.



FIG. 3 is a greatly enlarged fragmentary sectional view at a right angle to the view shown in FIG. 2 and illustrates details of the cooperating flanges with the closure strongly torqued into the open headed screw.



FIG. 4 is a further enlarged fragmentary sectional view of a preferred flange structure according to the present invention and illustrates an anti-splay lip on a load flank of an inner flange and an anti-splay groove on a load flank of an outer flange, the load flanks being parallel and somewhat positive in angular orientation relative to a helical axis.



FIG. 5 is a view similar to FIG. 4 and illustrates the preferred flange structure with the inner member strongly torqued within the outer member, thereby mutually engaging the anti-splay surfaces of the lip and groove.



FIG. 6 is a view similar to FIG. 4 and illustrates an alternative embodiment of the flange structure in which the load flanks are parallel and substantially perpendicular to the helical axis.



FIG. 7 is a view similar to FIG. 4 and illustrates an alternative embodiment of the flange structure in which the load flanks are parallel and somewhat negative in angular orientation relative to the helical axis.



FIG. 8 is a view similar to FIG. 4 and illustrates an alternative embodiment of the flange structure in which the load flanks of the inner and outer flanges are orientated in an outwardly diverging relationship to locate an area of engagement of the load flanks radially inward near a root region of the inner flange.



FIG. 9 is a view similar to FIG. 4 and illustrates an alternative embodiment of the flange structure in which the load flanks of the inner and outer flanges are orientated in an outwardly converging relationship to locate an area of engagement of the load flanks radially outward near a crest region of the inner flange.



FIG. 10 is a further enlarged fragmentary sectional view illustrating an alternative embodiment of the flange structure of the present invention with an anti-splay lip on a stab flank of an inner flange and an anti-splay groove on a stab flank of an outer flange, the load flanks being parallel and somewhat positive in angular orientation relative to the helical axis.



FIG. 11 is a view similar to FIG. 10 and illustrates the flange structure with the inner member strongly torqued within the outer member, thereby mutually engaging the anti-splay surfaces of the lip and groove.



FIG. 12 is a view similar to FIG. 10 and illustrates an alternative embodiment of the flange structure with the load flanks parallel and substantially perpendicular to the helical axis.



FIG. 13 is a view similar to FIG. 10 and illustrates an alternative embodiment of the flange structure with the load flanks parallel and somewhat negative in angular orientation to the helical axis.



FIG. 14 is a view similar to FIG. 10 and illustrates an alternative embodiment of the flange structure in which the load flanks of the inner and outer flanges are orientated in an outwardly diverging relationship to locate an area of engagement of the load flanks radially inward near a root region of the inner flange.



FIG. 15 is a view similar to FIG. 10 and illustrates an alternative embodiment of the flange structure in which the load flanks of the inner and outer flanges are orientated in an outwardly converging relationship to locate an area of engagement of the load flanks radially outward near a crest region of the inner flange.



FIG. 16 is a further enlarged fragmentary sectional view illustrating an alternative embodiment of the flange structure of the present invention with an anti-splay lip on a load flank of an outer flange and an anti-splay groove on a load flank of an inner flange, the lip and groove being positioned at radial location intermediate the root and crest regions of the flanges.



FIG. 17 is a view similar to FIG. 16 and illustrates the flange structure with the inner member strongly torqued within the outer member, thereby mutually engaging the anti-splay surfaces of the lip and groove.



FIG. 18 is a further enlarged fragmentary sectional view illustrating an alternative embodiment of the flange structure of the present invention with an anti-splay lip on both the load flank and the stab flank of an inner flange and an anti-splay groove on both load flank and a stab flank of an outer flange.



FIG. 19 is a view similar to FIG. 18 and illustrates the flange structure with the inner member strongly torqued within the outer member, thereby mutually engaging the anti-splay surfaces of the lips and grooves.



FIG. 20 is an enlarged fragmentary side elevational view of a spinal implant incorporating the helical guide and advancement flange with a radially loaded lip which embodies the present invention and including a polyaxial bone screw.





DETAILED DESCRIPTION OF THE INVENTION

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.


Referring to the drawings in more detail, the reference numeral 1 generally designates a helical guide and advancement flange structure with radially loaded lips and grooves incorporated in a medical implant 3 and embodying the present invention. The implant 3 can be of a fixed or monoaxial nature or, alternatively, it can have a polyaxial mechanism. The flange structure, or flange form, 1 generally includes an inner flange 4 (FIG. 3) extending helically on an inner member 6 and an outer flange 9 extending helically within an outer member 11. The flanges 4 and 9 cooperate to helically guide the inner member 6 into the outer member 11 when the inner member 6 is rotated and advanced into the outer member 11. The inner and outer flanges 4 and 9 have respective anti-splay contours 14 and 16 which cooperate to prevent splaying tendencies of the outer member 11 when the inner member 6 is strongly torqued therein.


In the illustrated embodiment, the implant 3 includes an open-headed bone screw 20 forming the outer member 11 and having a threaded shank 22 adapted for threaded implanting into a bone, such as a vertebra 24. The screw 20 has a U-shaped open head 26 formed by spaced apart arms 28 defining a rod receiving channel 30 which is configured to receive a rod 35 therein to clamp the rod within the head 26 to thereby fix the position of the vertebra 24 relative to the rod 35 or other vertebrae.


The illustrated inner member 6 is a closure plug or closure 33 which is helically advanced by rotation into the head 26 of the screw 20 and torqued against the rod 35 to clamp the rod within the head 26. Although embodiments of the outer member 11 and inner member 6 are illustrated herein as the screw head 26 and the closure 33, the flange structure 1 is not intended to be limited to such an application. The implant 3 could alternatively be a hook, connector, or other type of implant structure having a rod receiving channel. Also, while the illustrated screw 20 is shown as a fixed one-piece or monoaxial screw, it is intended that the flange structure 1 be adaptable for use with a polyaxial type of screw.


