In a first aspect, the present disclosure relates to a helmet mounting system and method for integrating a viewing device with a field helmet and for remotely supplying power to an attached optical device from a power supply remotely located on the helmet. In a second aspect, a mounting shoe interface is provided which allows power, ground and/or signal to pass from one device to another through the interface. The mounting shoe interface herein finds utility with the helmet mounting system as shown and described herein, however, it will be recognized that the mounting system is equally applicable to any type of mounting system which can be used to provide power or a data signal to and from multiple items, wherein the items can readily be connected, disconnected and interchanged.
The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating preferred embodiments and are not to be construed as limiting the invention.
Referring now to
The connection bracket 504 couples to the helmet 508 utilizing a mechanical fastener 516 such as a threaded fastener or the like. Also, a pair of laterally spaced-apart front hook members 578 may be used to engage the brim of the helmet 508, thereby providing three points of attachment of the connection bracket 504. The hook members 578 may include noise and/or vibration dampening members 579 formed of a flexible, elastic, or resilient material. The dampening members 579 may be pads, grommets engaging holes formed in the hooks 578, or the like. In addition, a strap 584 which is attached to a bracket 600 on the top of connection bracket 504 runs over the top of the helmet 508 and provides an additional point of attachment of the connection bracket 504. Commonly, military helmets are provided with a single hole predrilled in the front thereof and the embodiment 500 is advantageous in that it may readily be adapted to employ such a predrilled hole for receiving the fastener 516.
Referring now to
The helmet mount assembly 530 includes a sliding plate 510 which slides vertically with respect to the vertical adjust plate assembly 506. The sliding plate 510 is slidably received over locking rails 622 disposed on the plate 506. A first cover plate 624 is secured to the upper open end of the sliding plate 510 and a second cover plate 625 is secured to the lower open end of the sliding plate 510. The cover plates 624, 625 act as stops to limit the extent of sliding movement of the sliding plate 510 and to prevent the sliding plate 510 from disengaging the rails 622. Covering the ends also helps to prevent debris from entering the space between the sliding plate 510 and the vertical adjustment plate 506, which may interfere with the sliding movement of the plates 510 and 506 of the helmet mount assembly 530. The sliding plate 510 is selectively positionable relative to the plate 506 to provide a vertical adjustment of the optical device relative to the eyes of the wearer and is described in greater detail below.
The rear plate 502 secures the helmet mount assembly 530 to the helmet 508 via the connection bracket 504. The rear plate 502 includes the interface base member 610 with a first channel 626. The first channel 626 receives a tension member 620, such as a captured spring, which is secured in the channel 626 by a locking tongue member 628. A first end of the locking tongue member 628 engages the tension member 620 and a second end includes a transverse groove or recess 630 and the locking tongue 616. An actuator bar 590 slides into recesses 632 of the interface base 610 and the recess 630 of the locking tongue member 628, thereby securing the tongue member 628 into the channel 626 in cooperation with pins 634 and 636 engaging aligned openings 638 and 640 in the base member 610 and locking tongue 628, respectively. The actuator bar 590 has two elongated openings 642, each engaging one of the pins 634, and an elongated opening 644 engaging the pin 636. The elongated openings 642 and 644 allow transverse sliding movement of the actuator 590 and cooperates with the tension of member 620 to enable the locking tongue member 628 to be moved from an open position to a locked or engaged position wherein the locking tongue 616 protrudes out from the rear plate 502 to engage the lower groove lip 592. The elongate openings 642 extend transversely and the pins 634 constrain the sliding movement of the actuator 590 to transverse movement. The opening 644 extends at an angle relative to the transverse openings 642. As the pin 636 runs in the angled opening 644, the tongue member 628 is selectively advanced and retracted. The ends of the elongate openings 642 may be slightly enlarged such that the spring tension will assist in retaining the actuator 590 in the selected one of the locked and unlocked positions.
When the locking tongue 616 is moved into its engaged position, the rear plate 502 can be secured to the connection bracket 504. To secure the rear plate 502 to the connection bracket 504, a user would slide the actuator bar 590, e.g., to the user's right to cause the pin 636 to ride to the upper end of the angled slot 644, thereby retracting the locking tongue member 628 against the urging of the tension member 620. An upper protrusion 594 on the rear plate 502 is inserted into the upper groove lip 596 and the rear plate 502 is set into place on connection bracket 504. The actuator bar 590 is then slid to the user's left to cause the locking tongue 616 to engage the lower groove lip 592.
