Helmet impact liner system

Information

  • Patent Grant
  • 9516910
  • Patent Number
    9,516,910
  • Date Filed
    Thursday, June 28, 2012
    12 years ago
  • Date Issued
    Tuesday, December 13, 2016
    8 years ago
Abstract
The present application discloses an impact liner system for a helmet. In one embodiment, the impact liner system comprises an impact liner configured to be installed in the interior of a helmet shell to at least partially line the front, rear, and middle portions of the helmet shell. The impact liner comprises a plurality of impact pads and forms a plurality of air channels between the impact pads when the impact liner is installed in the helmet shell. In certain embodiments, at least one insert is disposed within one or more of the plurality of air channels. The insert generally comprises a body portion having a top and vertical side walls configured to prohibit at least a portion of the air channel from collapsing when the helmet shell is installed on a user's head.
Description
BACKGROUND

Helmets, such as sporting helmets, generally include a shell and a liner. The helmet shell generally provides protection from protruding objects and is often configured to spread the impact load across the footprint of the helmet. The helmet liner is generally made of a softer and lower density material than the helmet shell. The helmet liner is often configured such that, upon impact, the helmet liner at least partially absorbs the impact energy from the force of an impact.


SUMMARY

The present application discloses a helmet, an impact liner system for a helmet, an air channel insert for an impact liner, and an impact liner kit for a helmet.


For example, in one embodiment, a helmet comprising a helmet shell and an impact liner is disclosed. The impact liner is configured to be installed in the interior of the helmet shell to at least partially line the front, rear, and middle portions of the helmet shell. The impact liner comprises a front impact pad array, a middle impact pad array, and a rear impact pad array. Each impact pad array comprises a plurality of impact pads. The impact liner forms a plurality of air channels between the impact pads of the impact pad arrays when the impact liner is installed in the helmet shell. In certain embodiments, at least one insert is disposed within one or more of the plurality of air channels. The insert generally comprises a body portion having a top and vertical side walls configured to prohibit at least a portion of the air channel from collapsing when the helmet shell is installed on a user's head. Further, the helmet may include a plurality of comfort pads removably attached to the impact liner.


In another embodiment, an impact liner system is disclosed. The impact liner system comprises an impact liner configured to be installed in the interior of a helmet shell to at least partially line the front, rear, and middle portions of the helmet shell. The impact liner comprises a plurality of impact pads and forms a plurality of air channels between the impact pads when the impact liner is installed in the helmet shell. In certain embodiments, at least one insert is disposed within one or more of the plurality of air channels. The insert generally comprises a body portion having a top and vertical side walls configured to prohibit at least a portion of the air channel from collapsing when the helmet shell is installed on a user's head. Further, the impact liner system may include a plurality of comfort pads configured to be removably attached to the impact liner.


In yet another embodiment, an impact liner kit for a helmet shell is disclosed. The kit comprises an impact liner and at least one insert. The impact liner is configured to be installed in the interior of a helmet shell and comprises a front impact pad array, a middle impact pad array, and a rear impact pad array. Each impact pad array comprises a plurality of impact pads. The impact liner forms a plurality of air channels between the impact pads of the impact pad arrays when the impact liner is installed in the helmet shell. The at least one insert is configured to be installed within one or more of the plurality of air channels. The insert comprises a body portion having a top and vertical side walls configured to prohibit at least a portion of the air channel from collapsing when the helmet shell is installed on a user's head. In certain embodiments, the kit may include one or more comfort pads configured to be removably attached to the impact liner.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are perspective and top plan views, respectively, of an impact liner according to an embodiment of the present application.



FIG. 2A is a top plan view of an impact liner in a folded configuration to be installed in a helmet shell according to an embodiment of the present application.



FIGS. 2B and 2C are perspective views of the impact liner of FIG. 2A installed in a helmet shell according to an embodiment of the present application.



FIGS. 3A and 3B are perspective and side elevation views, respectively, of an air channel insert according to an embodiment of the present application.



FIGS. 3C and 3D are perspective and side elevation views, respectively, of an air channel insert according to an embodiment of the present application.



FIG. 4 is a partial bottom plan view of an impact liner and air channel inserts according to an embodiment of the present application.



FIG. 5 is a top plan view of comfort pads and air channel inserts according to an embodiment of the present application.



FIG. 6 is a top plan view of an impact liner system installed in a helmet shell according to an embodiment of the present application.



FIG. 7 is a top plan view of an impact liner system installed in a helmet shell according to an embodiment of the present application.





While the drawings herein are to relative scale, it is within the disclosure of this specification to vary the relative size of components to one another.


DESCRIPTION OF EMBODIMENTS

The present application discloses a helmet, an impact liner system for a helmet, an air channel insert for an impact liner, and an impact liner kit for a helmet. In the embodiments disclosed herein, the impact liner system of the present application is described for use with a helmet configured to protect the head of the user. Exemplary helmets may include, but are not limited to, military helmets, sporting helmets, such as football, lacrosse, hockey, multi-sport, cycling, softball, or baseball helmets, or safety helmets, such as industrial or construction helmets.


The impact liner system of the present application is configured to attach to the interior of the helmet shell and may be positioned between the user's head and the helmet shell. The impact liner system comprises one or more pads that absorb and/or dissipate the impact energy from the force of an impact. The one or more pads may deform or crush upon impact and consume a portion of the impact energy such that it does not reach the user's head. The one or more pads may also dissipate the impact force over a larger surface area than the actual area of impact so that the force per unit area is decreased for the head compared to that for the initial impact surface (e.g., the outer surface of the helmet shell).


The impact liner system generally comprises an impact liner configured to line the front, rear, and middle portions of the interior of a helmet. The impact liner includes one or more impact pads and air channels for routing external air between the impact pads. Further, the impact liner system may include one or more inserts positioned in the one or more air channels. The impact liner system may also include one or more comfort pads attached to the impact liner, such as, for example, at the front and rear portions of the impact liner.



FIGS. 1A and 1B illustrates an impact liner 100 of an impact liner system according to an embodiment of the present application. As illustrated, the impact liner 100 includes an array of front impact pads 102, middle impact pads 104, and rear impact pads 106. The impact pad arrays may be configured in a variety of sizes and dimensions to accommodate a range of head sizes. Further, the impact pad arrays may be connected together to form a unitary component of impact pads.


Each impact pad array comprises one or more impact pads encased in a liner material 108. The liner material 108 holds the impact pads in relative position to one another and also attaches the impact pads together. The impact pads and the liner material 108 are flexible such that the array of impact pads may be formed within the interior of a helmet shell. As such, the impact pad arrays are capable of being folded to substantially conform to the shape of the interior of a helmet shell.


As illustrated in FIG. 1B, each impact pad array is substantially disposed about a centerline CL of the impact liner 100. As such, in this embodiment, each impact pad array possesses a geometry on one side of the centerline CL that is a mirror image of the geometry on the other side of the centerline CL.


In certain embodiments, the impact pads of impact liner 100 comprise a flexible and resilient polyurethane foam having an average density between about 3.0 and 12.0 lbs/ft3 and an average thickness between about 0.325 and 1.0 inch. For example, in one embodiment, the impact pads comprise a polyurethane foam having an average density of about 4.0 lbs/ft3 and an average thickness of about 0.5 inches. One example of such a polyurethane foam is Zorbium™ Foam from Team Wendy, LLC. However, the impact pads may comprise a variety of other types of foam or other materials, such as, for example, expanded polypropylene, expanded polystyrene, vinyl nitrile, ethylene-vinyl acetate (EVA), open or closed cell cross linked foams, and molded polymer structures such as thermoplastic urethane (TPU). Further, any one or more of the impact pads may comprise a different type of material than another impact pad. For example, softer and/or thicker impact pads may be positioned toward the front of the helmet shell and more rigid and/or thinner impact pads may be positioned toward the top and/or rear of the helmet shell.


In certain embodiments, the liner material 108 comprises a “loop” fabric capable of attaching to the hook portion of a piece of Velcro®. As described below and shown in FIGS. 6 and 7, comfort pads may be attached to the impact liner 100. The comfort pads may include the hook portion of a piece of Velcro® that attaches to the liner material 108. In one embodiment, the liner material 108 comprises a nylon loop fabric from Guilford Performance Textiles. However, the liner material 108 may comprise a variety of other types of materials and fabrics. Further, the liner material 108 may comprise a “hook” fabric capable of attaching to the loop portion of a piece of Velcro®.


In one embodiment, the liner material 108 comprises a top portion and bottom portion. The top portion of the liner material is heat sealed to the bottom portion around the impact pads such that the impact pads are held in relative position to one another. Further, as described below, the portions of the liner material between one or more of the impact pads may form a portion of an air channel when the impact pads are installed in a helmet shell.


