The present invention relates to an adapter that quickly and easily connects to a helical pile. More particularly, the present invention relates to an adapter that facilitates alignment between a helical pile and a tool body to provide a quick and easy connection. Still more particularly, the present invention relates to an adapter in which a pin assembly is connected to a helical pile prior to connecting the helical pile to the drive tool.
A pipe anchor or helical or screw pile is used as a building foundation. The helical pile is driven into the ground and carries the structure's load. Helical bearing plates connected to the shaft of the helical pile transfer the load to the soil. A drive tool connects the helical pile to a powered drive head to drive the helical pile into the ground.
An end of the helical pile has openings in the pipe wall that are aligned with openings in the drive tool such that a drive pin assembly can be inserted through the openings to secure the drive tool to the helical pile. The helical pile and the drive tool have circular cross sections, making aligning the openings of the helical pile and drive tool difficult. The helical pile must first be longitudinally aligned with the drive tool for inserting the helical pile in the drive tool. The inserted helical pile must then be rotated to align the openings of the helical pile with the openings of the drive tool. A drive pin assembly can then be inserted through the aligned openings to secure the helical pile to the drive tool. Accordingly, a need exists for a drive tool that can be quickly and easily connected to a helical pile.
Another problem associated with existing drive tools is that the drive tool is often high in the air already connected to the machinery powering the drive head. The cumbersome helical pile must then be lifted and manipulated into alignment with the drive tool. Once the openings are axially aligned, the helical pile is inserted in the drive tool. The helical pile must then be rotated to align the openings with those of the drive tool to receive the drive pin assembly. Manipulating the helical pile into axial and rotational alignment with the drive tool suspended in the air is a cumbersome and difficult task. Accordingly, a need exists for a drive tool in which a drive pin assembly can be connected to the helical pile before connecting to the drive tool, thereby facilitating connecting the helical pile to the drive tool.
Accordingly, a primary objective of the present invention is to provide an improved adapter for connecting a helical pile to a drive assembly.
A further objective of the present invention is to provide an improved adapter that facilitates aligning the helical pile with a drive tool of the adapter.
A further objective of the present invention is to provide an improved adapter in which a pin assembly is connected to a helical pile prior to connecting the helical pile to a drive tool.
A further objective of the present invention is to provide an improved adapter connectable to either a horizontally or vertically disposed helical pile.
The foregoing objectives are basically attained by an adapter for connecting a helical pile to a drive assembly includes a pin block connectable to the helical pile. A tool body has a first protrusion to receive the pin block to facilitate aligning the helical pile with the tool body. A locking member is movably connected to the tool body. The locking member is movable between an insertion position to allow insertion of the pin block and a locking position to lock the pin block in the tool body.
The foregoing objectives are also basically attained by an adapter for connecting a helical pile to a drive assembly including a pin block assembly connectable to the helical pile. The pin block assembly includes a first pin block and a second pin block. First and second pins connect the first pin block to the second pin block. The first and second pin blocks engage an outer surface of the helical pile. A tool body has first and second protrusions to receive the first and second pin blocks to facilitate aligning the helical pile with the tool body. First and second locking members are movably connected to the tool body. The first and second locking members are movable between an insertion position to allow insertion of the first and second pin blocks and a locking position to lock the first and second pin blocks in the tool body.
The foregoing objectives are also basically attained by a method of connecting a tool body to a helical pile. A pin block is connected to the helical pile. The helical pile is inserted in the tool body. The helical pile is locked in the tool body with a locking member.
Other objects, advantages and salient features of the invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the invention.
As used in this application, the terms “front,” “rear,” “upper,” “lower,” “upwardly,” “downwardly,” and other orientational descriptors are intended to facilitate the description of the helical pile adapter, and are not intended to limit the structure of the helical pile adapter to any particular position or orientation.