The inner flange 4 has a load flank 39 on a trailing side relative to a direction of advancement along a helical axis 41 (FIG. 3) and a stab flank 43 on an opposite leading side. Similarly, the outer flange 9 has a load flank 46 on a trailing side and a stab flank 48 on an opposite leading side. The load flanks 39 and 46 may also be referred to as thrust surfaces of the flanges 4 and 6, while the stab flanks 42 and 48 may also be referred to as clearance surfaces. In general, the load flanks 39 and 46 are positively engaged and axially loaded, that is loaded in the direction of the axis 41, when the inner member 4 is advanced into the inner member 6. As relative torque between the inner member 4 and the outer member 6 increases, by engagement with a clamped member such as the rod 35, there is a tendency for the arms 28 of the outer member 11 to splay outward, away from the axis 41. In the flange structure 1 of the present invention, the inner and outer anti-splay contours 14 and 16 include respective anti-splay surfaces 52 and 54 which are mutually engaged in a radial direction to resist such splaying tendencies. Because of the anti-splay configuration of the flange structure 1, the relative torque between the inner and outer members 4 and 6 can be much higher than with conventional V-threads or with guide and advancement structures which do not have anti-splay contours, thereby resulting in a considerably higher, more positive and more secure clamping force applied to the rod 35 by a more highly torqued closure member 33.


In the illustrated flange structure 1, the inner anti-splay surface 52 is formed by an anti-splay lip 55 extending axially from the load flank 39 of the inner flange 4. Similarly, the outer anti-splay surface 54 is formed by a groove 56 formed into the load flank 46 of the outer flange 9. The lip 55 and groove 56 are shaped in a complementary manner so that the lip 55 is received within the groove 56 when the inner member 6 is advanced into the outer member 11. Although FIGS. 3-5 illustrate a flange structure 1 of a particular configuration and contour, other configurations and contours are contemplated, as disclosed in Ser. No. 10/236,123 referenced above and incorporated herein by reference and as disclosed in FIGS. 6-19 and described below.


The closure 33 illustrated in FIG. 1 has a break-off installation head 58 which is provided with a non-round installation socket 59, such as a Torx shaped socket, a hexagonal Allen socket, or the like to receive an appropriately configured installation tool (not shown). The break-off head 58 is joined to the main body of the closure 33 by a weakened region 60 which is configured to limit the torque that can be applied to the head 58, relative to the closure 33, without the head separating from the closure 33 by failure of the weakened region 60. By this means, the head 58 separates from the closure 33 when a selected torque is reached in clamping the rod 35, to thereby provide a low profile implant. Alternatively, the closure 33 could be provided without the break-off head 58. The closure 33 has a non-round socket 61 (FIG. 2) to receive a tool to enable removal of the closure 33 from the screw head 26, if necessary. Such a socket 61 could also be employed for installation of the closure 33 into the screw head 26.


Referring particularly to FIG. 1, the bone screw 20 is provided with the arm tabs on extensions 2 to increase the initial length of the arms 28 and, thus, forming a rod receiving passageway between the extensions 2 and thereby increasing the length of the rod receiving channel 30 by the length of the passageway. The purpose for the lengthened channel 30 is to enable capture of the rod 35 within the channel 30 at a greater distance from the vertebra 24, whereby the rod 35 can be captured by the closure 33 and “reduced” or urged toward a seated position within the channel 30 by advancement of the closure 33. This provides effective leverage in reducing the position of the rod 35 or the vertebra itself. For this purpose, inner surfaces 64 of the tabs 2 are provided with the helical outer flange 9 which extends continuously from main portions 66 of the arms 28 and along the extensions 2 to form a continuous and uniform helical pathway therebetween.


The break-off extensions 2 are connected to the main portions 66 of the arms 28 by reduced or otherwise weakened regions 68. The bone screw 20 illustrated in FIG. 1 shows the weakened regions 68 as regions adjacent V-shaped notches formed into external surfaces 70 of the arms 28 which diminish the thickness of the material forming the arms 28. Alternatively, other shapes or configurations could be employed to form the weakened regions 68. The weakened regions 68 are strong enough to enable the rod 35 to be urged toward its seated position (FIG. 2). However, the extensions 2 can be broken off or separated from the main portions 66 of the arms 28 by pivoting or bending the extensions 2 back and forth about the regions 68 while the main portions 66 are held in place, after the closure 33 has passed between the extensions 2. The resulting low-profile implanted structure 3 is shown in FIG. 2.


In addition to resisting splaying of the outer member 11, the configuration of the anti-splay contours 14 and 16 and the general configuration of the inner and outer flanges 4 and 9 can be varied to achieve other beneficial effects in the engagement of the inner and outer members 6 and 11.


Referring FIGS. 3-5, the load flanks 39 and 46 are angled in a slightly “positive” direction. A positive angular direction for the load flanks, as defined herein, is an obtuse angle, that is, an angle of greater than 90 degrees relative to the helical axis 41. A somewhat positive angle is desirable in the load flanks 39 and 46 for relative ease of manufacture of the flange structure 1. A disadvantage of positively angled load flanks 39 and 46 is that there is an outward camming reaction between the engaged load flanks 39 and 46 when the inner and outer members 6 and 11 are strongly torqued, thus causing an outward splaying of the outer member 11, as is shown in FIG. 5. However, engagement of the anti-splay surfaces 52 and 54 limits splaying of the outer member 11.