The sliding plate 510 includes a pair of pivot arms 522, a pivot sleeve 528 and a pivot pin assembly 524. The pivot sleeve 528 is pivotally attached to the pivot arms 522. The pivot arms 522, the pivot sleeve 528 and pivot pin assembly 524 create a force to overcome mechanism which includes a pivot pin 646 extending through the transversely extending pivot sleeve 528 which carries a pivoting carriage assembly 532.
Two washers 548, 550 are seated on the ends of the pivot sleeve 528 and fit between the pivot sleeve 528 and arms 522. The sleeve 528 includes first and second transversely extending channels or grooves 668a and 668b on the interior surface thereof. The pivot pin 646 also extends through openings 523 in pivot arms 522 to connect the sliding plate assembly 510 and the carriage assembly 532 in hinged fashion.
The pivot pin 646 includes one or more bores 650 (two in the embodiment shown) extending transversely with respect to the pivot axis 670. Each of the bores 650 includes one or more (four in the embodiment shown) spring washers 664 (e.g., wave disc springs, Belleville washers, curved disc springs, etc.) seated with the respective bore 650. Each bore includes a plug 649 seated over the wave springs to capture the wave springs within the bore 650. Each of the plugs 649 includes a radiused upper (in the orientation shown in
An angle or tilt adjustment knob 518 is also provided on the pivot pin assembly 524 for adjusting the tilt angle of the optical device 512. The angle or tilt adjustment knob 518 includes a threaded rod 520 rotatably engaging a mating threaded opening 652 in the pivot arm 522. The arm 522 rotates relative to the plate 524, which includes an elongate or curvate opening or slot 654 receiving the threaded rod 520. Loosening the knob 518 allows adjustment of the optics to a desired tilt angle according to the user's eye position and a desired line of sight, whereby the tilt angle may then be secured in the desired position by tightening the knob 518. Alternatively, the knob 518 may include a cam 519 received in opening 654, wherein the tilt angel is adjusted by changing the angular position of the knob 518 and cam 519.
A vertical adjustment lever 514 includes a threaded screw 656 which travels through an opening 658 and engages a cam lock 660. A spring washer 662, e.g., a Belleville spring washer, is interposed between the lever 514 and the sliding plate assembly 510, which is compressed to provide a locking tension when the lever 514 is pivoted to the locked position and uncompressed when the lever is in the unlocked position. The cam lock 660 interfaces with the vertical adjustment plate assembly 506 of the rear plate 502.
When the lever 514 is in the unlocked position, the elongate dimension of the cam lock 660 extends parallel to the channel defined between the parallel rails 622 allowing the assembly 510 to slide freely up and down to provide an infinitely adjustable vertical adjustment mechanism. In addition, the tension is released in the spring washer 662, allowing the cam lock 660 to move slightly upward. When the assembly 510 is at a desired vertical position relative to the plate 506 (e.g., when an attached viewing device is at the correct vertical position relative to the eyes of the user), the lever 514 is pivoted to the locked position.
When the lever 514 is turned to the locked position, the cam lock 660 interacts with the locking rails 622 of plate 506 securing the vertical adjustment assembly 510 in the desired position. In the depicted preferred embodiment, the cam lock 660 has ears (not shown) extending in the elongate direction of the cam lock 660. The rails 622 cooperate with the plate 506 to define a generally T-shaped channel. The rails 622 may include a ramped or beveled edge to facilitate sliding movement of the ears (not shown) into the T channel as the lever 514 is rotated to the locked position. As the cam lock 660 is rotated, the ramped surface of the T-channel draws the cam lock 660 downward, compressing the spring washer 662 (not shown) and thus providing a tensioning force to secure the lever 514 in the locked position. As an alternative to or in addition to the ramped surface of the T channel defined by the rails 622, the ears (not shown) could also be ramped or beveled to facilitate movement into the T-channel as the lever 514 is pivoted to the locked position.
Movement of the vertical adjustment assembly 510 enables adjustment of the vertical position of an optical device relative to the wearer's eye position and desired line of sight. Once a desired vertical position is located, the lever 514 is moved back to a locked position and the cam lock 660 engages with locking rails 622 preventing vertical movement of the assembly 510. In this manner, using the vertical adjustment lever 514 and tilt adjustment knob 518 an attached optical device 512 can be positioned to a desired vertical position before the eye of the user. In the depicted embodiment, the optical device 512 is positioned before the right eye of the user.
