A portion of the disclosure of this patent document contains material to which a claim for copyright is made. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the U.S. Patent and Trademark Office patent file or records, but reserves all other copyright rights whatsoever.
Helicopter-hoist equipment today typically includes a lifting device such as a hoist, which is attached to the helicopter, a hoist cable, and a hook located at the distal end of the cable for direct or indirect attachment to a person, animal, or object for rescue. The hoist usually has a rotary drum for winding in and out the cable that serves to lift or transport the load. A crew member in the helicopter usually controls the raising and lowering of the hook.
Various types of hoist-rescue systems for helicopters have been developed since the 1950s. While most hoist-rescue systems are electro-mechanical in nature they generally lack positional sensors and information intelligence. This creates challenges for the pilot of the helicopter and rescue crew. For instance, when the hook end of a cable is lowered from a helicopter in bad weather, at night, in dust or smoke, and in combat missions, it is often difficult to see the hook in relation to the person or object being rescued. There is also no way for the flight crews (i.e., pilot, copilot, hoist operator, crew chief, and other observers) to all understand the complete situation of the rescue, victims, and helicopter.
Other considerations include a lack of real-time information to the rescue crew about the weight and stresses being exerted on the hoist-rescue system during a rescue, and the position of the hook relative to the ground. This can create unsafe conditions for both the rescue crew, and target during a rescue mission.
And because there is little information about the physical loads and stresses placed on the hoist-rescue system during a mission, personnel responsible for maintaining the rescue equipment often have little direct insight into the condition of the equipment as a result of any given rescue mission. Consequently, maintenance personnel must periodically perform time consuming and costly inspections of the rescue equipment to check for possible damage. Further, maintenance of rescue equipment is typically performed at periodic intervals rather than tied to a particular rescue mission in which the equipment may have been overstressed or damaged.
Also flight crews are often unable to fully and reliably debrief and review the events of a flight mission, because they are forced to work off memory after the flight mission and because they lack quantitative information related to the rescue operation that would be valuable to maintenance personnel.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below. This Summary is not necessarily intended to identify key features or essential features of the claimed subject matter, nor is it necessarily intended to be used as an aid in determining the scope of the claimed subject matter.
Reference herein to an “aspect,” “example,” “embodiments” or similar formulations means that a particular feature, structure, operation or characteristic described in connection with the “aspect,” “example,” “embodiments, is included in at least one implementation in this description. Thus, the appearance of such phrases or formulations is this application may not necessarily all refer to the same example. Further, various particular features, structures, operations, or characteristics may be combined in any suitable manner in or more examples.
In one example, a helicopter-hoist system is described. The example system may include: hoist equipment (such as a motor, cable, and smart-hook (to be described)), illumination systems, range-measuring equipment, camera(s), communication systems, processing/control systems including image-processing systems, and power-savings-management systems. The aforementioned equipment may be fully integrated in a compact housing unit referred to as a cowling. In one example, the cowling is aerodynamically shaped (cylindrical or torpedo shaped with conical ends). As appreciated by those skilled in the art, the cowling may be implemented in a variety of different shapes and sizes.
In one aspect, the system may communicate with one or more display devices external to the cowling, which display real-time images of a mission to helicopter crew members or other observers. As appreciated by those skilled in the art, the images may also be recorded for post-mission display and review. Measured parameters appurtenant to the mission—such as the weight of the load, height of the smart hook above the ground or water, altitude of the aircraft, distance between the aircraft and end of the hook, location of the hook in three-dimensional space, forces on the hook and cable, and other mission-critical information—may be overlaid, or rendered proximate to the real images on the display to provide crew members with a full understanding of a mission. As a result, pilots can focus on flying with less guess work about what is happening below the aircraft. Cockpit-crew members may view the status of rescuers and victims. Hoist operator actions (such as moving the cable up or down) are visible to all crew members.
In another aspect of the system, a smart hook may be used. The smart hook is located at the rescue end of the hoist cable. The smart hook may include processing capability, lighting, measuring devices, communication devices, camera(s), and other devices. The smart hook may communicate and operate independently and/or in conjunction with processing capability contained with the cowling or elsewhere.