It should be noted that the inner and outer load flanks 39 and 46 are locally parallel, resulting in relative even distribution of stresses in an axial direction over the surfaces of the load flanks 39 and 46. It should also be noted that a height of the anti-splay lip 55 is slightly less than the depth of the anti-splay groove 56. The result of this is that axial engagement between the inner and outer flanges 4 and 9 is restricted to the load flanks 39 and 46 and does not occur between a peak surface of the lip 55 and a trough surface of the groove 56. It is foreseen that the lip and groove 55 and 56 could alternatively be configured so that axial engagement between the peak of the lip 55 and the trough of the groove 56 could occur.



FIGS. 6 and 7 show alternative configurations of the load flanks 6 and 11. In the embodiment of FIG. 6, inner and outer load flanks 39′ and 46′ are mutually parallel and perpendicular to the helical axis 41. Perpendicular load flanks have virtually no outward camming reaction to strong torquing of the inner and outer members 6 and 11, resulting in no tendency of the outer member 11 to splay outwardly. In FIG. 7, inner and outer load flanks 39″ and 46″ are oriented at a slightly negative angle relative to the helical axis 41. A negative angle of a load flank is defined herein as an acute angle or angle of less than 90 degrees relative to the helical axis 41. A negative angling of the load flanks 39″ and 46″ causes the outer member 11 to be drawn toward the helical axis 41 when the inner and outer members 6 and 11 are strongly torqued, by camming action of the load flanks 39″ and 46″. The load flanks 39″ and 46″ are mutually parallel so that axial stresses between the inner and outer flanges 4 and 9 is distributed relatively evenly over the surfaces of the load flanks 39″ and 46″.



FIGS. 8 and 9 illustrate variations in the guide and advancement flange structure 1 in which the load flanks 39 and 46 are non-parallel. Proportioning of the axial stresses between the inner flange 4 and the outer flange 9 can be controlled, to some extent, by controlling the location of engagement between the flanges 4 and 9. FIG. 8 shows the flange structure 1 with load flanks 39a and 46a diverging in a radially outward direction. Such a relative orientation moves the location of contact between the load flanks 39a and 46a radially inward, as compared to a flange structure 1 with parallel load flanks 39 and 46. The result of this variation is that the effective local moment arm of stress between the flanges 4 and 9 is shortened for the inner flange 4 and lengthened for the outer flange 9. The outwardly diverging load flanks 39a and 46a, thus, increase the proportion of axial stress that is applied to the outer flange 9 where it is connected to the outer member 11. In contrast, FIG. 9 shows a configuration of the flange structure 1 in which the load flanks 39b and 46b converge in an outward radial direction. Outward convergence of the load flanks 39b and 46b moves the location of axial engagement between the flanges 4 and 9 outward, as compared to parallel load flanks 39 and 46, thereby increasing the effective local moment arm of axial stress on the inner flange 4 and decreasing it for the outer flange 9. The capability of controlling the proportioning of axial stress on the flanges 4 and 9 gives the flange designer control of which flange is more likely to fail in a situation of extreme torque between the inner and outer members 6 and 11.



FIGS. 10-15 illustrate modified embodiments of an anti-splay helical guide and advancement flange structure 80 in which anti-splay contours 82 and 83 are formed on stab flanks 85 and 86 of an inner flange 88 and an outer flange 89 respectively of an inner member 91 and an outer member 92. The illustrated anti-splay contour 82 of the inner flange 88 forms a lip 94 including an anti-splay shoulder 95. Similarly, the anti-splay contour 83 of the outer flange 89 forms a groove 97 including an anti-splay shoulder 98. Radial engagement of the shoulders 95 and 98 limits splaying of the outer member 92 when the inner member 91 is strongly torqued therein, as shown in FIG. 11.


Referring to FIGS. 10 and 11, the inner flange 88 includes a load flank 100, while the outer flange 89 has a load flank 101. The load flanks 100 and 101 are mutually parallel and oriented at a slightly positive or obtuse angle relative to a helical axis analogous to the helical axis 41 of FIG. 3. FIG. 12 illustrates a flange structure 80′, similar to the flange structure 80, in which load flanks 100′ and 101′ are mutually parallel and oriented perpendicular to the helical axis of the structure 80′. In FIG. 13, a flange structure 80″ is illustrated in which load flanks 100″ and 101″ are mutually parallel and oriented at a slight negative angle relative to the helical axis of the flange structure 80″. FIGS. 14 and 15 illustrate variations of the flange structure 80 with anti-splay contours 82 and 83 on the respective stab flanks 85 and 86 in which the load flanks 100 and 101 are non-parallel. In the flange structure 80a, shown in FIG. 14, load flanks 100a and 101a diverge in a radially outward direction. In FIG. 15, a flange structure 80b is shown in which load flanks 100b and 101b converge in a radially outward direction.


In the flange structures 1 and 80 and variations thereof, the anti-splay lip and groove are positioned at the inner or outer extremes of the flanges. However, it is foreseen that the lip and groove could also be positioned at any radial position on the flanges. FIGS. 16 and 17 illustrate a configuration of an anti-splay helical guide and advancement flange structure 110 formed on an inner member 112 and an outer member 114. The inner member 112 has an inner flange 117 with a load flank 118 and an opposite stab flank 119. Similarly, the outer member 114 has an outer flange 121 with a load flank 122 and a stab flank 123. The inner flange 117 has an anti-splay contour on the load flank 118 forming an anti-splay groove 125 including an anti-splay shoulder 126. The groove is positioned radially between inner and outer extremes of the inner flange 117. The illustrated outer flange 121 has an anti-splay contour on the load flank 122 forming an anti-splay lip 128 including an anti-splay shoulder 129. The lip 128 is positioned radially to align with the groove 125 when the inner member 112 is advanced into the outer member 114. The groove 117 and lip 128 could alternatively be formed on the stab flanks 119 and 123. Additionally, the groove 117 could alternatively be formed on the outer flange 121 with the lip 128 on the inner flange 117. Finally, the load flanks 118 and 122 could alternatively be angled positively or negatively or be formed in diverging or converging relation within the present invention.