A horizontal fore and aft adjustment assembly 532 is attached to the pivot sleeve 528. The horizontal fore and aft adjustment assembly 532 includes a fore and aft sliding arm 534, a slide carriage 536, a release button 538, a left and right sliding arm 544, an adjustment knob 554, and a helmet interface assembly 546. The sliding arm 534 is attached to the pivot sleeve 528 via a mechanical fastener 674. The exterior of the sliding arm 534 has a plurality of ridges 540 (eighteen in the embodiment shown) and fits within the opening of the slide carriage 536 having a release button 538. When the release button 538 is depressed the slide carriage 536 may be moved fore or aft along the sliding arm 534. When the user moves the optical device 512 into the desired position by sliding the slide carriage 536 along the sliding arm 534, and releases the button 538, the slide carriage 536 engages the plurality of ridges 540 associated with its position and locks the optical device 512 into the desired fore/aft position. The user may customize the fore and aft sliding arm 534 by attaching a stop 672 to the bottom of the sliding arm 534. The addition of the stop 672 enables a user to easily position the optical device 512 into the desired fore/aft position after the optical device 512 has been moved away from the user's eye or placed in a stowed position by stopping the aft movement of the optical device 512 once the set position is reached.
As best seen in
In operation, a user wishing to lock the helmet mount assembly 530 in the operational position slides protrusions 542 against the urging of spring 686 to the fore position of elongated openings 680. When protrusions 542 are slid to a forward position the arms 692a and 692b move forward within sliding arm 534 and pin 682 slides out of engagement with a channel 690 on the pivot pin 646. When it is desired to move the optical device 512 to the stowed position, the wearer slides the protrusions 542 to the unlocked or aft position within elongated openings 680 thereby moving pin 682 to engage with channel 690. Once pin 682 engages channel 690 the user applies a pivoting force to the optical device 512. When the force applied is sufficient to overcome the spring force of the spring washers 664, the plugs 649 will be moved inwardly against the urging of the spring washers 664. The optical device 512 may be pivoted upward until the protrusions 648 are aligned with the channel 668a at which time the spring washers 664 will urge the protrusions 648 into the channel 668a and provide positive retention of the goggles in the stowed position. If the user desires a lower profile stowed position, the user may depress release button 538 and rotate the slide carriage 536 to place the optical device 512 closer to helmet 508. The two, alternative stowed positions are best seen in
Referring to
In addition, to left and right adjustment of the optical device 512 the sliding arm 544 also enables the user to rotate the optical device 512 from its depicted position in front of the user's right eye to a position in front of his left eye using the locking mechanism. By releasing the lever 558 the user may slide the slide carriage 536 to engage circular channel 702 which disengages the teeth (not shown) on the bottom of slide carriage 536 enabling the user to rotate the slide arm 544 180 degrees from in front of the right eye, as shown in
The helmet interface assembly 546 is secured to the sliding arm 544 via a knob 554 and a pin 704. The pin 704 is inserted into opening 706 of the slide arm 544 and knob 544 is screwed onto the pin 704 to secure the power interface 560 of the helmet interface assembly 546 to the sliding arm 544. A protrusion 598 on the top of the power interface 560 engages the rails 708 of the slide arm 544 to prevent the helmet interface assembly 546 from rotating during operation. When the user changes the side that the optical device 512 is on the user must rotate the sliding arm 544 180 degrees, as described above, and he must also rotate the interface assembly 546 180 degrees. In order to rotate the interface assembly 546 the user loosens the knob 544 which disengages the protrusion 598 from the rails 708 thereby enabling the interface assembly 546 to freely rotate the necessary 180 degrees. Once the interface assembly 546 rotates to place the optical device 512 in the desired operational position, the user tightens the knob 554 and once again secures the protrusion 598 between the rails 708 to prevent the interface assembly 546 and attached optical device 512 from rotating during operation.
The helmet interface assembly 546 also includes a mounting shoe receiver 564 and a lever 562. The mounting shoe receiver 564 has a channel 710 for receiving a first interface 712. Once the first interface 712 is inserted into the channel 710 it is secured to the mounting shoe receiver 564 via fasteners 714. When the optical device 512 is secured to the mounting shoe receiver 564 the first interface 712 provides power to the optical device 512 through the electrical contacts (not shown) of its mounting shoe (not shown). The optical device 512 is secured to the interface assembly 546 by releasing the lever 562, inserting the mating mounting shoe (not shown) of the optical device 512 into the mounting shoe receiver 564 and closing the lever 562. To remove the optical device 512 from the mounting shoe receiver 564 the user releases the lever 562 and slides the mounting shoe (not shown) from the mounting shoe receiver 564. The first interface 712 has contacts 716 electrically coupled to the power supply 400 and providing power to an attached optical device 512.