In one aspect, the smart-hook includes a housing interposed between a hoist-cable end, and a hook end. The housing includes lighting. A control system associated with the rescue system measures a load between the hook end and the cable end, and/or an altitude of the assembly above the ground or water. Other parameters may be measured, such as the time, position, and location of the hook and temperature surrounding the hook. Based on the measured load on the cable, altitude of the housing relative to the ground, and/or direction of motion of the housing, the lighting may be illuminated in different manners. For instance, the lighting may emit different colors relative to the load or height. In another example, the lighting may emit different patterns or frequencies dependent upon the measured load or height. The way in which the lighting is illuminated is configurable. In one aspect, the lighting associated with the smart-hook apparatus identifies a position of the hook under low light conditions, and/or signals any number of events through color and/or intensity changes of the lighting.
In another aspect, helicopter-hoist information is displayed on a display device. The altitude of the helicopter relative to ground or water directly under the helicopter is measured. The height of a rescue hook above the ground or water may as well as the load on the rescue cable may also be measured. A streaming video is received of a target rescue area including the rescue cable and the rescue hook. A first virtual marker indicating the height of a rescue hook above the ground or water is overlaid on the video stream in proximity to the hook end. A second virtual marker indicating the height of the helicopter relative to ground or water is overlaid on the video stream in proximity to helicopter. A third virtual marker on the video stream is overlaid in proximity to the cable indicating the load on the cable. The received video stream is combined with the overlaid first, second and third virtual markers and displayed in real-time.
In another aspect, measured parameters—such as maximum load, load duration, forces and angles by the cable, spinning/rotation (i.e., number of revolutions) of the hook relative to the helicopter, number of missions—may be recorded and processed to monitor and help maintain failsafe operation of the rescue system.
The detailed description is described with reference to the accompanying figures, wherein like reference numbers designated like or corresponding components or operations throughout the several views. The figures are not necessarily drawn to scale.
Example Helicopter-Hoist System for Rescue or Cargo Applications
Although
Referring to
Turning first to system's hoist equipment, system 101 may include a motor 110. In one example, motor 110 may be a brushless motor, which may provide smoother raising and lowering of cable 104. In another aspect, motor 110 may include a high-performance variable-speed brushless permanent magnet rotary servomotor, with Universal AC or DC power input. Torque output may range between 5.6 Nm and 13.9 Nm. As appreciated by those skilled in the art, the exact torque range may vary and may be less than or more than 5.6 Nm and 13.9 Nm. In addition, any suitable motor or motors may be used as part of the hoist equipment.
Turning next to system's 101 electronics, system 101 may include illumination systems. In one aspect, illumination systems 112 are located on both smart-hook 102 and electronic housing 114. Illumination system 112 resident on housing 114 includes high-intensity lighting 116, such as LED spotlights, for illuminating cable 104 and smart-hook 102 and rescue scene or cargo area, thereby improving the safety and efficiency of a rescue mission or cargo operation High-intensity lighting 116 may include spot-light on-off capability, and adjustable illumination intensity. In another example, lighting 116 (or other lighting attached to system 101) may include infrared LED lights for covert illumination of a target rescue or cargo area.
System 101 may also include a camera(s) 118 for recording a scene (such as cargo or rescue target area) during the day or at night. Camera(s) 118 may include camera-stabilization technology. Although shown as part of housing 114 in
In addition, any number of displays 115 may also be associated with rescue system 101. These displays 115 may include, computers, laptops, tablets, handheld smart phones, monitors, permanently mounted cockpit displays such as multi-function displays (MFDs), head-up displays in helmets and other display devices as would be appreciated by those skilled in the art. As will be explained, example display devices 115 may include a real-video images with overlaid virtual indicia in the display region.
System 101 may also include range-measuring equipment (such as a laser-range finder) 120 for determining the distance of hook 102 from helicopter 100, and as well as the distance of objects or ground/water from helicopter 100.
System 101 may also include, a cable-payout and direction detector 122, which measures the distance cable 104 is extended and a direction cable 104 is moving (i.e., up or down).
Housing 114 also may include a host of other electronic equipment, which are not shown in
Example Cowling
System 101 may be mounted and fully integrated in a cowling. For instance,
Cowling 124 may be mounted inside or outside a helicopter. For example, cowling 124 may be mounted directly or indirectly to the fuselage of helicopter 100. Cowling 124 may have openings 126 to allow ingress and egress of cable 104, as well as the ability to transmit and receive light and images via optical systems (i.e., lasers, cameras, lights, etc.) resident on housing 114.
Example Smart-Hook Apparatus
For instance, in one example, the shape of outer surface 204 includes a ring 206 coaxially protruding from housing 202. As shown in
A first plurality of lights 216 are mounted on upper surface 212 of the ring 206 configured to generally illuminate light upward and toward a helicopter when hook 106 is lowered from a helicopter. Alternatively, in another example, a single set of lights may be mounted at the edge of ring 206, so they can be seen from both below and above ring 206.
