The invention relates to mechanical structures in general and particularly to apparatus and methods of preventing rapid movement of the human head relative to the body.
Various sports are involved with potential rapid movement of the player's head and it is one of the most common causes of injury resulting from impact force that leads to concussion and other traumas. Football is one of the most popular sports among youth. However, according to the American Orthopedic Society for Sports Medicine website, it is leading in the number of injuries that are sustained by the players. Besides injuries and long term damage, it also causes death to players. According to the U.S. Product Safety Commission, in 2007 close to one million football-related injuries of athletes under the age of 18 were treated in emergency rooms, doctor's offices, and clinics. Regardless of the protective equipment that is currently used, the force that brings the players down to the ground leads to bodily injury and the highest concern is that of damage to the players' head and neck.
There is a need to protect the head of players and their susceptibility to concussion, which is a change in the mental state due to a traumatic impact. The helmets that are currently in use are unable to prevent the high speed forceful movement of the head that results from impact during games.
There is a need for protecting the head of users of plurality of games, particularly in football and car racing.
There are previous solutions for protecting the player's from impacts during the games and we will cite some of them here.
U.S. Pat. No. 1,944,194 issued to McNeil et. al. on Mar. 15, 2004, discloses a sport equipment for protecting the cervical spine where a pair of cylinders connect the helmet to the shoulders or a vest on the players and are interconnected and controlled by an outside pilot-operated valve. The cylinders are rigidized when an impact creates a higher pressure inside the cylinders but this equipment only prevents the cervical spine from being compressed in the axial direction.
U.S. Pat. No. 209,617 issued to Castillo on Feb. 28, 2008, discloses a system for protecting the head by connecting a helmet to the shoulder cuff using a plurality of pistons interconnected with tubes to a central reservoir.
U.S. Pat. No. 305,350 issued to Ericksen et. al. on May 31, 2012, discloses a position sensitive and position activated apparatus for dampening the motion of a piston inside a cylinder that may not be activated in the fully extended configuration of the apparatus.
U.S. Pat. No. 157,543 issued to Huang et. al. on Dec. 4, 2015, discloses a device to reduce traumatic brain injury that includes a sensor, a linkage, and a processing element. The motion restriction of the linkage element is controlled electrically (sensor and processing unit) and a fluid moves thru a side path.
Although the devices and methods present in the prior art deserve undeniable merits it is believed that the method and apparatus presented in the current solution are different from prior art, present a simpler solution and a higher level of protecting the players from impacts or higher accelerations/decelerations.
According to one aspect, the invention features an apparatus, comprising a mechanical structure having a plurality of dampeners attached to a base structure and a top structure that are connecting the helmet to the shoulder and chest of the user. The dampener is a self-controlled device that becomes rigid upon being subjected to high velocity movement that takes place when the helmet is impacted.
In one embodiment, the apparatus that consists of a plurality of dampeners controls the same number of Degrees of Freedom (DoF). This apparatus dampens independent movement of the head relative to the torso. The dampeners are configured to allow length adjustment to match the dimensions of different players. Rigidizing the dampeners locks the helmet position relative to the torso and distributes the impact force to the player's body. Thus, the acceleration and speed of the head are dampened.
In another embodiment, the dampeners are designed in a piston configuration where the large area of the piston pushes on a viscoelastic paste (such as “silly-putty”). The paste behaves as viscous fluid when subjected to slow motion but becomes rigid material when subjected to high speed movement.
In another embodiment, the dampener contains a fluid as a dampening filler to reduce the acceleration of the players head when it is subject to impact.
In yet another embodiment, the dampener contains actively controlled viscosity fluid that dampens rapid movement by using control electronics. Such fluids include Electro Rheological Fluids (ERF) that in milliseconds become increasingly viscous with the increase in the electric field to which they are subjected. In addition, Magneto Rheological Fluids (MRF) respond in milliseconds with increasing viscosity as a function of the increase in the magnetic field. ERF and MRF require a sensor, such as an accelerometer or impact sensor, to indicate to the apparatus that activation is needed and at what level.
In yet another embodiment, pistons are used with an integrated locking mechanism immersed in a fluid inside a housing. The piston includes a free floating perforated element that is constrained by a set of springs. Motion of the piston with an up to a predefined speed level allows the piston to move freely inside the housing. If the predefined speed is exceeded the fluid flows through the floating element overcomes the spring force and moves the floating element to block the fluid flow through the piston and locks the piston. Locking the piston locks the dampener and prevents the relative motion of its extremities.
In yet a further embodiment, it is designed to prevent rapid rotation and displacement of the helmet along the various potential axes onto which the head may be caused to rapidly move.
In still a further embodiment, the apparatus dampeners are covered with a shroud to protect the user from having other players grab the dampeners and use them as a handle.
In another embodiment, the shroud cover has printed graphics such as advertisement.
The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the claims.
