The present invention relates to a protective helmet, and more particularly, relates to a protective helmet incorporating an antenna that is configured to improve the performance of one or more connected mobile devices.
It will be appreciated that many types of protective helmets are used across many different industries. For example, hard hats are universally worn by those working at a construction site, as well as by those who operate heavy industrial equipment, etc. Athletes who participate in various sports, such as baseball and football, also wear helmets for protection, and the helmet is one of the most critical pieces of equipment for a professional race car driver. Helmets are also used in many military settings. One of the most commonly used protective helmets in contemporary society is the motorcycle helmet. Most motorcycle riders wear helmets in the interests of safety, as well as due to state and local laws and regulations requiring them.
As is well known, Bluetooth® is an industrial specification for wireless personal area networks (PANs). Bluetooth provides a way to connect and exchange information between devices, such as mobile phones, laptops, personal computers, printers, GPS receivers, digital cameras and video game consoles over a secure, globally unlicensed short-range radio frequency. Many of the most common applications of Bluetooth relate to mobile communications, wherein Bluetooth is used to connect various mobile devices together. However, by virtue of the mobile nature of many of these devices, they frequently incorporate small antennas. As a result of these small antennas, the communication range of many mobile devices is generally quite small. Additionally, various other portable devices, such as portable radios, often sacrifice antenna length (and thus performance) at the expense of portability, resulting in less than optimal performance.
While various Bluetooth headsets have been developed that can be configured for use with protective helmets, none of these products serve to improve or resolve the inherent antenna length limitation of mobile devices.
It is with respect to these considerations and others that the disclosure made herein is presented.
Technologies are presented herein for an enhanced protective helmet. In one aspect, the helmet can comprise an outer shell, a molded lining disposed within the outer shell which is contoured to surround a human head, and an elongated antenna having a proximal end and a free end, with the antenna being supported by the molded lining. The helmet according to this aspect of the invention can have a connection point mounted to the molded lining, the connection point being communicatively connected to the proximal end of the antenna. The connection point, regardless of whether it is mounted to the lining or otherwise extending away from the antenna proximal end, is configured to receive a connection from a mobile communication device, thereby linking the mobile communication device and the antenna.
According to another aspect, an enhanced protective helmet is provided in which the helmet includes a shaped foam element contoured to surround a human head and an elongated antenna having a proximal end and a free end, with the antenna being supported by the shaped foam element. The helmet can have a connection point mounted to the shaped foam element, the connection point being communicatively connected to the proximal end of the antenna. The connection point, regardless of whether it is mounted to the lining or otherwise extending away from the antenna proximal end, is configured to receive a connection from a mobile communication device, thereby linking the mobile communication device and the antenna.
The antenna is located at helmet location that is along one side of the helmet above a left or right ear of the user for optimizing antenna performance.
These and other aspects, features, and advantages can be appreciated from the accompanying description of certain embodiments of the invention and the accompanying drawing figures.
The following detailed description is directed to an enhanced protective helmet. In the following detailed description, references are made to the accompanying drawings that form a part hereof, and which are shown by way of illustration through specific embodiments or examples.
Referring now to the drawings, it is to be understood that like numerals represent like elements through the several figures, and that not all components and/or steps described and illustrated with reference to the figures are required for all embodiments.
Molded lining 20 is preferably disposed within outer shell 10. Molded lining 20 is also preferably shaped and/or contoured to surround a human head, such as the head of the wearer of helmet 5. While it should be readily understood that molded lining 20 can be shaped and/or contoured in practically any way,
Preferably, molded lining 20 is constructed from shock-absorbent material such as foam. Such a construction provides the wearer with significant protection from direct impacts, especially when used in conjunction with outer shell 10, as referenced above. It should be noted that while in the present embodiment molded lining 20 has been described as being disposed within outer shell 10, in other embodiments helmet 5 can include molded lining 20 as a standalone shaped foam element that does not require an outer shell 10. In such an embodiment, the external surface of molded lining 20 can be treated and/or coated with various substances which serve to stiffen or otherwise harden the molded lining 20. In yet another embodiment, molded lining 20 can exist independently of outer shell 10 in that molded lining 20 can be contoured, shaped, and/or otherwise configured to be displaced in any number of outer shells 10 which can be obtained independent of molded lining 20.
Turning now to
Antenna 30 can be arranged and/or disposed with respect to molded lining 20 in any number of ways. In one embodiment (and as depicted in
Antenna 30 can be practically any device and/or material that is capable of sending and/or receiving electromagnetic waves. In one embodiment, antenna 30 can be a radio frequency (RF) antenna. In another embodiment, antenna 30 can be a frequency modulation (FM) antenna. In yet another embodiment, antenna 30 can be a ceramic or ceramic chip antenna, such as those commonly implemented in Bluetooth and/or mobile devices. Accordingly, it should be understood that antenna 30 can be practically any device and/or material that is capable of sending and/or receiving electromagnetic waves, including but not limited to antennas used in conjunction with RF, FM, and/or Bluetooth transmissions. Additionally, though the present disclosure generally describes antenna 30 in context of a single antenna, it should be appreciated that in alternate arrangements antenna 30 can be embodied as a plurality of antennas.
Thus, antenna 30 can comprise multiple antennas of varying size, shape, and/or type (e.g., RF, FM, and Bluetooth), and the multiple antennas can be arranged in a variety of ways, as will be described in greater detail below.