A second plurality of lights 218 are mounted on lower surface 214 of ring 206 configured to illuminate light downward and generally in a direction away from a helicopter when the hook end 210 is lowered from a helicopter (such as helicopter 100
Lights 216, 218 may be light emitting diodes (LEDs) and/or or other types of lights (including lasers) as would be appreciated by one of skilled in the art. Lights 216, 218 may include white lighting, and colored lights (such as green, red, yellow or other suitable colors). Lights 216, 218 may also include stealth-lighting capability such as infrared lights. For example, lights 216, 218 may be compatible with night-vision goggles (NVG) or other night vision systems, but generally be undetectable to the unaided-human eye.
In another example, smart-hook may be powered through energy harvesting upon decent and retraction (upward or downward motion) and/or to power the control system via transfer of electrical power via a conductive wire along cable 104.
In the example smart-hook 102 shown in
Hook end 210 includes a hook interface component 308, which includes a mounting feature 309 for a bearing along with a groove 311 for a spring-loaded retainer ring. These features allow for complementary features attachment features of the hook (not shown) to be positively and securely retained/engaged in smart-hook 102 while allowing for the hook to rotate (i.e., spin) freely relative to the load cell described below.
A load cell 306 is integrated in smart-hook 102. Load cell 306 in the example depicted in
As appreciated by one skilled in the art after having the benefit of this disclosure, load cell 306 can have any construction and be positioned in smart-hook 102 or along cable 104 (
Also contained within smart-hook 102 is a smart-hook-control system 310 (partially shown in
Example Control and Interoperability for Hoist System
Although control system 609 is illustrated as a discrete block, it is appreciated by those skilled in the art with the benefit of this disclosure, that control system 609 may reside at various times across different components of system 101. For instance, control system 609 may be implemented and reside as a component of smart-hook 102 (such as smart-hook-control system 310 (
Thus, in a general sense, those skilled in the art will recognize that the various control systems described in system 101 (cowling 124 and smart hook 102) can be implemented individually or collectively by a wide range of electrical, mechanical, optical, processing (including hardware, software, firmware, and/or virtually any combination thereof), and various combinations of the foregoing.
Furthermore, various elements located in smart hook 102 (
As depicted in
Processor(s) may be distributed in more than one computer system and over a network (not shown). Examples of computer systems may include, but are not limited to, a server, personal computer, distributed computer systems, or other computing devices having access to processors and computer-readable medial. Further, although not shown, any number of system busses, communication and peripheral interfaces, input/output devices, and other devices may be included in control system 609 (including smart-hook-control system 310), as appreciated by those skilled in the art.
Still referring to
In other examples, the computer-readable media 606 may include communication media that may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave, or other transmission mechanism. As defined herein, computer-storage media does not include communication media.
Further, computer-readable media 606 may be local and/or offsite to computer systems (not shown). For instance, one or more portions of, or all of data or code stored in computer-readable media 606, may be accessed from a computer-storage medium local to and/or remote to control system 609, such as from a storage medium connected to a network.
Resident in computer-readable media 606 may be one or more operating systems (not shown), and any number of other program applications or modules in the form of computer-executable instructions and/or logic which are executed on processor(s) 604 to enable processing of data or other functionality.
Example Sensor-System-Control Module
Still referring to
Sensor-system-control module 608 may include components contained in computer-readable media 606. In one example, sensor-system-control module 408 includes: a lighting module 610, a position/load module 612, and a display module 614.
Example lighting module 610 facilitates a mode of operation of control system 609, which controls lights 112 (
For instance, lighting module 610 may enable control system 609 to cause lights 112 (
In another example, lighting module 610 may enable control system 609 to control lights 112 (
In another example, lighting module 610 (
In another example, lighting module 610 may enable control system 609 to change light color, flash, flash frequency, or pattern of lights 112 (
In another example, lighting module 610 may enable control system 609 to change light color, flash, flash frequency, or pattern of lights 112 (
In yet another example, lighting module 610 may enable control system 609 to change light color, flash, flash frequency, or pattern of lights 112 (
In yet another example, lighting module 610 may enable control system 609 to emit a visible laser illuminator (not shown)) that marks the ground at the approximate location of the hook (when descended) for the purpose of more quickly identifying and maintaining the target hover position for the rescue operation.