As illustrated in FIGS. 1A and 1B, the front impact pad array 102 comprises a first central pad 120, a second central pad 122, a left pad 124, and a right pad 126. As shown, the central pads 120 and 122 of the front impact pad array 102 are rectangular in shape. The middle impact pad array 104 comprises a central pad 140, a left pad 142, and a right pad 144. The rear impact pad array 106 comprises a first central pad 160, a second central pad 162, a left rear pad 164, a left front pad 166, a right rear pad 168, and a right front pad 170. As shown, the first central pad 160 of the rear impact pad array 106 is trapezoidal in shape and the second central pad 162 is rectangular in shape.



FIG. 2A illustrates the impact liner 100 of the impact liner system in a folded configuration to be installed in a helmet shell. FIGS. 2B and 2C illustrate the impact liner 100 of the impact liner system installed in a helmet shell 200. As shown, the front impact pad array 102 is installed on the front, sides, and top of the helmet shell 200; the middle impact pad array 104 is installed on the sides and top of the helmet shell; and the rear impact pad array 106 is installed on the rear, sides, and top of the helmet shell.


The impact liner 100 may be installed on the interior of the helmet shell 200 in a variety of ways, such as, for example, with one or more fasteners, adhesive, clips, pins, snaps, tape, buckles, Velcro®, or a hook and loop. For example, in one embodiment, the impact liner 100 is installed with one or more pieces of Velcro® to the interior of the helmet shell 200. In another embodiment, the liner material 108 of the impact liner 100 is attached to the helmet shell 200 by tabs that are bolted or otherwise attached at a chinstrap mounting point, such as, for example, with a bolt that goes through the helmet shell to attach the chinstrap as well as the impact liner to the helmet shell. In another embodiment, the liner material 108 of the impact liner 100 is attached to the helmet shell 200 with snaps, e.g., snaps attached to the front, rear, and central portions of the impact liner.


As illustrated in FIGS. 2B and 2C, the first central pad 120 of the front impact pad array 102 is installed on the front of the helmet shell 200 and is configured to protect the forehead of the user; the second central pad 122 is installed on the front top portion of the helmet shell and is configured to protect the front portion of the user's head above the forehead; and the left and right pads 124 and 126 are installed on the front left and front right portions of the helmet shell and are configured to protect the front left and front right portions of the user's head.


As illustrated in FIGS. 1A and 1B, the first central pad 120 of the front impact pad array 102 comprises a curved edge 130 that provides added coverage (e.g., relative to a straight edge) when the first central pad is bent around the front interior radius of the helmet shell 200. Further, the left and right pads 124 and 126 of the front impact array 102 comprise a first curved edge 132 that forms a portion of front air channels 202 when the impact liner 100 is installed in the helmet shell 200. The left and right pads 124 and 126 of the front impact array 202 also comprise a second curved edge 138 configured such that, when the impact liner 100 is installed in the helmet shell 202, the left and right pads do not cover the ears of the user.


As illustrated in FIG. 2A, the front air channels 202 are formed between the first curved edge 132 of the left and right pads 124 and 126, the longitudinal edges 134 of the central pads 120 and 122, the portion 136 of the liner material 108 between the first central pad 120 and the left and right pads, and the interior of the helmet shell 200. Further, the front air channels 202 have openings 220 at the front of the helmet shell 200. These openings 220 permit external air A to enter the front air channels 202 and permit air from inside the helmet shell 200 to escape to the outside.


As illustrated in FIGS. 2B and 2C, the central pad 140 of the middle impact pad array 104 is installed on the middle top portion of the helmet shell 200 between the second central pads 122 and 162 of the front and rear impact pad arrays 102 and 106 and is configured to protect the top of the user's head. The left and right pads 142 and 144 of the middle impact pad array 104 are installed on the middle left and middle right portions of the helmet shell 200 and are configured to protect the left and right portions of the user's head above the ears. The left pad 142 of the middle impact pad array 104 is installed between the left pad 124 of the front impact pad array 102 and the left front pad 166 of the rear impact pad array 106. The right pad 144 of the middle impact pad array 104 is installed between the right pad 126 of the front impact pad array 102 and the right front pad 170 of the rear impact pad array 106.


As illustrated in FIG. 2A, the portion 150 of the liner material 108 between the central pad 140 and left and right pads 142 and 144 of the middle impact pad array 104 form a portion of middle air channels 204 when installed in the helmet shell 200. The middle air channels 204 are formed between edges 152 of the left and right pads 142 and 144, edges 154 of the central pad 140, the portion 150 of the liner material 108 between the central pad and the left and right pads, and the interior of the helmet shell 200. The middle air channels 204 are substantially aligned with the front air channels 202. In one embodiment, when the impact liner 100 is installed in the helmet shell 200, the front and middle air channels 202 and 204 are substantially parallel to a centerline CL of the folded impact liner 100 (as shown in FIG. 2A).


Further, as illustrated in FIG. 2A, when the impact liner 100 is installed in the helmet shell 200, the gap between the pads of the middle impact pad array 104 and the pads of the front and rear impact pad arrays 102 and 106 form transverse air channels 206 that are substantially perpendicular to the centerline CL of the folded impact liner 100. As illustrated in FIG. 2A, the transverse air channels 206 are in fluid communication with the front and middle air channels 202 and 204. Further, the transverse air channels 206 have openings 260 above the ear portion of the helmet shell 200. These openings 260 permit external air A to enter the transverse air channels 206 and permit air from inside the helmet shell 200 to escape to the outside.


As illustrated in FIGS. 2B and 2C, the first central pad 160 of the rear impact pad array 106 is installed on the rear of the helmet shell 200 and is configured to protect the rear of the user's head; the second central pad 162 is installed on the rear top portion of the helmet shell and is configured to protect the rear top portion of the user's head (e.g., the crown of the head); the left and right rear pads 164 and 168 are installed on the rear left and rear right of the helmet shell and are configured to protect the rear left and rear right portions of the user's head; the left front pad 166 is installed on the left and rear left top portions of the helmet shell and is configured to protect the left and rear left top portions of the user's head (e.g., above and behind the user's left ear); and the right front pad 170 is installed on the right and rear right top portions of the helmet shell and is configured to protect the right and rear right top portions of the user's head (e.g., above and behind the user's right ear).


Further, the left and right front pads 166 and 170 of the rear impact pad array 106 comprise a first curved edge 172 that forms a portion of rear air channels 208 when the impact liner 100 installed in the helmet shell 200. As illustrated in FIG. 2A, the rear air channels 208 are formed between the first curved edges 172 of the left and right front pads 166 and 170, the longitudinal edges 174 of the second central pad 162, and the interior of the helmet shell 200. The rear air channels 208 are in fluid communication with the front, middle, and transverse air channels 202, 204, and 206. Further, the left and right front pads 166 and 170 and the left and right rear pads 164 and 168 of the rear impact pad array 106 comprise a second curved edge 176 configured such that, when the impact liner 100 installed in the helmet shell 200, the pads do not cover the ears of the user.


When the impact liner 100 is installed in the helmet shell 200, the front, middle, and rear impact pad arrays 102, 104, and 106 of the impact liner collectively cover between about 50% and 100% of the interior surface area of a helmet shell. For example, in a preferred embodiment, the front, middle, and rear impact pad arrays 102, 104, and 106 of the impact liner 100 are shaped and configured to cover the interior surface of a military helmet shell to protect the head of the user. Examples of such military helmet shells include a US Army Advanced Combat Helmet (ACH), a US Marine Corp Lightweight Helmet, an Enhanced Combat Helmet (ECH), a Personal Armor System for Ground Troops (PASGT) helmet, or other typical ballistic helmet shells. In one embodiment, the front, middle, and rear impact pad arrays 102, 104, and 106 of the impact liner 100 collectively cover about 80% of the interior surface area of a military helmet shell.


Further, when the impact liner 100 is installed in a helmet shell 200, the impact liner forms a ventilation system configured to cool the user's head. As illustrated in FIG. 2A, the ventilation system comprises the front, middle, transverse, and rear air channels 202, 204, 206, and 208, which collectively form a network of air channels. Further, gaps between the various pads of the impact pad arrays form air channels that fluidly communicate with the front, middle, transverse, and rear air channels 202, 204, 206, and 208 and form a portion of the network of air channels. The ventilation system is configured such that external air is permitted to flow through front and transverse air channel openings 220 and 260 and throughout the network of air channels. When the user's head is placed against the pads of the impact liner 100, the air in the network of air channels flows over the user's head to cool the user's head. Further, air within the helmet shell 200 (e.g., heated air) is permitted to escape out the front and transverse air channel openings 220 and 260 through the network of air channels.



FIGS. 2B and 2C illustrate the impact liner 100 of the impact liner system installed in the helmet shell 200 and including air channel inserts 300 according to an embodiment of the present application. As illustrated, the air channel inserts 300 are positioned in the front air channels 202 of the impact liner 100. However, the air channel inserts 300 may be positioned in any one or more of the air channels of the impact liner 100 and at any location within the air channel. Further, the air channel insert 300 may be made of a variety of materials, such as, for example, thermoplastic urethane (TPU), polypropylene, polyethylene, ABS plastic, rubber, or ethylene propylene diene Monomer (M-class) rubber (EPDM). In a preferred embodiment, the air channel insert 300 is an injected molded piece of Texin® TPU.