FIGS. 18 and 19 illustrate a modified embodiment of an anti-splay helical guide and advancement flange structure 135 in which anti-splay contours are formed on both load flanks and stab flanks of the flanges. An inner member 137 has an inner flange 138 with a load flank 139 and a stab flank 140. Similarly, an outer member 143 has an outer flange 144 with a load flank 145 and a stab flank 146. An anti-splay lip 149 is formed on both the load flank the load flank 139 and the stab flank 140 of the illustrated inner flange 138. A complementary anti-splay groove 150 is formed on both the load flank 145 and the stab flank 146 of the outer flange 144. Radial engagement of the lips 149 with the grooves 150 limits splaying of the outer member 143 when the inner member 137 is strongly torqued therein. The load flanks 139 and 145 of the flange structure 135 could alternatively be angled neutrally or negatively or diverging or converging.



FIG. 20 illustrates a polyaxial medical implant 150 which incorporates the helical guide and advancement flange structure 1 of the present invention. The illustrated polyaxial implant 150 includes an open headed receiver 152, a threaded shank 154, and a closure 156 which cooperate to fix the position of another implant member, such as a spinal fixation rod 158. The receiver or head 152 is configured internally with a spherical socket (not shown) which receives a shank retainer member 162 having a spherical outer surface. The retainer member 162 is connected to a capture end 164 of the shank 154 and, in cooperation with the receiver socket, enables the shank 154 to be positioned at any desired angle relative to the receiver 152, within a conical range of movement. The shank 154 is secured at the desired angle by engagement of the rod 158 with the capture end 164 when the rod is clamped within the receiver 152 by the closure 156. Additional information about polyaxial bone screws can be found in U.S. Pat. No. 6,716,214 which is incorporated herein by reference.


The receiver 152 includes spaced apart arms 166 and preferably includes break-off extensions 168 which are separable from the arms 166 by breaking the extensions 168 off at weakened regions 170. The flange structure 1 includes an anti-splay closure guide and advancement flange 172 formed on the closure 156 which cooperates with a discontinuous receiver anti-splay guide and advancement flange 174 formed on inner surfaces of the arms 166 and extensions 168. The flanges 172 and 174 are substantially similar to the flanges 4 and 9 of the implant 3 and benefit from the same variations in configuration as described in connection therewith. The flanges 172 and 174 enable the closure 156 to be advanced into clamping contact with the rod 158 by rotation within the receiver 152. In other respects, the implant 150 is substantially similar to the implant 3.


It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.

Claims
  • 1. A flange structure for guiding and advancing an inner member into an outer member having spaced arms along an axis in response to relative rotation between said inner member and said outer member about said axis and comprising: (a) an inner flange helically wound about and along said inner member;(b) a discontinuous outer flange helically wound about and along an opening in said outer member;(c) one of said inner and outer flanges being a lipped flange and having a lip projecting axially therefrom and extending therealong, said lip having an axial peak and a curvate surface;(d) the other of said flanges being a grooved flange and having a groove formed axially into said grooved flange and extending therealong, said groove having an axial trough and a curvate surface; and(e) said lipped flange and said grooved flange being configured in such a manner so as to radially interlock to resist radial splaying of the outer member arms relative to the inner member and so as to enable rotary joining of portions of said lip and said groove in response to said inner member being rotated relative to said outer member and being helically advanced into said outer member.
  • 2. A structure as set forth in claim 1 wherein: (a) said arms including main portions and extended portions connected to said main portions by weakened regions, said outer flange extending longitudinally along said arm inner surfaces.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/627,000 filed Nov. 10, 2004 and is a continuation-in-part of U.S. patent application, Ser. No. 10/831,919 filed Apr. 26, 2004 now U.S. Pat. No. 8,273,109, which is a continuation-in-part of U.S. patent application Ser. No. 10/236,123 for HELICAL WOUND MECHANICALLY INTERLOCKING MATING GUIDE AND ADVANCEMENT STRUCTURE filed Sep. 6, 2002, now U.S. Pat. No. 6,726,689, which is incorporated herein by reference.