The objects and features of the invention can be better understood with reference to the drawings described below, and the claims. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
We describe a novel design of a Helmet Impact Self-Controlled Restrainer (HISCoR) designed to prevent rapid rotation and displacement along the various potential axes onto which the head may be caused to move rapidly. The restrainer, 10, shown in
To prevent the possibility of another player grabbing the individual dampeners of the HISCoR apparatus and use it as a handle, a shroud covers the restrainer, 10. To make the shroud visually pleasing it is produced in colors with printed graphics.
The restrainer includes a base structure, 11, a top structure, 12, and a plurality of connecting elements, 15, as shown in
In one embodiment, as shown in
The fluid inside the dampener element consists of a viscoelastic fluid, such as a “silly-putty” paste, inside the cylinder, which is self-activated, taking advantage of these fluids' property of being viscous liquid at low movement speeds but becoming rigid at high movement speeds. An illustration of a viscoelastic filled dampener and cross-section at three extension positions when being moved slowly are shown in (
The ball joints, 58, on the two ends of the dampening element are used to provide flexible rotation of the dampener on the mounting structure. The ball joints at the two ends can be replaced by universal joints (2 DoF) when the piston inside the cylinder is allowed free rotation about the central axis. Holes on the cylinder hollow shaft allow free movement of the piston shaft when moved slowly, preventing the buildup of air pressure to restore the assembled piston position.
Any fluid (including water) is suitable as a dampening material for the floating element piston configuration.
Active fluid can provide controlled dampening. It uses control electrics and it is electrically powered and equipped with impact sensor to indicate the need to activate the dampener and the required level.
Electro Rheological Fluids (ERF) provides active fluid material. These fluids respond in milliseconds to become viscous at levels that are relative to the electric field to which they are subjected.
Magneto Rheological Fluids (MRF) also provides active fluid material. These fluids respond in milliseconds can become viscous relative to the magnetic field to which the fluids are subjected. MRF are used in most of the high end cars today, the shock absorbers are equipped with MRF.
In yet another embodiment, a locking piston dampener is shown in
One end of the hollow shaft, 66, and the one end of the through piston shaft, 72, represent the two ends, 68, of the dampening element, 60. One end will connect to one of the base or top structure and the other end will connect to the other. The housing, 65, presents two seals, 69, for the piston shafts creating a sealed cavity, 67, filled with a fluid. The piston body, 71, is enclosed in this fluid filled cavity and the through shaft extends through both ends of the cavity. Having the piston shaft extend through both ends of the cavity maintains constant volume of the parts inside the fluid filled cavity, 67, regardless of the position of the piston in this cavity.
When the piston moves slowly from one side to the other, the fluid accommodates this movement by flowing inside the housing through the piston.
Attaching the dampening elements between the helmet and the shoulders prevents the head from moving quickly upon impact. The dampeners allow free movement of the head when they move slowly and it takes place by allowing the piston to displace fluid or paste from the direction towards which it moves into the back section behind the piston. Upon rapid movement or impact, the fluid becomes highly viscous rigidizing the dampeners and preventing movement of the head relative to the torso/shoulder. Ball joints on the two ends of the individual dampeners allow flexible rotation of the individual dampeners on the mounting structure (
A set of dampeners are mounted in a parallel platform configuration. In the illustration shown in this patent 6 elements are used (
The attachment of both moving and base structures of the HISCoR platform can be done to preselected locations on the helmet and shoulder and chest protector allowing for rapid attachment and removal. Alignment and restraining features can be designed on the helmet, shoulders, chest protector, and the HISCoR to use attachment such as a bolt or a flexible element.
In another embodiment, shown in
The HISCoR apparatus is covered with a shroud, shown in
Helmet Impact Self-Controlled Restrainer (HISCoR) is designed to prevent rapid rotation and displacement along the various potential axes onto which the head may be caused to move rapidly. To prevent the possibility of another player grabbing the dampeners of the HISCoR apparatus and use it as a handle, a shroud covers the fixture.
Any patent, patent application, patent application publication, journal article, book, published paper, or other publicly available material identified in the specification is hereby incorporated by reference herein in its entirety. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material explicitly set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the present disclosure material. In the event of a conflict, the conflict is to be resolved in favor of the present disclosure as the preferred disclosure.
While the present invention has been particularly shown and described with reference to the preferred mode as illustrated in the drawing, it will be understood by one skilled in the art that various changes in detail may be affected therein without departing from the spirit and scope of the invention as defined by the claims.
This application claims priority to and the benefit of U.S. provisional patent application Ser. No. 62/563,567, filed Sep. 26, 2017, which application is incorporated herein by reference in its entirety.
The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected to retain title.
Number | Name | Date | Kind |
---|---|---|---|
20040194194 | McNeil | Oct 2004 | A1 |
20080209617 | Castillo | Sep 2008 | A1 |
20120305350 | Ericksen | Dec 2012 | A1 |
20130205480 | Nagely | Aug 2013 | A1 |
20160157543 | Huang | Jun 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20200015538 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62563567 | Sep 2017 | US |