The air channel inserts 300 are configured to prohibit at least a portion of the air channels from collapsing when the helmet is installed on the user's head. For example, any one or more edges of an impact pad may collapse into the air channel when the user's head (e.g., the user's forehead) is pressed against the impact pad. The air channel insert 300 is configured with vertical walls that prohibit one or more edges of the impact pads from collapsing into the air channel. As such, the air channel remains open such that air is permitted to flow through the network of air channels of the impact liner 100.


Openings 302 in the top 304 of the air channel insert 300 permit the air flowing through the air channel insert to flow over the portion of the user's head that is adjacent to the top of the insert. Further, the air channel insert 300 may be flexible, or comprise features that permit the insert to flex, such that it may be bent to conform to the curvature of the interior of the helmet shell 200. Further, portions of the air channel insert 300 may be configured to attach the insert to the impact liner 100 (e.g., to the liner material) and/or to the helmet shell 200.



FIGS. 3A and 3B illustrate an air channel insert 400 according to an embodiment of the present application. As shown, the air channel insert 400 includes a body portion 410 having a top 404 and vertical side walls 406 disposed about a centerline CL of the insert.


Openings 402 in the top 404 of the body portion 410 permit the air flowing through the air channel insert 400 to flow over the portion of the user's head that is adjacent to the top of the insert. As illustrated in FIG. 3B, the body portion 410 of the air channel insert 400 may also be curved such that it conforms to the curvature of the interior of the helmet shell 200 and/or the curvature of the impact liner 100. Further, the vertical side walls 406 of the body portion 410 are configured prohibit one or more edges of the impact pads from collapsing into the air channel. As such, the air channel insert 400 is configured to be positioned within an air channel such that the vertical side walls 406 are adjacent one or more edges of the impact pads.


As illustrated in FIGS. 3A and 3B, the body portion 410 of the air channel insert 400 includes a first portion 412 and a second portion 414 connected together by a thin piece of material 416 that acts as a flexible membrane or hinge. The thin piece of material 416 is substantially perpendicular to the centerline CL of the insert 400. The thin piece of material 416 permits the first portion 412 to move or flex relative to the second portion 414 such that the air channel insert 400 may be bent to conform to the curvature of the interior of the helmet shell 200. In other embodiments, the thin piece of material 416 may be located at a variety of locations on the insert 400. For example, the thin piece of material 416 may be substantially parallel to the centerline CL of the insert 400 to permit bending of the insert about the centerline.


Further, attachment members 420, or flanges, extend outward from the body portion 410 of the insert 400. As shown, each attachment member 420 extends substantially perpendicular to the centerline CL of the insert 400 and includes a slot 422. The slot 422 of each attachment member 420 is substantially perpendicular to the centerline CL of the insert 400 and substantially aligned with the thin piece of material 416. As such, the slot 422 in each attachment member 420 facilitates bending of the first portion 412 of the insert 400 relative to the second portion 414. Further, a fastener, such as, for example, a screw, rivet, pin, clip, snap, hook and loop, or the like, may be received in the slot 422 to couple the air channel insert 400 to the impact liner 100 and/or the helmet shell 200. The air channel insert 400, such as one or more attachment members 420 of the insert, may also include an indicator to indicate proper positioning of the air channel insert (e.g., an F arrow indicator which indicates the direction toward the front of the helmet).


As illustrated in FIGS. 3A and 3B, the leading and trailing edges 432 and 434 of the top 404 of the air channel insert 400 are rounded to provide more comfort to the user when the insert rests against the user's head and prohibit the edges from catching on or tearing the impact liner 100. However, in other embodiments, the edges 432 and 434 may or may not be rounded. For example, FIGS. 3C and 3D illustrate an air channel insert 450 according to another embodiment of the present application. The air channel insert 450 is similar to the air channel insert 400 shown in FIGS. 3A and 3B. However, the leading and trailing edges 452 and 454 of the top 460 of the air channel insert 450 are not rounded. Further, the top 460 of the air channel insert 450 includes less openings 462 than the top 404 of the air channel insert 400 illustrated in FIGS. 3A and 3B.


In certain embodiments, an air channel insert may be attached to the liner material of the impact liner. For example, FIG. 4 is a partial bottom view of the front impact pad array 102 of the impact liner 100. As illustrated in this embodiment, air channel inserts 400 are disposed within the front air channels 202 of the impact liner 100. The portions 136 of the liner material 108 that at least partially form the front air channels 202 comprise slits 490 sized and configured to receive the attachment members 420 of the air channel inserts 400. The attachment members 420 of the air channel inserts 400 are inserted through the slits 490 such that the insert is held in place relative to the liner material 108. In some embodiments, a fastener, such as, for example, a screw, rivet, pin, clip, snap, hook and loop, or the like, may be received in one or more slots 422 of the engagement members 420 to couple the air channel inserts 400 to the liner material 108. Further, it is contemplated that an air channel insert may be attached to the liner material 108 in any one or more of the air channels of the impact liner 100 and at any location within the air channel.


One or more comfort pads may be attached to the impact liner of the impact liner system. In certain embodiments, the comfort pads may be up to about ⅜″ thick. For example, in one embodiment, ⅛″ and/or ¼″ thick comfort pads are attached to the impact liner of the impact liner system. Various sized comfort pads may be used to adjust the sizing and fit of the helmet on the user's head. Further, the comfort pads may be a variety of shapes and sizes and may be positioned and/or configured in a variety of ways to comfort various portions of the user's head.


The comfort pads may include a soft cushion material, such as a foam, encased in a fabric material. In certain embodiments, the comfort pads comprise a flexible and resilient polyurethane foam having an average density between about 3.0 and 12.0 lbs/ft3. For example, in one embodiment, the comfort pads comprise a polyurethane foam having an average density of 4.0 lbs/ft3 and the thickness of the polyurethane foam is about 0.1875 inch. One example of such a polyurethane foam is Zorbium™ Foam from Team Wendy, LLC. However, the comfort pads may comprise a variety of other types of foam or other materials, such as, for example, expanded polypropylene, expanded polystyrene, vinyl nitrile, and molded polymer structures such as thermoplastic urethane (TPU). Further, any one or more of the comfort pads may comprise a different type of material than another comfort pad.


The fabric material of the comfort pads may be a variety of fabric materials. For example, in one embodiment, the comfort pads comprise an Ultrasuede® fabric material. Further, the comfort pads may be water resistant. For example, the comfort pads may include a wicking fabric, such as polyester, nylon, or spandex. In one embodiment, the wicking fabric is GameTime Antimicrobial Wicking Fabric. In other embodiments, however, the comfort pads are moisture absorbent to absorb perspiration from the user's head. Further, in certain embodiments, the comfort pads comprise a fabric material only and do not include a foam portion.


The comfort pads are configured to be removably attached to the impact liner. For example, in one embodiment, the comfort pads are removably attached to the liner material of the impact liner with Velcro®. As described above, the comfort pads may include the hook portion of a piece of Velcro® that attaches to a loop fabric of the liner material. However, a variety of other methods of attachment may be used, such as, for example, with one or more fasteners, adhesive, clips, pins, snaps, tape, or buckles.



FIG. 5 illustrates an exemplary set of comfort pads 500 and air channel inserts 400 that may be arranged and sold as a kit for a helmet shell. For example, in certain embodiments, an impact liner kit for a helmet shell comprises the impact liner 100, at least one air channel insert (e.g., insert 300, 400, or 450), and a plurality of comfort pads 500. The impact liner 100 is configured to be installed in the interior of the helmet shell to at least partially line the front, rear, and middle portions of the helmet shell. The at least one air channel insert is configured to be installed within one or more of the plurality of air channels formed by the impact liner 100. The plurality of comfort pads 500 are configured to be removably attached to the impact liner 100. As illustrated in FIG. 5, the set of comfort pads 500 comprises a front comfort pad 502, a rear comfort pad 504, left and right comfort pads 508, and a plurality of central comfort pads 506. Further, as illustrated in FIGS. 6 and 7 and described below, the impact liner kit may be used with a variety of different helmet shells, such as, for example, a US Army Advanced Combat Helmet (ACH), a US Marine Corp Lightweight Helmet, an Enhanced Combat Helmet (ECH), a Personal Armor System for Ground Troops (PASGT) helmet, or other typical ballistic helmet shells.



FIGS. 6 and 7 illustrate impact liner systems 600 and 700 according to embodiments of the present application. The impact liner system 600 shown in FIG. 6 comprises the impact liner 100 installed in an Advanced Combat Helmet (ACH) shell 610, one or more comfort pads 500 removably attached to the impact liner, and air channel inserts 450 disposed within air channels of the impact liner. The impact liner system 700 shown in FIG. 7 comprises the impact liner 100 installed in an Advanced Combat Helmet high cut shell 710, one or more comfort pads 500 removably attached to the impact liner, and air channel inserts 450 disposed within air channels of the impact liner.