US Referenced Citations (388)
Number Name Date Kind
791548 Fischer Jun 1905 A
1300275 Johnson Apr 1919 A
1330673 Anderson Feb 1920 A
2083092 Richer Jan 1936 A
2201087 Hallowell May 1940 A
2239352 Cherry Apr 1941 A
2295314 Whitney Sep 1942 A
2537029 Cambern Aug 1946 A
2445978 Stellin Jul 1948 A
2532815 Kindsvatter Dec 1950 A
2553337 Shafer May 1951 A
2778265 Brown Jan 1957 A
2969250 Kull Jan 1959 A
2877681 Brown Mar 1959 A
2927332 Moore Mar 1960 A
3143029 Brown Aug 1964 A
D200217 Curtiss Feb 1965 S
3370341 Allsop Feb 1968 A
3498174 Schuster et al. Mar 1970 A
3584667 Reiland Jun 1971 A
3640416 Temple Feb 1972 A
3812757 Reiland May 1974 A
3963322 Cryctko Jun 1976 A
4103422 Weiss Aug 1978 A
4269246 Larson et al. May 1981 A
4373754 Bollfrass et al. Feb 1983 A
4492500 Ewing Jan 1985 A
4506917 Hansen Arne Mar 1985 A
4577448 Howorth Mar 1986 A
4600224 Blose Jul 1986 A
4641636 Cotrel Feb 1987 A
4703954 Ortloff et al. Nov 1987 A
4707001 Johnson Nov 1987 A
4763644 Webb Aug 1988 A
4764068 Crispell Aug 1988 A
4790297 Luque Dec 1988 A
4805602 Puno et al. Feb 1989 A
4815453 Cotrel Mar 1989 A
4838264 Bremer et al. Jun 1989 A
4850775 Lee Jul 1989 A
4946458 Harms et al. Aug 1990 A
5005562 Cotrel Apr 1991 A
5022791 Isler Jun 1991 A
5026373 Ray et al. Jun 1991 A
5067955 Cotrel Nov 1991 A
5073074 Corrigan et al. Dec 1991 A
5092635 DeLange et al. Mar 1992 A
5129388 Vignaud et al. Jul 1992 A
5147360 Dubousset Sep 1992 A
5154719 Cotrel Oct 1992 A
5176483 Baumann et al. Jan 1993 A
5207678 Harms et al. May 1993 A
5217497 Mehdian Jun 1993 A
5261907 Vignaud et al. Nov 1993 A
5261912 Frigg Nov 1993 A
5275601 Gogolewski et al. Jan 1994 A
5282707 Palm Feb 1994 A
5312404 Asher et al. May 1994 A
5321901 Kelly Jun 1994 A
5334203 Wagner Aug 1994 A
5346493 Stahurski et al. Sep 1994 A
5354299 Coleman Oct 1994 A
5358289 Banker et al. Oct 1994 A
5360431 Puno et al. Nov 1994 A
5364400 Rego, Jr. et al. Nov 1994 A
5382248 Jacobson et al. Jan 1995 A
5385583 Cotrel Jan 1995 A
5387212 Yuan et al. Feb 1995 A
5395371 Miller et al. Mar 1995 A
5427418 Watts Jun 1995 A
5429639 Judet Jul 1995 A
5443467 Biedermann et al. Aug 1995 A
5466237 Byrd, III et al. Nov 1995 A
5474555 Puno et al. Dec 1995 A
5476462 Allard et al. Dec 1995 A
5476464 Metz-Stavenhagen et al. Dec 1995 A
5487742 Cotrel Jan 1996 A
5496321 Puno et al. Mar 1996 A
5499892 Reed Mar 1996 A
5507747 Yuan et al. Apr 1996 A
5545165 Biedermann et al. Aug 1996 A
5554157 Errico et al. Sep 1996 A
5562663 Wisnewski et al. Oct 1996 A
5569247 Morrison Oct 1996 A
5584834 Errico et al. Dec 1996 A
5586984 Errico et al. Dec 1996 A
5591166 Bernhardt et al. Jan 1997 A
5591235 Kuslich Jan 1997 A
5601553 Trebing et al. Feb 1997 A
5607304 Bailey et al. Mar 1997 A
5607426 Ralph et al. Mar 1997 A
5624442 Mellinger et al. Apr 1997 A
5630817 Rokegem et al. May 1997 A
5641256 Gundy Jun 1997 A
5643260 Doherty Jul 1997 A
5643261 Schafer et al. Jul 1997 A
5647873 Errico et al. Jul 1997 A
5653710 Harle Aug 1997 A
5662652 Schafer et al. Sep 1997 A
5669911 Errico et al. Sep 1997 A
5672176 Biedermann et al. Sep 1997 A
5681319 Biedermann et al. Oct 1997 A
5683390 Metz-Stavenhagen et al. Nov 1997 A
5690630 Errico et al. Nov 1997 A
5697929 Mellinger Dec 1997 A
5713705 Grunbichler Feb 1998 A
5713898 Stucker et al. Feb 1998 A
5716356 Biedermann et al. Feb 1998 A
5725527 Biedermann et al. Mar 1998 A
5725528 Errico et al. Mar 1998 A
5728098 Sherman et al. Mar 1998 A
5733286 Errico et al. Mar 1998 A
5738685 Halm et al. Apr 1998 A
5741254 Henry et al. Apr 1998 A
5782833 Haider Jul 1998 A
5797911 Sherman Aug 1998 A
5800435 Errico et al. Sep 1998 A
5800547 Schafer et al. Sep 1998 A
5817094 Errico et al. Oct 1998 A
5863293 Richelsoph Jan 1999 A
D407302 Lawson Mar 1999 S
5876402 Errico et al. Mar 1999 A
5879350 Sherman et al. Mar 1999 A
5879351 Viart Mar 1999 A
5882350 Ralph et al. Mar 1999 A
5885286 Sherman et al. Mar 1999 A
5891145 Morrison et al. Apr 1999 A
5902303 Eckhof et al. May 1999 A
5944465 Janitzki Aug 1999 A