The above aspects and features of the present invention will be more apparent from the description for an exemplary embodiment of the present invention taken with reference to the accompanying drawings, in which:
Throughout the drawings, like reference numerals will be understood to refer to like parts, components and structures.
As shown in
The tool body 121 has a wall 122 extending downwardly from a flange 123, as shown in
The flange 123 has a plurality of bolt holes 130 to receive fasteners to secure the adapter 111 to a flange 108 of a drive assembly 109. The drive assembly includes a drive head connected to and powered by machinery. The adapter 111 transfers the rotation of the drive head to the helical pile 101.
First and second locking dog assemblies 161 and 163 are connected to the first and second protrusions 161 and 163, as shown in
The free end 174 of the locking member 171 has a sloped surface 175. The sloped surface 175 extends upwardly and radially into the cavity 129 to allow the pin assembly 141 to pass the locking member 171 during insertion of the helical pile 101. An upper surface 176 of the locking member 171 prevents an installed pin assembly 141 from moving the locking member and accidentally separating from the tool body 121. An opening 177 substantially perpendicular to the locking member opening 167 receives a set screw 188 to further prevent movement of the locking member 171 after a pin assembly 141 is installed.
The pin assembly 141 includes a first pin block 143 having first and second pins 144 and 145 extending outwardly therefrom, as shown in
First and second pin blocks 143 and 147 have sloped surfaces 151 and 153 to engage the sloped surfaces 175 of the locking members 171. An opening 155 extends downwardly from an upper surface 154 of the second pin block 147 to the second opening 149, as shown in
The helical pile 101 is typically made of carbon steel. The tool body 121 and the pin assembly 141 are preferably made of steel, such as A36 or 4140 steel.
Assembly and Operation
The adapter 111 in accordance with an exemplary embodiment of the present invention provides a quick and easy connection between the helical pile 101 and the drive assembly that does not require excessive manipulation to ensure proper alignment between the helical pile 101 and the tool body 121.
The adapter 111 can be connected to a helical pile 101 with the helical pile in either a horizontal or vertical position. The first and second pins 144 and 145 of the pin assembly 141 are passed through openings 103, 104, 105 and 106 in the helical pile, as shown in
The helical pile 101 and pin assembly 141 are then inserted in the tool body 121, as shown in
The locking members 171 can be rotated such that the sloped surfaces 175 face upwardly, thereby allowing the pin blocks 143 and 147 of the pin assembly 141 to be withdrawn from the tool body 121. A handle can be attached to an end of the locking member extending beyond the outer surface 168 of the housing 165 to enable rotation of the locking member. Alternatively, the locking members 171 can be locked in a withdrawn position to allow the pin blocks to be withdrawn. The locking member 171 can be keyed to the opening 167 such that the locking member can be locked in the withdrawn position. The locked position can also be used to insert the pin assembly in the cavity of the tool body 121. After the pin assembly 141 has been fully inserted, the locking members are unlocked from the withdrawn position such that the upper surfaces 176 of the locking members retain the pin blocks 143 and 147 in the tool body cavity 129.
While an advantageous embodiment has been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications may be made therein without departing from the scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3377077 | Hollander | Apr 1968 | A |
3832861 | Jahnke et al. | Sep 1974 | A |
4580795 | Burtelson et al. | Apr 1986 | A |
5145286 | Summers | Sep 1992 | A |
5310014 | Mueller | May 1994 | A |
6050740 | Dziedzic | Apr 2000 | A |
6398445 | Matali Badia | Jun 2002 | B1 |
6575656 | Suh | Jun 2003 | B2 |
7188684 | Nolan | Mar 2007 | B2 |
7377723 | Nolan | May 2008 | B2 |
7407021 | Nolan | Aug 2008 | B2 |
7686359 | Walker | Mar 2010 | B1 |
8376678 | Walker | Feb 2013 | B2 |
Number | Date | Country | |
---|---|---|---|
20130028666 A1 | Jan 2013 | US |