As illustrated in FIGS. 6 and 7, the impact liner systems 600 and 700 comprise a front comfort pad 502, a rear comfort pad 504, left and right side comfort pads 508, and central comfort pads 506. The comfort pads of the impact liner systems 600 and 700 may be various sizes to adjust the sizing and fit of the helmet shell 610 and 710 on the user's head. Further, the comfort pads may be a variety of other shapes and sizes and may be positioned and/or configured in a variety of ways to comfort various portions of the user's head.


As illustrated in FIGS. 6 and 7, the front comfort pad 502 is removably attached to the impact pads of the front impact pad array 102 and extends across the front and front side portions of the helmet shell 610. The front comfort pad 502 is positioned to provide comfort across the user's forehead and temples. The rear comfort pad 504 is removably attached to the impact pads of the rear impact pad array 106 and extends across the rear and rear side portions of the helmet shell 610. The rear comfort pad 504 is positioned to provide comfort across the rear and rear sides of the user's head (e.g., behind the user's ears). The right and left side comfort pads 508 are removably attached to the impact pads of the middle and rear impact pad arrays 104 and 106 and extend along the side portions of the helmet shell 610. The side comfort pads 508 are positioned to provide comfort along the right and left sides of the user's head (e.g., above the user's ears). The central comfort pads 506 are removably attached to the impact pads of the front and rear impact pad arrays 102 and 106 and along the central portion of the helmet shell 610. The central comfort pads 506 are positioned to provide comfort to the top of the user's head. In other embodiments, one or more central comfort pads 506 may also be attached to the impact pads of the middle impact pad array 104.


When the impact liner 100 is installed in the helmet shell 610 and 710, the impact liner forms a ventilation system configured to cool the user's head. For example, as illustrated in FIGS. 6 and 7, the impact liner 100 comprises a plurality of front, middle, rear, and transverse air channels which collectively form a network of air channels. As shown, front air channels are formed between the impact pads 120, 122, 124, and 126 of the front impact pad array 102, middle air channels are formed between the impact pads 140, 142, 144 of the middle impact pad array 104, and rear air channels are formed between the impact pads 162, 166, and 170 of the rear impact pad array 106. Further, transverse air channels are formed between the impact pads 140, 142, 144 of the middle impact pad array 104, the impact pads 122, 124, and 126 of the front impact pad array 102, and the impact pads 162, 166, and 170 of the rear impact pad array 106. Still further, gaps between the various impact pads of the impact pad arrays 102, 104, 106 form air channels that fluidly communicate with the front, middle, rear, and transverse air channels and form a portion of the network of air channels.


As illustrated in FIGS. 6 and 7, the ventilation system is configured such that air A is permitted to flow in and out of the front and transverse air channel openings and throughout the network of air channels. When the user's head is placed against the impact pads of the impact liner 100 and/or the comfort pads, the air A in the network of air channels flows over the user's head to cool the user's head. Further, air A that is within the helmet shell 610 (e.g., heated air) is permitted to escape out the front and transverse air channel openings through the network of air channels.


As illustrated in FIGS. 6 and 7, the air channel inserts 450 are disposed in two front air channels, a right side transverse air channel, and a left side transverse air channel of the impact liner 100. The air channel inserts 450 are also positioned adjacent the openings of the air channels. Further, the front comfort pad 502 and side comfort pads 508 at least partially cover the top of the air channel inserts 450. As such, the top of the air channel inserts 450 prohibit the front and side comfort pads 502 and 508 from being pressed into the air channels and at least partially blocking the flow of air A through the network of air channels. For example, the forehead of the user may press against the front comfort pad 502, or the side of the user's head may press against the side comfort pads 508, and push a portion of the pad into the air channel. It is contemplated that the air channel inserts 450 may be positioned and configured in a variety of ways to prohibit at least a portion of any one or more of the comfort pads 500 from blocking an air channel.


As described herein, when one or more components are described as being connected, joined, affixed, coupled, attached, or otherwise interconnected, such interconnection may be direct as between the components or may be in direct such as through the use of one or more intermediary components. Also as described herein, reference to a “member,” “component,” or “portion” shall not be limited to a single structural member, component, or element but can include an assembly of components, members or elements.


While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the invention to such details. Additional advantages and modifications will readily appear to those skilled in the art. For example, component geometries, shapes, and dimensions can be modified without changing the overall role or function of the components. Therefore, the inventive concept, in its broader aspects, is not limited to the specific details, the representative device, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.


While various inventive aspects, concepts and features of the inventions may be described and illustrated herein as embodied in combination in the exemplary embodiments, these various aspects, concepts and features may be used in many alternative embodiments, either individually or in various combinations and sub-combinations thereof. Unless expressly excluded herein all such combinations and sub-combinations are intended to be within the scope of the present inventions. Still further, while various alternative embodiments as to the various aspects, concepts and features of the inventions—such as alternative materials, structures, configurations, methods, devices and components, alternatives as to form, fit and function, and so on—may be described herein, such descriptions are not intended to be a complete or exhaustive list of available alternative embodiments, whether presently known or later developed. Those skilled in the art may readily adopt one or more of the inventive aspects, concepts or features into additional embodiments and uses within the scope of the present inventions even if such embodiments are not expressly disclosed herein. Additionally, even though some features, concepts or aspects of the inventions may be described herein as being a preferred arrangement or method, such description is not intended to suggest that such feature is required or necessary unless expressly so stated. Still further, exemplary or representative values and ranges may be included to assist in understanding the present disclosure, however, such values and ranges are not to be construed in a limiting sense and are intended to be critical values or ranges only if so expressly stated. Moreover, while various aspects, features and concepts may be expressly identified herein as being inventive or forming part of an invention, such identification is not intended to be exclusive, but rather there may be inventive aspects, concepts and features that are fully described herein without being expressly identified as such or as part of a specific invention, the inventions instead being set forth in the appended claims. Descriptions of exemplary methods or processes are not limited to inclusion of all steps as being required in all cases, nor is the order that the steps are presented to be construed as required or necessary unless expressly so stated.