5954725 Sherman et al. Sep 1999 A
5961517 Biedermann et al. Oct 1999 A
5964760 Richelsoph Oct 1999 A
6001098 Metz-Stavenhagen et al. Dec 1999 A
6004349 Jackson Dec 1999 A
6010503 Richelsoph et al. Jan 2000 A
6019759 Rogozinski Feb 2000 A
6022350 Ganem Feb 2000 A
6053078 Parker Apr 2000 A
6053917 Sherman et al. Apr 2000 A
6056753 Jackson May 2000 A
6059786 Jackson May 2000 A
6063090 Schlapfer May 2000 A
6074391 Metz-Stavenhagen et al. Jun 2000 A
6077262 Schlapfer et al. Jun 2000 A
6086588 Ameil et al. Jul 2000 A
6090110 Metz-Stavenhagen Jul 2000 A
6090111 Nichols Jul 2000 A
6099528 Saurat Aug 2000 A
6102913 Jackson Aug 2000 A
6110172 Jackson Aug 2000 A
6113601 Tatar Sep 2000 A
6117137 Halm et al. Sep 2000 A
6132431 Nilsson et al. Oct 2000 A
6132432 Richelsoph Oct 2000 A
6132434 Sherman et al. Oct 2000 A
6139550 Michelson Oct 2000 A
6143032 Schafer et al. Nov 2000 A
6146383 Studer et al. Nov 2000 A
6149533 Finn Nov 2000 A
6183472 Lutz Feb 2001 B1
6187005 Brace et al. Feb 2001 B1
6193719 Gournay et al. Feb 2001 B1
RE37161 Michelson et al. May 2001 E
6224596 Jackson May 2001 B1
6224598 Jackson May 2001 B1
6235034 Bray May 2001 B1
6248105 Schlapfer et al. Jun 2001 B1
6254146 Church Jul 2001 B1
6254602 Justis Jul 2001 B1
6261039 Reed Jul 2001 B1
6273888 Justis Aug 2001 B1
6280442 Barker et al. Aug 2001 B1
6280445 Morrison et al. Aug 2001 B1
6287308 Betz et al. Sep 2001 B1
6287311 Sherman et al. Sep 2001 B1
6296642 Morrison et al. Oct 2001 B1
6302888 Mellinger Oct 2001 B1
6309391 Crandall et al. Oct 2001 B1
6315564 Levisman Nov 2001 B1
6322108 Riesselmann et al. Nov 2001 B1
6331179 Freid et al. Dec 2001 B1
6349794 Spencer Feb 2002 B2
6355040 Richelsoph et al. Mar 2002 B1
RE37665 Ralph et al. Apr 2002 E
6368321 Jackson Apr 2002 B1
6402752 Schaffler-Wachter et al. Jun 2002 B2
6440135 Orgay et al. Aug 2002 B2
6440137 Horvath et al. Aug 2002 B1
6443953 Perra et al. Sep 2002 B1
6451021 Ralph et al. Sep 2002 B1
6454772 Jackson Sep 2002 B1
6471703 Ashman Oct 2002 B1
6471705 Biedermann et al. Oct 2002 B1
6485492 Halm et al. Nov 2002 B1
6485494 Haider Nov 2002 B1
6488681 Martin et al. Dec 2002 B2
6508818 Steiner et al. Jan 2003 B2
6520962 Taylor et al. Feb 2003 B1
6520963 McKinley Feb 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6530929 Jusis et al. Mar 2003 B1
6533786 Needham et al. Mar 2003 B1
6540749 Schafer et al. Apr 2003 B2
6547790 Harkey, III et al. Apr 2003 B2
6551320 Lieberman Apr 2003 B2
6551323 Doubler et al. Apr 2003 B2
6554832 Shluzas Apr 2003 B2
6554834 Crozet et al. Apr 2003 B1
6558387 Errico et al. May 2003 B2
6562040 Wagner May 2003 B1
6565565 Yuan et al. May 2003 B1
6565567 Haider May 2003 B1
6582436 Schlapfer et al. Jun 2003 B2
6582466 Gauchet Jun 2003 B1
6585740 Schlapfer et al. Jul 2003 B2
6595992 Wagner et al. Jul 2003 B1
6595993 Donno et al. Jul 2003 B2
6602255 Campbell et al. Aug 2003 B1
6610063 Kumar et al. Aug 2003 B2
6613050 Wagner et al. Sep 2003 B1
6623485 Doubler et al. Sep 2003 B2
6626907 Campbell et al. Sep 2003 B2
6626908 Cooper et al. Sep 2003 B2
6635059 Randall et al. Oct 2003 B2
6648885 Friesem Nov 2003 B1
6648887 Ashman Nov 2003 B2
6656179 Schaefer et al. Dec 2003 B1
6656181 Dixon et al. Dec 2003 B2
6660004 Barker et al. Dec 2003 B2
6663632 Frigg Dec 2003 B1
6663635 Frigg et al. Dec 2003 B2
6673073 Schafer Jan 2004 B1
6676661 Martin Benlloch et al. Jan 2004 B1
6679833 Smith et al. Jan 2004 B2
6682529 Stahurski Jan 2004 B2
6689133 Morrison et al. Feb 2004 B2
6689134 Ralph et al. Feb 2004 B2
6695843 Biedermann et al. Feb 2004 B2
6695851 Zdeblick et al. Feb 2004 B2
6699249 Schlapfer et al. Mar 2004 B2
6706045 Lin et al. Mar 2004 B2
6712818 Michelson Mar 2004 B1
6716213 Shitoto Apr 2004 B2
6716214 Jackson Apr 2004 B1
6716247 Michelson Apr 2004 B2
6723100 Biedermann et al. Apr 2004 B2
6726689 Jackson Apr 2004 B2
6730093 Saint Martin May 2004 B2
6730127 Michelson May 2004 B2
6733502 Altarac et al. May 2004 B2
6736816 Ritland May 2004 B2
6736820 Biedermann et al. May 2004 B2