Additionally, antenna 30 can be arranged and/or configured in any number of ways in order to improve and/or optimize its performance. By way of example, antenna 30 can be configured and/or arranged in a pattern upon (or within—in the case of an embedded antenna) the molded lining 20, such as the pattern depicted in
It will be appreciated that one or more tabs can be connected to one or more locations along the antenna 30. When the tab is pulled, the tab serves to sever the pattern of the antenna 30 at one or more locations along the antenna 30 where the tab is connected. By severing the pattern of the antenna, the tab serves to change the effective electrical length of the antenna 30, thereby further optimizing the antenna 30 for a particular wires network of setting.
In one embodiment, molded lining 20 provides a substrate for the antenna 30 and can comprise non-conductive surface that provides a dielectric support for the antenna 30. The supporting substrate provides a dielectric load ∈r to the antenna 30 so that the antenna 30 can achieve a prescribed electrical length using a shorter physical length than otherwise would be required if the same antenna 30 were disposed in free space.
A connection point 40 is mounted to molded lining 20. While the connection point 40 can be mounted in practically any location on molded lining 20, connection point 40 is preferably mounted along one of the external edges of molded lining 20 and/or on the interior surface of molded lining 20.
Connection point 40 is connected to the proximal end 32 of antenna 30. Connection point 40 is configured to receive a connection from a mobile communication device 50, such as a Bluetooth headset.
In such an arrangement mobile communication device 50, or any other such device or plurality of devices, can utilize either or both of connection points 40 and 42 and their respective antennas 30 and 36.
In one embodiment, connection point 40 can be configured as a female-type connector, while mobile communication device 50 is configured to include a male-type connector (e.g., a snap button). Thus, inserting the male-type connector of mobile communication device 50 into the female-type connector of connection point 40 results in a link between the mobile communication device 50 and the antenna 30, as described above. It should be noted that connection point 40 and mobile communication device 50 can connect to one another in any number of ways, using any number of different connection types. Furthermore, connection point 40 can be interchangeable such that a user may replace one connection point with another connection point in order to enable configuration with various models and types of mobile communication devices 50.
When mobile communication device 50 connects to antennas 30 and 36, in the manner described above, the RF circuit of the mobile communication device 50 connects to and utilizes antennas 30 and 36 to transmit and/or receive electromagnetic and/or radio waves and/or signals. As noted above, while in one embodiment the antennas 30 and 36 are utilized to improve the transmission and/or reception of a Bluetooth communication device, antennas 30 and 36 can be similarly configured to improve the transmission and/or reception of any device using practically any wireless communication protocol or method (e.g., 802.11b/g/n, etc.).
As such, the antenna 30 can be utilized by the mobile communication device 50 and provide enhanced communicative ability for the wearer of a helmet constructed in accordance with the embodiments described herein to other communicative devices, whether mobile or land-based.
The helmet can be generally broken into different regions including front and rear regions and a pair of side regions that extend between the front and rear regions. Within the side regions, there are different areas or regions including an area that is in front of the user's ear, an area that is behind the user's ear and a region that is above the user's ear.
In accordance with the present invention and as shown in
Similarly, in one embodiment, the antenna, such as antenna 36 (RF/Bluetooth antenna), is embedded within the helmet at a location that is above the right ear (or left ear) of the user when the helmet is worn. It will be appreciated that this configuration can be used in situations where the embedded antenna is formed of a single antenna or multiple antennas (i.e., in combination with embedded antenna 30) as described herein.
In other words, the antenna (e.g., antenna 36) and optionally, the connection point (connection point 42) are located above the left ear or right ear of the user to enable line of sight to other bikers, including back rider, adjacent biker and front biker.
As mentioned herein, the antenna can be any number of different types of antennas that have different shapes and different constructions. For example, the antenna can be a vertical antenna that can be fed from either the top side or the bottom side; the antenna can be a printed PCB antenna; or the antenna can have a different configuration. However, regardless of the physical design and construction of the antenna, the antenna is located along at least one side of the helmet above the left ear or above the right ear, thereby yielding optimal performance. In addition, while one embodiment includes two antennas 30, 36, it will be appreciated that in another embodiment, only one antenna, such as antenna 36, can be present.
Side sections of the helmet above the left or right ear represent high points on the helmet and therefore, positioning the antenna in these locations yields more optimal performance. These locations are thus along the sides of the helmet in the upper regions thereof near the top of the helmet and permit improved communication between spaced apart communication units.
The subject matter described above is provided by way of illustration only and should not be construed as limiting. Various modifications and changes can be made to the subject matter described herein without following the example embodiments and applications illustrated and described, and without departing from the true spirit and scope of the present invention, which is set forth in the following claims.
The present application is a continuation-in-part of U.S. patent application Ser. No. 13/096,281, filed Apr. 28, 2011, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3582951 | Altmayer | Jun 1971 | A |
3845389 | Phillips et al. | Oct 1974 | A |
5119505 | Tisseront et al. | Jun 1992 | A |
5404577 | Zuckerman et al. | Apr 1995 | A |
5438702 | Jackson | Aug 1995 | A |
6009563 | Swanson et al. | Jan 2000 | A |
7532163 | Chang et al. | May 2009 | B2 |
7750860 | Mohamadi | Jul 2010 | B2 |
20020098877 | Glezerman | Jul 2002 | A1 |
20040204208 | Thompson | Oct 2004 | A1 |
20060017545 | Volpi et al. | Jan 2006 | A1 |
20070105404 | Lee et al. | May 2007 | A1 |
20080191950 | Chang et al. | Aug 2008 | A1 |
20090257217 | Harris | Oct 2009 | A1 |
20100134365 | Mohamadi | Jun 2010 | A1 |
20120189153 | Kushnirov et al. | Jul 2012 | A1 |
20120190314 | Glezerman et al. | Jul 2012 | A1 |
20120190315 | Glezerman et al. | Jul 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20120272436 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13096281 | Apr 2011 | US |
Child | 13195520 | US |