Claims
  • 1. An impact liner system for a helmet shell, comprising: an impact liner configured to be installed in the interior of a helmet shell to at least partially line the front, rear, and middle portions of the helmet shell, the impact liner comprising a front impact pad array, a middle impact pad array, and a rear impact pad array, wherein each impact pad array comprises a plurality of impact pads; andwherein the impact liner forms a plurality of air channels between the impact pads of the impact pad arrays when the impact liner is installed in the helmet shell;wherein at least one air channel is disposed between a user's head, edges of the impact pads of the front impact pad array, and the helmet shell when the helmet shell is installed on the user's head, the at least one air channel comprises an opening located between the helmet shell and the user's head and proximate the front of the helmet shell; andat least one insert disposed within the at least one air channel and comprising at least one vertical wall positioned adjacent an edge of an impact pad of the front impact pad array and configured to prohibit at least a portion of the impact pad from collapsing into the at least one air channel when the helmet shell is installed on a user's head, wherein the at least one vertical wall forms at least a portion of a longitudinal passageway that provides air flow through the insert disposed within the at least one air channel.
  • 2. The impact liner system of claim 1, wherein the impact pad arrays are capable of being folded to substantially conform to the shape of the interior of the helmet shell.
  • 3. The impact liner system of claim 1, wherein each impact pad array is substantially disposed about a centerline of the impact liner such that each impact pad array possesses a geometry on one side of the centerline that is a mirror image of the geometry on the other side of the centerline.
  • 4. The impact liner system of claim 1, wherein the impact pads of each impact pad array are encased in a liner material, and wherein the liner material is configured to hold the impact pads in relative position to one another and attach the impact pads together.
  • 5. The impact liner system of claim 4, wherein the liner material of at least one impact pad array forms a portion of an air channel when the impact liner is installed in the helmet shell.
  • 6. The impact liner system of claim 1, wherein the plurality of air channels comprises a front air channel formed between two or more impact pads of the front impact pad array, a middle air channel formed between two or more impact pads of the middle impact pad array, and a rear air channel formed between two or more impact pads of the rear impact pad array.
  • 7. The impact liner system of claim 6, wherein the front, middle, and rear air channels are in fluid communication.
  • 8. The impact liner system of claim 7, wherein the front, middle, and rear air channels are substantially parallel to a centerline of the impact liner.
  • 9. The impact liner system of claim 7, wherein the front air channel comprises an opening that permits airflow into and out of the front, middle, and rear air channels.
  • 10. The impact liner system of claim 6, wherein the plurality of air channels further comprises a transverse air channel formed between an impact pad of the middle impact pad array and at least one of an impact pad of the front impact pad array and an impact pad of the rear impact pad array.
  • 11. The impact liner system of claim 10, wherein the transverse air channel is in fluid communication with the front, middle, and rear air channels, and wherein the transverse air channel comprises an opening configured to permit airflow into and out of the front, middle, rear, and transverse air channels.
  • 12. The impact liner system of claim 10, wherein the transverse air channel is substantially perpendicular to a centerline of the impact liner.
  • 13. The impact liner system of claim 10, wherein the front, middle, rear, and transverse air channels are in fluid communication, and wherein the front air channel comprises a first opening and the transverse air channel comprises a second opening, and wherein the first and second openings are configured to permit airflow into an out of the plurality of air channels.
  • 14. The impact liner system of claim 13, wherein the plurality of air channels further comprises one or more gaps disposed between the impact pads of one or more impact pad arrays, and wherein the one or more gaps are in fluid communication with the front, middle, rear, and transverse air channels.
  • 15. The impact liner system of claim 13, wherein the at least one insert comprises a body portion having a top and at least two vertical side walls, and wherein the top comprises one or more openings configured to permit airflow therethrough, and the side walls are configured to prohibit at least a portion of the air channel from collapsing when the helmet shell is installed on a user's head.
  • 16. The impact liner system of claim 13, wherein a first insert is disposed within the front air channel adjacent the first opening.
  • 17. The impact liner system of claim 16, wherein a second insert is disposed within the transverse air channel adjacent the second opening.
  • 18. The impact liner system of claim 1, wherein the at least one insert comprises a body portion having a top and vertical side walls, wherein the top comprises one or more openings configured to permit airflow therethrough.
  • 19. The impact liner system of claim 1, further comprising one or more comfort pads removably attached to the impact liner.
  • 20. The impact liner system of claim 1, wherein the at least one insert is rigid.
  • 21. The impact liner system of claim 1, wherein an end of the insert is disposed at the front of the helmet shell.
  • 22. The impact liner system of claim 1, further comprising a fastener for attaching the impact liner to the interior of a ballistic helmet shell without penetrating the ballistic helmet shell.
  • 23. An impact liner system for a helmet shell, comprising: an impact liner configured to be installed in the interior of a helmet shell to at least partially line the front, rear, and middle portions of the helmet shell, the impact liner comprising a plurality of impact pads, wherein the impact liner forms a plurality of air channels between the impact pads when the impact liner is installed in the helmet shell; andat least one insert configured to be installed within one or more of the plurality of air channels, the insert comprising: a body portion having vertical side walls and extending from a first end to a second end; andat least one longitudinal passageway formed at least in part by the vertical side walls and extending from the first end to the second end between the vertical side walls to provide air flow through the air channel:wherein the insert is configured to prohibit at least a portion of the air channel from collapsing when the helmet shell is installed on a user's head.
  • 24. The impact liner system of claim 23, further comprising a plurality of comfort pads configured to be removably attached to the impact liner.
  • 25. The impact liner system of claim 23, wherein the at least one insert is disposed in an air channel of the impact liner located in the front portion of the helmet shell.
  • 26. The impact liner system of claim 23, wherein: at least one of the air channels is disposed between a user's head and the helmet shell when the helmet shell is installed on the user's head, the at least one air channel having at least one opening proximate the front of the helmet shell; andthe insert is disposed within the at least one air channel and one of the first end and the second end of the insert is proximate the front of the helmet shell.
  • 27. The impact liner system of claim 23, further comprising a fastener for attaching the impact liner to the interior of a ballistic helmet shell without penetrating the ballistic helmet shell.
CROSS REFERENCE TO RELATED APPLICATION

This application is a U.S. Non-Provisional patent application which claims priority to U.S. Provisional Patent Application No. 61/503,822, filed on Jul. 1, 2011 and titled “Helmet Impact Liner System,” which is hereby incorporated by reference in its entirety.