In another example, lighting module 610 (
Example position/load module 612 facilitates a mode of operation of control system 609 in which position/load module 612 monitors measurements made by an inertial measurement unit (IMU) and/or global positioning unit (GPS) (collectively referred to herein as IMS/GPS 602) located in smart-hook 102 and/or housing 114. Position/load module 612 may also record these measurements (i.e., data) generated by IMS/GPS 602, and transmit these measurements to lighting module 610 as well as other monitoring devices, such as located in helicopter 100.
The IMS/GPS 402 data record by position/load module may also be downloaded after a flight mission for analysis and maintenance diagnostics of the helicopter 100, cable 104, and hook 106.
IMS/GPS 602 in communication with position/load module 612 enables control system 609 to monitor a location and/or relative motion of the hook end in three-dimensional coordinate space relative to the helicopter.
Thus, the combination of load cell 306
In addition, IMS/GPS 602 under control of control system 609 (including control system 310 individually or in combination with system 609 as a whole) may use the real-time load and acceleration data from smart-hook 102 to adjust the payout of cable 104 (via hoist equipment such as cable 104, smart-hook 102, and a motor 110) to actively dampen vibrations imparted to the hoist equipment and aircraft.
Thus, this data allows for monitoring health and maintenance of the hoist system, and the number of hoist system cycles, and the ability to predict component wear and plan maintenance. For the helicopter, this data allows for complete dynamic load mapping for the structural design of helicopter hoist mounts/interfaces. Real-time dynamic load information supplied by control system 609 also allows for (future) active hoist mounts (think active suspension systems) that optimize the load transfer and energy management between the hook and the helicopter, providing for reduced shock loads on hoist components, helicopter mounts, and any rescue personnel or cargo on the hook. Optimizing the dynamic response of the helicopter and hoist as a system can provide inputs to helicopter-flight controls for an optimized response during load transfer and flight.
The dynamic response of the system may change based on cable length (i.e., pendulum effect on the cable), and the ability to optimize the helicopter system-level response with these sensor inputs may provide for improved flight control and stability during rescue operations and cargo transfers.
In another aspect, control system 609 may transition the power supplied to system 609 and/or smart hook 102 into a lowest-power-sleep state for battery conservation, and can be awakened to an active state by a sensor input, such as IMU/GPS 602 detecting hook movement (lowering) relative to the IMU on the hoist/airframe, applied load on the hook, or some other sensor input, or manual input via a switch. As appreciated by one skilled in the art after having the benefit of this disclosure, there can be various other waking events, such as (a) a load applied to the hook, (b) a user pressing an on/off button on smart-hook 102, (c) a user pressing a control icon on a tablet or remote control button, (d) a specific vibration profile, (e) an RFID chip activation system, or some other suitable waking event/system.
Position/load module 612 may also facilitate a state of operation for control system 609 in which it tracks and records a profile, such as the duration a load remains on the cable, the date and time of day the hoist event occurred, the position and location of the hoist event, and other suitable parameters such as the temperature of the hoist event.
In another example, position/load module 612 may also record static and dynamic cable loads versus time. And if a load exceeds a static or dynamic threshold (such as a weight limit), control system 609 may send an alert or message. The alert may be displayed locally on smart-hook 102 (such as lights) or remotely on a computer interface or hoist system located in the helicopter or elsewhere.
In another example, position/load module 612 may also monitor via IMU/GPS 602 (or other means such as range detector (not shown)) a distance or length that a cable extends from a rescue hoist, and a height a hook is above ground or water.
In another example, position/load module 612 may also monitor and record the approximate altitude above the ground the hook is positioned. For instance, a laser rangefinder (or other means) implemented as part of lighting 216/218 or resident in helicopter 100 may send data to position/load module indicating the altitude of the hook above the ground.
Example Interface and Display Module
Referring to
In another example, display module 614 (
In another example, display module 614 (
In yet another example, display module 614 (
In another example, display module 614 (
In another example, display module 614 (
In another example, display module 614 (
Accordingly, display 115 (
Thus, all crew members may quickly and intuitively assess the rescue situation by referring to customizable display 115 (
Also included on display 115 (
Example-Illustrative Process
Process 800 is illustrated as a collection of blocks in a logical flow graph, which represent a sequence of operations that can be implemented in hardware, software, or a combination thereof. In the context of software, the blocks represent computer-executable instructions that, when executed by one or more processors, perform the recited operations. Generally, computer-executable instructions include routines, programs, objects, components, data structures, and the like that perform particular functions or implement particular abstract data types. The order in which the operations are described is not intended to be construed as a limitation, and any number of the described blocks can be combined in any order and/or in parallel to implement the process. Also, one or more of the described blocks may be omitted without departing from the scope of the present disclosure.