6740086 Richelsoph May 2004 B2
6740089 Haider May 2004 B2
6746449 Jones et al. Jun 2004 B2
6755829 Bono et al. Jun 2004 B1
6755835 Schultheiss et al. Jun 2004 B2
6755836 Lewis Jun 2004 B1
6761723 Buttermann et al. Jul 2004 B2
6767351 Orbay et al. Jul 2004 B2
6770075 Howland Aug 2004 B2
6780186 Errico et al. Aug 2004 B2
6790209 Beale et al. Sep 2004 B2
6827719 Ralph et al. Dec 2004 B2
6830571 Lenke et al. Dec 2004 B2
6835196 Biedermann et al. Dec 2004 B2
6840940 Ralph et al. Jan 2005 B2
6843791 Serhan Jan 2005 B2
6858031 Morrison et al. Feb 2005 B2
6869432 Schlapfer et al. Mar 2005 B2
6869433 Glascott Mar 2005 B2
6872208 McBride et al. Mar 2005 B1
6932817 Baynham et al. Aug 2005 B2
6945972 Frigg et al. Sep 2005 B2
6953462 Lieberman Oct 2005 B2
6955677 Dahners Oct 2005 B2
6958065 Ueyama et al. Oct 2005 B2
6964664 Freid et al. Nov 2005 B2
6964665 Thomas et al. Nov 2005 B2
6974460 Carbone et al. Dec 2005 B2
6979334 Dalton Dec 2005 B2
6981973 McKinley Jan 2006 B2
RE39035 Finn et al. Mar 2006 E
7018378 Biedermann et al. Mar 2006 B2
7018379 Drewry et al. Mar 2006 B2
7306606 Sasing Dec 2007 B2
20010001119 Lombardo May 2001 A1
20020026193 Barker et al. Feb 2002 A1
20020035366 Walder et al. Mar 2002 A1
20020045898 Freid et al. Apr 2002 A1
20020072751 Jackson Jun 2002 A1
20020082602 Biedermann et al. Jun 2002 A1
20020111626 Ralph et al. Aug 2002 A1
20020133154 Saint Martin Sep 2002 A1
20020143341 Biedermann et al. Oct 2002 A1
20020173789 Howland Nov 2002 A1
20020193795 Gertzbein et al. Dec 2002 A1
20030023243 Biedermann et al. Jan 2003 A1
20030028191 Shluzas Feb 2003 A1
20030073996 Doubler et al. Apr 2003 A1
20030093078 Ritland May 2003 A1
20030100896 Biedermann et al. May 2003 A1
20030105460 Crandall et al. Jun 2003 A1
20030125741 Biedermann et al. Jul 2003 A1
20030149432 Frigg et al. Aug 2003 A1
20030163133 Altarac et al. Aug 2003 A1
20030176862 Taylor et al. Sep 2003 A1
20030199873 Richelsoph Oct 2003 A1
20030208204 Bailey et al. Nov 2003 A1
20030216735 Altarac et al. Nov 2003 A1
20040006342 Altarac et al. Jan 2004 A1
20040092934 Howland May 2004 A1
20040097933 Lourdel et al. May 2004 A1
20040116929 Barker et al. Jun 2004 A1
20040138662 Landry et al. Jul 2004 A1
20040143265 Landry et al. Jul 2004 A1
20040147929 Biedermann et al. Jul 2004 A1
20040158247 Sitiso et al. Aug 2004 A1
20040162560 Raynor et al. Aug 2004 A1
20040172022 Landry et al. Sep 2004 A1
20040172032 Jackson Sep 2004 A1
20040176766 Shluzas Sep 2004 A1
20040186473 Cournoyer et al. Sep 2004 A1
20040193160 Richelsoph Sep 2004 A1
20040210216 Farris et al. Oct 2004 A1
20040225289 Biedermann et al. Nov 2004 A1
20040236330 Purcell et al. Nov 2004 A1
20040249380 Glascott Dec 2004 A1
20040267264 Konieczynski et al. Dec 2004 A1
20050027296 Thramann et al. Feb 2005 A1
20050049589 Jackson Mar 2005 A1
20050055026 Biedermann et al. Mar 2005 A1
20050070899 Doubler et al. Mar 2005 A1
20050080415 Keyer et al. Apr 2005 A1
20050096653 Doubler May 2005 A1
20050107788 Beaurain et al. May 2005 A1
20050113927 Malek May 2005 A1
20050131404 Mazda et al. Jun 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050149023 Ritland Jul 2005 A1
20050154389 Selover et al. Jul 2005 A1
20050154391 Doherty et al. Jul 2005 A1
20050159750 Doherty Jul 2005 A1
20050165400 Fernandez Jul 2005 A1
20050171540 Lim et al. Aug 2005 A1
20050187548 Butler et al. Aug 2005 A1
20050187555 Biedermann et al. Aug 2005 A1
20050192580 Dalton Sep 2005 A1
20050203511 Wilson-MacDonald et al. Sep 2005 A1
20050203516 Biedermann et al. Sep 2005 A1
20050216003 Biedermann et al. Sep 2005 A1
20050228501 Miller et al. Oct 2005 A1
20050234450 Barker Oct 2005 A1
20050234451 Markworth Oct 2005 A1
20050234452 Malandain Oct 2005 A1
20050240181 Boomer et al. Oct 2005 A1
20050240183 Vaughan Oct 2005 A1
20050251137 Ball Nov 2005 A1
20050251141 Frigg et al. Nov 2005 A1
20050261687 Garamszegi et al. Nov 2005 A1
20050267474 Dalton Dec 2005 A1
20050273099 Baccelli et al. Dec 2005 A1
20050273101 Schumacher Dec 2005 A1