US Referenced Citations (585)
Number Name Date Kind
666130 Cole Jan 1901 A
957394 Thoma May 1910 A
1012597 Church Dec 1911 A
1539283 Staats-Oels May 1925 A
1552965 Smith Sep 1925 A
1560825 Kelticka Nov 1925 A
1958050 Koppelman May 1934 A
2074331 Haider Mar 1937 A
2090881 Wilson Aug 1937 A
2221310 Gazelle Nov 1940 A
2275575 Vrooman Mar 1942 A
2285335 Hurt Jun 1942 A
2303744 Jacobs Dec 1942 A
2311373 Duming Feb 1943 A
2318077 Jonas May 1943 A
2346161 Grant Apr 1944 A
2349907 Kos May 1944 A
2433012 Zalicovitz Dec 1947 A
2434641 Burns Jan 1948 A
2649019 Hartline Aug 1953 A
2711033 Dick Jun 1955 A
2739093 Bull Mar 1956 A
2759186 Dye Aug 1956 A
2772196 Pooley Nov 1956 A
2776452 Chavannes Jan 1957 A
2983056 Murawski May 1961 A
3018015 Agriss et al. Jan 1962 A
3026231 Chavannes Mar 1962 A
3039109 Simpson Jun 1962 A
3086899 Ingraham Apr 1963 A
3088539 Mathues et al. May 1963 A
3099043 Held Jul 1963 A
3124807 Frenkel et al. Mar 1964 A
3142599 Chavannes Jul 1964 A
3144247 Szonn et al. Aug 1964 A
3153792 Marietta Oct 1964 A
3160963 Aaskov Dec 1964 A
3186013 Glassman et al. Jun 1965 A
3195686 Johnson Jul 1965 A
3231454 Williams Jan 1966 A
3242500 Derr Mar 1966 A
3251076 Burke May 1966 A
3280410 Propst et al. Oct 1966 A
3327334 Wilmanns et al. Jun 1967 A
3342666 Hull Sep 1967 A
3366971 Scherz Feb 1968 A
3378888 Robertson Apr 1968 A
3425061 Webb Feb 1969 A
3447163 Bothwell et al. Jun 1969 A
3484835 Trountine et al. Dec 1969 A
3500472 Castellani Mar 1970 A
3500475 Otsuka Mar 1970 A
3507727 Marshack Apr 1970 A
3508992 Chavannes et al. Apr 1970 A
3514156 Fields May 1970 A
3525663 Hale Aug 1970 A
3538628 Einstein, Jr. Nov 1970 A
3575781 Pezely Apr 1971 A
3600714 Cade Aug 1971 A
3608215 Fukuoka Sep 1971 A
3609764 Morgan Oct 1971 A
3618144 Frey et al. Nov 1971 A
3633228 Zysman Jan 1972 A
3668056 Hayes, Jr. Jun 1972 A
3668704 Conroy Jun 1972 A
3673609 De Simone Jul 1972 A
3679166 Sturhan Jul 1972 A
3684235 Schupbach Aug 1972 A
3709967 Held, Jr. Jan 1973 A
3713640 Margan Jan 1973 A
3716614 Okamoto et al. Feb 1973 A
3729744 Rappleyea May 1973 A
3747968 Hornsby Jul 1973 A
3761959 Dunning Oct 1973 A
3766669 Pearsall Oct 1973 A
3782767 Moore Jan 1974 A
3783450 O'Connor Jan 1974 A
3784985 Conroy Jan 1974 A
3806950 Spencer-Foote Apr 1974 A
3837991 Evans Sep 1974 A
3849801 Holt Nov 1974 A
3853221 Boyd Dec 1974 A
3857144 Bustin Dec 1974 A
3863909 Weber Feb 1975 A
3871636 Boyle Mar 1975 A
3872511 Nichols Mar 1975 A
3877076 Summers Apr 1975 A
3882547 Morgan May 1975 A
3884862 King May 1975 A
3895456 Fabre Jul 1975 A
3900222 Muller Aug 1975 A
3911187 Raley Oct 1975 A
3926463 Landwehr Dec 1975 A
3928881 Bente Dec 1975 A
3933387 Salloum et al. Jan 1976 A
3940529 Hepford et al. Feb 1976 A
3940811 Tomikawa et al. Mar 1976 A
3952358 Fukuoka Apr 1976 A
3971583 Kornhuser Jul 1976 A
D241228 Boduch Aug 1976 S
3994020 Villari Nov 1976 A
3995901 Filbert, Jr. et al. Dec 1976 A
3997207 Norlin Dec 1976 A
3999220 Keltner Dec 1976 A
4022505 Saczawa, Jr. May 1977 A
4023213 Rovani May 1977 A
4029350 Goupy et al. Jun 1977 A
4029534 Bocks et al. Jun 1977 A
4038700 Gyory Aug 1977 A
4044399 Morton Aug 1977 A
4044479 Brutting Aug 1977 A
4064565 Griffiths Dec 1977 A
4067063 Ettinger Jan 1978 A
4075717 Lemelson Feb 1978 A
4077393 Mattson Mar 1978 A
4099759 Kornhauser Jul 1978 A
4101983 Dera et al. Jul 1978 A
4106745 Carrow Aug 1978 A
4110857 Banister Sep 1978 A
4114197 Morton Sep 1978 A
4134156 Gyory Jan 1979 A
4151661 Namba May 1979 A
4154469 Goupy et al. May 1979 A
4154489 Lyman May 1979 A
4170078 Moss Oct 1979 A
4187620 Selner Feb 1980 A
4190276 Hirano Feb 1980 A
4192699 Lewicki et al. Mar 1980 A
4213202 Larry Jul 1980 A
4223455 Vermeulen Sep 1980 A
4223456 Cohen Sep 1980 A
4236326 Inohara Dec 1980 A
4239106 Aileo Dec 1980 A
4239476 Somberg Dec 1980 A
4251932 Love Feb 1981 A
4262433 Hagg Apr 1981 A
4267648 Weisz May 1981 A
4279038 Bruckner et al. Jul 1981 A
4287613 Schulz Sep 1981 A
4288399 Siedenstrang et al. Sep 1981 A
4290149 Aileo Sep 1981 A
4297797 Meyers Nov 1981 A
4299038 Epple Nov 1981 A
4302892 Adamik Dec 1981 A
4305212 Coomer Dec 1981 A
4307471 Lovell Dec 1981 A
4321989 Meinzer Mar 1982 A
4338371 Dawn et al. Jul 1982 A
4342157 Gilbert Aug 1982 A
4342158 McMahon Aug 1982 A
4345338 Frieder, Jr. Aug 1982 A
4347637 Ardito Sep 1982 A
4352484 Gertz Oct 1982 A
4355792 Fukuda Oct 1982 A
4356642 Herman Nov 1982 A
D267287 Gooding Dec 1982 S
D267831 Sucato Feb 1983 S
4370754 Donzis Feb 1983 A
4372058 Stubblefield Feb 1983 A
4377042 Bauer Mar 1983 A
4391048 Lutz Jul 1983 A
4398357 Batra Aug 1983 A
4400483 Siedenstrang et al. Aug 1983 A
4400894 Ehrlich Aug 1983 A
4413856 McMahan et al. Nov 1983 A
4418483 Fujita Dec 1983 A
4423000 Teraoka Dec 1983 A
4428306 Dresen et al. Jan 1984 A
4432099 Grick et al. Feb 1984 A
4439936 Clarke et al. Apr 1984 A
4445283 Meyers May 1984 A
4449307 Stubblefield May 1984 A
4453271 Donzis Jun 1984 A
4455765 Sjosward Jun 1984 A
4458430 Peterson Jul 1984 A
4460205 Glance Jul 1984 A
4472472 Schultz Sep 1984 A
4494320 Davis Jan 1985 A
4497123 Ehrlich Feb 1985 A
4510702 Ehrlich, Jr. Apr 1985 A
4513449 Donzis Apr 1985 A
4518643 Francis May 1985 A
4523393 Inohara Jun 1985 A
4534068 Mitchell et al. Aug 1985 A
4535553 Derderian et al. Aug 1985 A
4538301 Sawatzki et al. Sep 1985 A
4538366 Norton Sep 1985 A
4546555 Spademan Oct 1985 A
4553342 Derderian et al. Nov 1985 A
4558470 Mitchell et al. Dec 1985 A
4562651 Frederick et al. Jan 1986 A
4566137 Gooding Jan 1986 A
4566678 Anderson Jan 1986 A
4578296 Miyazaki Mar 1986 A
4586200 Poon May 1986 A
4601367 Bongers Jul 1986 A
4614000 Mayer Sep 1986 A
4616431 Dassler Oct 1986 A
4619055 Davidson Oct 1986 A
4624061 Wezel et al. Nov 1986 A
4627114 Mitchell Dec 1986 A
4631221 Disselbeck et al. Dec 1986 A
4635384 Huh et al. Jan 1987 A
4635981 Friton Jan 1987 A
4642814 Godfrey Feb 1987 A
4657716 Schmidt Apr 1987 A
4666130 Denman May 1987 A
4667423 Autry et al. May 1987 A
4670995 Huang Jun 1987 A
4672754 Ehrlich Jun 1987 A
4676010 Cheskin Jun 1987 A
4680875 DAnieli Jul 1987 A
4695496 Lee Sep 1987 A
4700403 Vacanti Oct 1987 A
4703879 Kastendieck Nov 1987 A
4704746 Nava Nov 1987 A
4710984 Asper Dec 1987 A
4720261 Fishwick et al. Jan 1988 A
4722131 Huang Feb 1988 A
4724549 Herder et al. Feb 1988 A
4730402 Norton et al. Mar 1988 A
4739762 Palmaz Apr 1988 A
4741114 Stubblefield May 1988 A
4753021 Cohen Jun 1988 A
4759136 Stewart et al. Jul 1988 A
4763426 Polus et al. Aug 1988 A
4766614 Cantwell et al. Aug 1988 A
4768295 Ito Sep 1988 A
4798009 Colonel et al. Jan 1989 A
4808469 Hiles Feb 1989 A
4815221 Diaz Mar 1989 A
4817304 Parker et al. Apr 1989 A
4823483 Chapncik Apr 1989 A
4831750 Muller May 1989 A
4838606 Furubayashi et al. Jun 1989 A
4842931 Zook Jun 1989 A
4843741 Yung-Mao Jul 1989 A
4844213 Travis Jul 1989 A
4845786 Chiarella Jul 1989 A
4845861 Moundjian Jul 1989 A
4845863 Yung-Mao Jul 1989 A
4852704 Brockenbrough Aug 1989 A
4853980 Zarotti Aug 1989 A
4856208 Zaccaro Aug 1989 A
4856833 Beekman Aug 1989 A
4858343 Flemming Aug 1989 A
4858606 Hamlin Aug 1989 A
4872220 Haruvy et al. Oct 1989 A
4876053 Norton Oct 1989 A
4883299 Bonar Nov 1989 A
4887369 Bailey Dec 1989 A
4890877 Ashtiani-Zarandi et al. Jan 1990 A
4899467 Mackey Feb 1990 A
4901987 Greenhill et al. Feb 1990 A
4904008 Glance Feb 1990 A