At 802, a control system measures a height of the helicopter and rescue hook relative to ground or water. Process 800 proceeds to 804.
At 804, a control system measures a load on the rescue cable and/or hook. Process 800 proceeds to 806.
At 806, a control system receive streaming video of rescue area under the helicopter. Process 800 proceeds to 808.
At 808, a control system overlays virtual markers appurtenant to the measured values obtained from 802 and 804 onto the video stream. Process 800 proceeds to 810.
At 810, a control system displays the video stream with the overlaid virtual markers appurtenant to the measured values obtained from 802 and 804. And process 800 repeats itself in real-time. Again, some are all operations may be performed concurrently or in pipelined manner
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as illustrative forms of implementing the claims.
This application is a divisional of the U.S. patent application Ser. No. 14/795,843, filed Jul. 9, 2015. This application claims the benefit of U.S. Provisional Application No. 62/023,142, filed Jul. 10, 2014; U.S. Provisional Application No. 62/107,485, filed Jan. 25, 2015; U.S. Provisional Application No. 62/107,558, filed Jan. 26, 2015; and U.S. Provisional Application No. 62/121,263, filed Feb. 26, 2015. All of these applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3690602 | Marsh | Sep 1972 | A |
4378919 | Smith | Apr 1983 | A |
5088037 | Battaglia | Feb 1992 | A |
5486821 | Stevens | Jan 1996 | A |
5593113 | Cox | Jan 1997 | A |
5836548 | Dietz et al. | Nov 1998 | A |
5868357 | Gabriel | Feb 1999 | A |
7852236 | Feyereisen | Dec 2010 | B2 |
7898435 | Rogers | Mar 2011 | B2 |
8532846 | Tollenaere et al. | Sep 2013 | B2 |
9158306 | Ehlin | Oct 2015 | B2 |
9223008 | Hartman | Dec 2015 | B1 |
9441972 | Belanger | Sep 2016 | B2 |
9719800 | Boria | Aug 2017 | B2 |
9734727 | Songa | Aug 2017 | B2 |
20020020783 | Landry | Feb 2002 | A1 |
20050237226 | Judge | Oct 2005 | A1 |
20070200032 | Eadie | Aug 2007 | A1 |
20090138138 | Ferren | May 2009 | A1 |
20090295602 | Cernasov | Dec 2009 | A1 |
20100073198 | Wegner | Mar 2010 | A1 |
20100182340 | Bachelder | Jul 2010 | A1 |
20100222993 | Brainard | Sep 2010 | A1 |
20100245387 | Bachelder | Sep 2010 | A1 |
20110001437 | Marcaccio | Jan 2011 | A1 |
20110079678 | Brenner et al. | Apr 2011 | A1 |
20110137497 | Jimenez | Jun 2011 | A1 |
20110187548 | Maynard | Aug 2011 | A1 |
20110192932 | Brenner | Aug 2011 | A1 |
20110200974 | Gluck | Aug 2011 | A1 |
20120145832 | Schuster | Jun 2012 | A1 |
20130008998 | Morris et al. | Jan 2013 | A1 |
20130054054 | Tollenaere | Feb 2013 | A1 |
20140081484 | Covington | Mar 2014 | A1 |
20140207315 | He | Jul 2014 | A1 |
20140267723 | Davidson, Jr. | Sep 2014 | A1 |
20150151851 | Lin | Jun 2015 | A1 |
20150381927 | Mourning | Dec 2015 | A1 |
20160048131 | Lesperance | Feb 2016 | A1 |
20160133138 | Oldach | May 2016 | A1 |
20160376028 | Kube | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2 169 572 | Jul 1986 | GB |
WO 2010010420 | Jan 2010 | WO |
Entry |
---|
International Search Report and Opinion for Application No: PCT/US2015/039825, dated Nov. 13, 2015, 12 pages. |
Partial Supplementary European Search Report for Application No. 15818974.6 dated Mar. 21, 2018. 14 pages. |
Number | Date | Country | |
---|---|---|---|
20170240293 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62023142 | Jul 2014 | US | |
62107485 | Jan 2015 | US | |
62107558 | Jan 2015 | US | |
62121263 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14795843 | Jul 2015 | US |
Child | 15589031 | US |