20050277919 Slivka et al. Dec 2005 A1
20050277925 Mujwid Dec 2005 A1
20050277928 Boschert Dec 2005 A1
20050283152 Lindemann et al. Dec 2005 A1
20050283157 Coates et al. Dec 2005 A1
20050283238 Reiley Dec 2005 A1
20050288669 Abdou Dec 2005 A1
20050288671 Yuan et al. Dec 2005 A1
20050288673 Catbagan et al. Dec 2005 A1
20060004357 Lee et al. Jan 2006 A1
20060004359 Kramer et al. Jan 2006 A1
20060004360 Kramer et al. Jan 2006 A1
20060004363 Brockmeyer et al. Jan 2006 A1
20060009769 Lieberman Jan 2006 A1
20060009770 Speirs et al. Jan 2006 A1
20060015104 Dalton Jan 2006 A1
20060025767 Khalili Feb 2006 A1
20060025768 Iott et al. Feb 2006 A1
20060025770 Schlapfer et al. Feb 2006 A1
20060036242 Nilsson et al. Feb 2006 A1
20060036252 Baynham et al. Feb 2006 A1
20060052783 Dant et al. Mar 2006 A1
20060052784 Dant et al. Mar 2006 A1
20060052786 Dant et al. Mar 2006 A1
20060058788 Hammer et al. Mar 2006 A1
Foreign Referenced Citations (67)
Number Date Country
3630863 Mar 1988 DE
373809 May 1989 DE
9202745.8 Apr 1992 DE
4425392 Nov 1995 DE
19507141 Sep 1996 DE
19509331 Sep 1996 DE
28910798 Dec 1999 DE
29810798 Dec 1999 DE
19951145 May 2001 DE
10157969 Feb 2003 DE
195455 Sep 1986 EP
172130 Feb 1987 EP
276153 Jul 1988 EP
0276153 Jul 1988 EP
465158 Jan 1992 EP
0885598 Dec 1998 EP
1090595 Apr 2001 EP
1121902 Aug 2001 EP
1190678 Mar 2002 EP
1210914 Jun 2002 EP
1277444 Jan 2003 EP
1449486 Aug 2004 EP
1570795 Sep 2005 EP
1579816 Sep 2005 EP
1634537 Mar 2006 EP
2467312 Apr 1981 FR
2729291 Jul 1996 FR
2796545 Jan 2001 FR
2856578 Jun 2003 FR
2865373 Jan 2004 FR
2865375 Jan 2004 FR
2865377 Jan 2004 FR
2857850 Apr 2004 FR
2865378 Oct 2004 FR
203508 Sep 1923 GB
2082709 Mar 1982 GB
2140523 Nov 1984 GB
2365345 Feb 2002 GB
9-504727 May 1997 JP
371359 Feb 1993 SU
WO9203100 Mar 1992 WO
WO 9203100 May 1992 WO
WO9410927 May 1994 WO
WO9410944 May 1994 WO
WO9426191 Nov 1994 WO
WO 9426191 Nov 1994 WO
WO9535067 Dec 1995 WO
WO9606576 Mar 1996 WO
WO9628118 Sep 1996 WO
WO9714366 Apr 1997 WO
WO9832386 Jul 1998 WO
WO0149191 Jul 2001 WO
WO02054966 Jul 2002 WO
WO03068088 Aug 2003 WO
WO2004021900 Mar 2004 WO
WO2004041100 May 2004 WO
WO2004089245 Oct 2004 WO
WO2004107997 Dec 2004 WO
WO2005000136 Jan 2005 WO
WO2005000137 Jan 2005 WO
WO2005020829 Mar 2005 WO
WO2005072632 Aug 2005 WO
WO2005082262 Sep 2005 WO
WO2005099400 Oct 2005 WO
WO2006012088 Feb 2006 WO
WO2006017616 Feb 2006 WO
WO2006028537 Mar 2006 WO
Non-Patent Literature Citations (15)
Entry
Translation of Shafer (DE 298 10 798 U1), Schreiber Translations, Inc., May 2010.
Spine, Lipcott, Williams & Wilkins, Inc. vol. 24, No. 15, p. 1495, Aug. 1, 1999.
Brochure of Tyco/Healthcare/Surgical Dynamics on Spiral Radius 90D, Publication Date: Sep. 2001, pp. 1-8.
Brochure of Tyco/Healthcare/Surgical Dynamks on Spiral Radius 90D, Publication Date: Sep. 2001, pp. 1-8.
CD Horizon M8 Multi Axial Screw Spinal System Brochure, Medtronic Sofamor Danek, no publish date.
EBI Omega 21 Brochure, EBI Spine Systems, pub. 1999.
SDRS Surgical Dynamics Rod System Brochure, Surgical Dynamics, pub. 1998-1999.
Silhouette Spinal Fixation System Brochure, Sulzer Medica Spine-Tech, no publish date.
Spine, Lipcott, Williams & Wilkins, Inc. vol. 24, No. 15, p. 1495.
The Moss Miami 6.0mm System Advertisement, author unknown, no publish date.
The Rod Plate System Brochure, Stryker Howmedica Osteonics, pub. Oct. 1999.
The Strength of Innovation Advertisement, Blackstone Medical Inc., no publish date.
Versalok Low Back Fixation System Brochure, Wright Medical Technology, Inc., pub. 1997.
VLS System Variable Locking Screw Brochure, Interpore Cross International,1999.
Xia Spinal System Brochure, Stryker Howmedica Osteonics, no publish date.
Related Publications (1)
Number Date Country
20050182410 A1 Aug 2005 US
Provisional Applications (1)
Number Date Country
60627000 Nov 2004 US
Continuation in Parts (2)
Number Date Country
Parent 10831919 Apr 2004 US
Child 11101859 US
Parent 10236123 Sep 2002 US
Child 10831919 US