4905382 Yung-Mao Mar 1990 A
4909661 Ivey Mar 1990 A
4912861 Huang Apr 1990 A
4916759 Arai Apr 1990 A
4918841 Turner Apr 1990 A
4920663 Flemming May 1990 A
4922630 Robinson May 1990 A
4922631 Anderie May 1990 A
4923650 Antoon, Jr. et al. May 1990 A
4925224 Smiszek May 1990 A
4930231 Liu Jun 1990 A
4931115 Pajunen Jun 1990 A
4934071 Virgini Jun 1990 A
4941701 Loren Jul 1990 A
4951986 Hanfusa et al. Aug 1990 A
D310893 Broersma Sep 1990 S
4969680 Shimoda Nov 1990 A
4970729 Shimazaki Nov 1990 A
4972611 Swartz Nov 1990 A
4984320 Curley, Jr. et al. Jan 1991 A
4987609 Zahn Jan 1991 A
4993173 Gardener Feb 1991 A
4999931 Vermeulen Mar 1991 A
5011642 Welygan et al. Apr 1991 A
5014449 Richard et al. May 1991 A
5014691 Cueman et al. May 1991 A
5016417 Mentken May 1991 A
5025504 Benston et al. Jun 1991 A
5027803 Scholtz et al. Jul 1991 A
5030501 Colvin et al. Jul 1991 A
5033593 Kazuhito Jul 1991 A
5035009 Wingo, Jr. Jul 1991 A
5035758 Degler et al. Jul 1991 A
5042174 Nichols Aug 1991 A
5042175 Romen et al. Aug 1991 A
5042176 Rudy Aug 1991 A
5042859 Zhang et al. Aug 1991 A
5044096 Polegato Sep 1991 A
5046267 Kilgore et al. Sep 1991 A
5048203 Kling Sep 1991 A
5056162 Tirums Oct 1991 A
5058212 Kamata Oct 1991 A
5066400 Rocklitz et al. Nov 1991 A
5068922 Zahn Dec 1991 A
5083320 Halstead Jan 1992 A
5083361 Rudy Jan 1992 A
5086033 Armor et al. Feb 1992 A
5092060 Frachey et al. Mar 1992 A
5093938 Kamata Mar 1992 A
5097607 Fredericksen Mar 1992 A
5098124 Breed et al. Mar 1992 A
5124191 Seksaria Jun 1992 A
5131174 Drew et al. Jul 1992 A
5150935 Glance et al. Sep 1992 A
5165990 Nakano Nov 1992 A
5168576 Krent et al. Dec 1992 A
5175889 Infusino Jan 1993 A
5204998 Liu Apr 1993 A
5224277 Sang Do Jul 1993 A
5235715 Donzis Aug 1993 A
5244745 Seksaria Sep 1993 A
5263203 Kraemer Nov 1993 A
5271103 Darnell Dec 1993 A
5274846 Kolsky Jan 1994 A
5280890 Wydra Jan 1994 A
5282288 Henson Feb 1994 A
5324460 Briggs Jun 1994 A
5330249 Weber et al. Jul 1994 A
5376318 Ho Dec 1994 A
5409200 Zingher et al. Apr 1995 A
5421035 Klose et al. Jun 1995 A
5423087 Krent et al. Jun 1995 A
5439733 Paire Aug 1995 A
D364487 Tutton et al. Nov 1995 S
5477558 Volker Dec 1995 A
5493791 Kramar Feb 1996 A
5543194 Rudy Aug 1996 A
5545128 Hayes Aug 1996 A
5551094 Navone Sep 1996 A
5555584 Moore et al. Sep 1996 A
5572804 Skaja et al. Nov 1996 A
5581818 Lorenzi et al. Dec 1996 A
5581819 Larneau Dec 1996 A
5588165 Fromme Dec 1996 A
5591379 Shores Jan 1997 A
5595003 Snow Jan 1997 A
5598588 Lee Feb 1997 A
5611153 Fisher et al. Mar 1997 A
5655226 Williams Aug 1997 A
5669079 Morgan Sep 1997 A
5734994 Rogers Apr 1998 A
5741568 Rudy Apr 1998 A
5766704 Allen et al. Jun 1998 A
5891372 Besset et al. Apr 1999 A
5913412 Huber et al. Jun 1999 A
5915537 Dallas et al. Jun 1999 A
5946734 Vogan Sep 1999 A
5950244 Fournier Sep 1999 A
D415420 Chen Oct 1999 S
5976451 Skaja et al. Nov 1999 A
5983405 Casale Nov 1999 A
5992054 Rauch Nov 1999 A
5996126 Barthold et al. Dec 1999 A
6029962 Shorten et al. Feb 2000 A
6051624 Bastin et al. Apr 2000 A
D424246 Ho May 2000 S
D426032 Ho May 2000 S
6070271 Williams Jun 2000 A
6085878 Araki et al. Jul 2000 A
6093468 Toms Jul 2000 A
6098313 Skaja Aug 2000 A
6105162 Douglas et al. Aug 2000 A
6105176 Egger Aug 2000 A
6108825 Bell et al. Aug 2000 A
6154889 Moore, III et al. Dec 2000 A
6199942 Carroll et al. Mar 2001 B1
6219850 Halstead et al. Apr 2001 B1
6226801 Alexander May 2001 B1
6247745 Carroll et al. Jun 2001 B1
D447604 Walters et al. Sep 2001 S
6298497 Chartrand Oct 2001 B1
6326077 Monaci Dec 2001 B1
6351854 Whalen et al. Mar 2002 B1
6353953 Tanaka et al. Mar 2002 B1
D455522 Royes et al. Apr 2002 S
6378140 Abraham Apr 2002 B1
6381759 Katz May 2002 B1
6383431 Dobrin et al. May 2002 B1
6391935 Hager et al. May 2002 B1
6425141 Ewing et al. Jul 2002 B1
6434755 Halstead et al. Aug 2002 B1
6443513 Glance Sep 2002 B1
6446270 Durr Sep 2002 B1
6453476 Moore, III Sep 2002 B1
D464174 Lu Oct 2002 S
6457261 Crary Oct 2002 B1
6460207 Papay et al. Oct 2002 B1
6467099 Dennis et al. Oct 2002 B2
6485446 Brother et al. Nov 2002 B1
6499147 Schiebl et al. Dec 2002 B2
6532602 Watters et al. Mar 2003 B2
6533258 Monson et al. Mar 2003 B2
6536052 Tao et al. Mar 2003 B2
6550850 Laborie et al. Apr 2003 B2
D475486 Ide et al. Jun 2003 S
6604246 Obreja Aug 2003 B1
D481171 Ho Oct 2003 S
6634045 DuDonis et al. Oct 2003 B1
6658671 Von Holst et al. Dec 2003 B1
6671889 Dennis et al. Jan 2004 B2
6679544 Hubbert et al. Jan 2004 B1
6679967 Carroll, III et al. Jan 2004 B1
6681409 Dennis et al. Jan 2004 B2
6682128 Carroll, III et al. Jan 2004 B2
D491695 Long Jun 2004 S
6752450 Carroll, III et al. Jun 2004 B2
D492818 Ide et al. Jul 2004 S
D495096 Long Aug 2004 S
6803005 Dennis et al. Oct 2004 B2
6926947 Seckel Aug 2005 B1
6994333 Lobry et al. Feb 2006 B2
D521191 Berger May 2006 S
D523180 Frye Jun 2006 S
7078443 Milliren Jul 2006 B2
D535059 Lam Jan 2007 S
7178175 Rogers et al. Feb 2007 B2
D541480 Turner Apr 2007 S
7228648 Yang Jun 2007 B2
7240376 Ide et al. Jul 2007 B2
7255910 Seckel Aug 2007 B1
7299505 Dennis et al. Nov 2007 B2
7316036 Rudolf et al. Jan 2008 B2
7338038 Maurer et al. Mar 2008 B2
7341776 Milliren et al. Mar 2008 B1
7360822 Carroll, III et al. Apr 2008 B2
D570055 Ferrara et al. May 2008 S
7377577 Carroll, III et al. May 2008 B2
7384095 Cormier Jun 2008 B2
7404593 Cormier Jul 2008 B2
D577866 Frye et al. Sep 2008 S
D581599 Ferrara et al. Nov 2008 S
D582607 Ferrara et al. Dec 2008 S
7458172 Aveni Dec 2008 B2
7464414 McDuff Dec 2008 B2
D584456 Ferrara Jan 2009 S
7513344 Toccalino Apr 2009 B2
7574760 Foley et al. Aug 2009 B2
D603103 Ferrara et al. Oct 2009 S
7600268 Rogers et al. Oct 2009 B2
7603725 Harris Oct 2009 B2
7625023 Audi et al. Dec 2009 B2
D608688 Dalzell et al. Jan 2010 S
7673351 Copeland et al. Mar 2010 B2
7676854 Berger et al. Mar 2010 B2
7677538 Darnell et al. Mar 2010 B2
D617503 Szalkowski Jun 2010 S
7730635 Aveni et al. Jun 2010 B2
D621099 Johnson et al. Aug 2010 S
D622449 Culley et al. Aug 2010 S
7770239 Goldman Aug 2010 B1
7774866 Ferrara Aug 2010 B2
7802320 Morgan Sep 2010 B2
7827617 Trainor et al. Nov 2010 B2
7857610 Rossi et al. Dec 2010 B2
7866248 Moore et al. Jan 2011 B2
7895681 Ferrara Mar 2011 B2
D637356 Green et al. May 2011 S
7950073 Ferrara May 2011 B2
D640422 Green et al. Jun 2011 S
7959023 Ferrara Jun 2011 B2
7960473 Kobayashi et al. Jun 2011 B2
D645210 Chilson et al. Sep 2011 S
8039078 Moore et al. Oct 2011 B2
8047602 Sielhorst et al. Nov 2011 B2
8056972 Marsden Nov 2011 B2
D650132 Chilson et al. Dec 2011 S
8069498 Maddux et al. Dec 2011 B2
8087187 Aveni et al. Jan 2012 B2
8104593 Lin Jan 2012 B2
D654628 Aris et al. Feb 2012 S
D655048 Moeller et al. Feb 2012 S
D655051 O'Keefe et al. Feb 2012 S
8201269 Maddux Jun 2012 B2
8205272 Green Jun 2012 B2
D663076 Parsons et al. Jul 2012 S
8220072 Dodd Jul 2012 B2
D665663 Krupa Aug 2012 S
D666779 Harris Sep 2012 S
8298648 Turner Oct 2012 B2
8348031 Smaldone et al. Jan 2013 B2
D677006 Pfanner et al. Feb 2013 S
D679058 Szalkowski Mar 2013 S
8387164 Maddux et al. Mar 2013 B2
8399085 Moore et al. Mar 2013 B2
D683905 Wills Jun 2013 S
D691329 Anderson Oct 2013 S
8544117 Erb Oct 2013 B2
8561214 Turner Oct 2013 B2
8590869 Tavares et al. Nov 2013 B2
8702895 Turner Apr 2014 B2
8713719 Turner May 2014 B2
8726424 Thomas May 2014 B2
8863320 Kelly Oct 2014 B2
8950735 Reynolds Feb 2015 B2
9066551 Van Waes Jun 2015 B2
9131744 Erb Sep 2015 B2
20020017805 Carroll, III et al. Feb 2002 A1
20020120978 Moore Sep 2002 A1
20020152542 Dennis et al. Oct 2002 A1
20020163114 Lobry Nov 2002 A1
20020168496 Morimoto et al. Nov 2002 A1
20030106138 Guay Jun 2003 A1
20030200677 Abraham Oct 2003 A1
20030217483 Abraham Nov 2003 A1
20030230866 Lee Dec 2003 A1
20040128860 Smaldone Jul 2004 A1
20040139531 Moore et al. Jul 2004 A1
20040154191 Park Aug 2004 A1
20040188898 Siefermann et al. Sep 2004 A1
20040199981 Tucker Oct 2004 A1
20040200094 Baychar Oct 2004 A1
20050050617 Moore et al. Mar 2005 A1
20050060793 Rosie Mar 2005 A1
20050166302 Dennis Aug 2005 A1
20050196592 Tao et al. Sep 2005 A1
20050210567 Rogers et al. Sep 2005 A1
20050217006 Sutter Oct 2005 A1
20050268383 Harris Dec 2005 A1
20060059605 Ferrara Mar 2006 A1
20060059606 Ferrara Mar 2006 A1
20060064900 Aveni Mar 2006 A1
20060070170 Copeland et al. Apr 2006 A1
20060101559 Moore et al. May 2006 A1
20060177635 Pepe et al. Aug 2006 A1
20060195974 Burkhart et al. Sep 2006 A1
20070000032 Morgan Jan 2007 A1
20070083965 Darnell et al. Apr 2007 A1
20070089219 Trainor et al. Apr 2007 A1
20070190292 Ferrara Aug 2007 A1
20070190293 Ferrara Aug 2007 A1
20070281125 Moore, III et al. Dec 2007 A1
20080035442 Spingler Feb 2008 A1
20080036242 Glance et al. Feb 2008 A1
20080155735 Ferrara Jul 2008 A1
20080166524 Skaja et al. Jul 2008 A1
20080236378 Sane et al. Oct 2008 A1
20080256686 Ferrara Oct 2008 A1
20080307568 Sajic Dec 2008 A1
20090038055 Ferrara Feb 2009 A1
20090049586 Wirthenstaetter Feb 2009 A1
20090106882 Nimmons et al. Apr 2009 A1
20090114083 Moore et al. May 2009 A1
20090178184 Brine, III et al. Jul 2009 A1
20090179361 Vito et al. Jul 2009 A1
20090210998 Rolla Aug 2009 A1
20090222975 Green et al. Sep 2009 A1
20090265841 Ferrara Oct 2009 A1
20090289026 Ferrara Nov 2009 A1
20100000009 Morgan Jan 2010 A1
20100037482 Litchfield et al. Feb 2010 A1
20100129573 Kim May 2010 A1
20100186150 Ferrara et al. Jul 2010 A1
20100258988 Darnell et al. Oct 2010 A1
20100264571 Tarazona De La Asuncion et al. Oct 2010 A1
20100273944 Kobayashi et al. Oct 2010 A1
20100295221 Kligerman et al. Nov 2010 A1
20100295270 Marsden Nov 2010 A1
20100299812 Maddux et al. Dec 2010 A1
20100299813 Morgan Dec 2010 A1
20110004971 Benderradji Jan 2011 A1
20110047678 Barth et al. Mar 2011 A1
20110047685 Ferrara Mar 2011 A1
20110061154 Turner Mar 2011 A1
20110074075 Henry et al. Mar 2011 A1
20110107503 Morgan May 2011 A1
20110131695 Maddux et al. Jun 2011 A1
20110167542 Bayne et al. Jul 2011 A1
20110198788 Hines Aug 2011 A1
20110247744 Turner Oct 2011 A1
20110277222 Garneau Nov 2011 A1
20110296594 Thomas Dec 2011 A1
20120017358 Princip Jan 2012 A1
20120036620 Harris Feb 2012 A1
20120060251 Schimpf Mar 2012 A1
20120079646 Belanger Apr 2012 A1
20120174293 Milliren et al. Jul 2012 A1
20130152287 Cormier et al. Jun 2013 A1
20130153350 Ferrara Jun 2013 A1
20130239303 Cotterman et al. Sep 2013 A1
20140325745 Erb Nov 2014 A1
Foreign Referenced Citations (39)
Number Date Country
2598015 Aug 2006 CA
2663728 Sep 2008 CA
2681439 Nov 2008 CA
2696242 Feb 2009 CA
101227842 Jul 2008 CN
101627222 Jan 2010 CN
101707885 May 2010 CN
101720999 Jun 2010 CN
101873811 Oct 2010 CN
0832572 Apr 1998 EP
0926990 Jul 1999 EP
1685019 Aug 2006 EP
1848293 Oct 2007 EP
1927294 Jun 2008 EP
1937466 Jul 2008 EP
1848293 Jul 2009 EP
2092210 Aug 2009 EP
2132516 Dec 2009 EP
2146177 Jan 2010 EP
2180802 May 2010 EP
2330138 Dec 2009 ES
2717659 Sep 1995 FR
1112163 Nov 2009 HK
54-148845 Nov 1979 JP
2006188661 Sep 2010 JP
659134 Apr 1979 SU
9105489 May 1991 WO
2006005189 Jan 2006 WO
2006022679 Mar 2006 WO
2006088500 Aug 2006 WO
2006089098 Aug 2006 WO
2006089235 Aug 2006 WO
2007035800 Mar 2007 WO
2008011708 Jan 2008 WO
2008105840 Sep 2008 WO
2008140650 Nov 2008 WO
2009020583 Feb 2009 WO
2009134334 Nov 2009 WO
2010087957 Aug 2010 WO
Non-Patent Literature Citations (31)
Entry
International Search Report and Written Opinion for International Patent Application No. PCT/US1 2/59474 dated Jan. 7, 2013.
The Messier Project: The M1 1 Helmet, 222.cascadeicehockey.com/the-helmet.html (2 pages) Jan. 19, 2010.
The Messier Project: the Technology, www.casecadeicehockey.com/the-technology.html, video slides of the Seven Technology, the video shows 80% compression (2 pages) Jan. 19, 2010.
Schutt Sports: Helmets—HotHead Technology, www.schuttsports.com/aspx/Sport/ProductCatalog.aspx7id-953 (1 page) Jan. 19, 2010.
Technology/SKYDEX, www.skydex.com/technology (3 pages) Jan. 19, 2010.
Blast Limiting/SKYDEX, www.skydex.com/technology/blast—limiting (7 pages) Jan. 19, 2010.
Impact Mitigation/SKYDEX, www.skydex.com/technology/impact—mitigation (7 pages) Jan. 19, 2010.
Manufacturing/SKYDEX, www.skydex.com/technology/manufacturing (2 pages) Jan. 19, 2010.
Development Process/SKYDEX, www.skydex.com/technology/development—process (2 pages) Jan. 19, 2010.
Selection Guide/SKYDEX, www.skydex.com/technology/selection—guide (3 pages) Jan. 19, 2010.
Patent Informaton/SKYDEX, 222.skydex.com/technology/patent (2 pages) Jan. 19, 2010.
Vs. Foam/SKYDEX, www.skydex.com/technology/vs—foam (1 page) Jan. 19, 2010.
Markets & Products/SKYDEX, www.skydex.com/markets—products (3 pages) Jan. 19, 2010.
Military Ballistic Helmet Pads/SKYDEX, www.skydex.com/helmet—pads (6 pages) Jan. 19, 2010.
Body Padding/SKYDEX, www. Wkydex.com/athletic/body—padding (1 page) Jan. 19, 2010.
International Search Report and Written Opinion for International Patent Application No. PCT/US1 1/38870 dated Oct. 26, 2011.
International Preliminary Report on Patentability for International Patent Application No. PCT/US1 138870 dated Dec. 4, 2012.
Search Report from European Patent Application No. 13844406.2 date Jul. 17, 2015.
Final Office Action from U.S. Appl. No. 14/524,675 dated Apr. 29, 2016.
International Search Report and Written Opinion from International Application No. PCT/US2013/063188 date of mailing Mar. 6, 2014.
International Search Report and Written Opinion from International Application No. PCT/US2014/062409 date of mailing Feb. 2, 2015.
Office Action from U.S. Appl. No. 14/524,675 dated Dec. 8, 2015.
International Search Report and Written Opinion from International Application No. PCT/US2012/059474 date of mailing Jan. 7, 2013.
Search Report from European Patent Application No. 13 844 406.2 dated Jun. 15, 2016.
Office Action from U.S. Appl. No. 13/777,270 dated Jun. 1, 2016.
Patent Translate Powered by EPO and Google, Description of Translation of JP2006188771, May 2016, Espacenet, pp. 1-15.
Patent Translate Powered by EPO and Google, Description of Abstract of JP2006188771, May 2016, Espacenet, p. 1.
Patent Translate Powered by EPO and Google, Description of Claims of JP2006188771, Jan. 2016, Espacenet, pp. 1-3.
Office Action from U.S. Appl. No. 14/524,675 dated Sep. 1, 2016.
Response to Office Action dated Apr. 29, 2016 from U.S. Appl. No. 14/524,675 dated Jul. 29, 2016.
International Search Report and Written Opinion from International Application No. PCT/US2011/038870 date of mailing Oct. 26, 2011.
Related Publications (1)
Number Date Country
20130000017 A1 Jan 2013 US
Provisional Applications (1)
Number Date Country
61503822 Jul 2011 US