The optical device 512 is electrically coupled to the power supply 400 via a replaceable power harness 800. The replaceable power harness 800 enables a user to easily replace the power harness 800 if it becomes damaged during use. The power harness 800 includes a first interface 712, connection interface 570, a second interface 718, and multiconductor cables 566 and 568. The first interface 712 is coupled to mounting shoe receiver 564 as discussed above. The connection interface 570 has a pin 724 which fits in pivot pin 646 and is secured to pivot arm 522 via fasteners 726. The second interface 718 is coupled to the back side of rear plate 502 via fastener 720. The first interface 712 is coupled to the connection interface 570 via multiconductor cable 566 and the connection interface 570 is coupled to the second interface 718 via multiconductor cable 568. The first interface 712 and the second interface 718 have electrical contacts 716 and 722, respectively. The power harness 800 is coupled to the bracket 504 via contacts 722 of the second interface 718 on rear plate 502 and contacts 576 on the bracket 504. The contacts 576 inside the bracket 504 are electrically coupled to the cable 572. The cable 572 exits the bracket 504 and travels along its exterior and under the front side of helmet 508 between the hook members 578. On the underside of helmet 508, the cable 572 connects with the flat cable 574. The cable 574 travels along the inside of the helmet 508 and between hook members 580, wherein the cable 574 connects with a multiconductor cable 582 which is then coupled to the power supply 400 as described above.
In preferred embodiment, the helmet mount 530 includes an automatic shutoff for the optics when the pivot sleeve 528 is pivoted out of the viewing position to preserve the battery power when the optics are not being used, e.g., using a point magnet and a magnet proximity sensor as described above. For example, in a preferred automatic shutoff embodiment a magnet (not shown) is housed within the pivoting sleeve 528 and a reed switch, Hall effect sensor, or the like is housed within the connection interface 570, such that when the helmet mount is in the normal deployed position, i.e., in the lowest detent position, the magnet is in proximity with the sensor. Once mount is pivoted to the stowed position, i.e., when the user flips the mount up, the magnet no longer engages the reed switch or other magnetic sensor in the sleeve 528 and power to the optics or other device is shut off.
The optical device 512 may be a monocular night vision goggle device, and may advantageously be an eNVG device. However, it will be understood that the invention can be used with other types of sighting devices, such as a monocular or binoculars, helmet mounted display screen, head-up display or any other helmet mounted optical, electro-optical, and/or viewing devices.
A strap 584 includes a first end connected to the bracket 504 and a second end coupled to a rear bracket 586. The bracket 504 has hook members 578 and the rear bracket 586 has hook members 580. The hook members 578, 580 may include rubber pads or grommets 579 as described above. The hook members 578 and 580 may be removably secured to the helmet by wrapping about the front and rear brim portions of the helmet 508, respectively. If desired, the strap 584 may be adjustable, e.g., via a ratchet or other adjustable mechanical linkage (not shown) so as to be adapted for use with different sized helmets.
Referring now to
Referring now to
Referring now to
The second plate 204 includes an opening 220, four terminal connections 222, and alignment pins 224. The opening 220, in addition to openings 226 in the top cover and aligned openings 228 on the base 204 are provided for attachment of assembly 200 to the device such as an optical device 112, e.g., with threaded fasteners. The four terminal connections 222 are each connected to the cable 144 to deliver electric power from the battery pack 300 to a device requiring power for operation, such as the optical device 112. The cable 144 may be passed through a hole drilled in the helmet and is electrically coupled to the front bracket 104. Power is transferred from a power supply 300 into the mounting shoe 200 via the contacts 212, and then out of the mounting shoe 200 via terminal connections 222 to the cable 144 which travels across the helmet 108 as described above providing power to a device, such as the optical device 112. The alignment pins 224 may be provided to align the mounting shoe assembly 200 with a mounting member having complimentary recesses (not shown) on the helmet mount strap 134. Although the contact 212 are shown as spring contacts, it will be recognized that the contacts could also be flat contacts as described above.
Referring now to
A locking mechanism 416 includes levers for releasable securing the cover 420 over the main housing body 422 in closed position. One or more hinge members 424 (two in the embodiment shown) are provided to pivotally attach the housing cover member 420 to the housing body 422. The mounting shoe receiver 406 of the power supply 400 also contains a locking or release assembly having tabs 410a, 410b, protrusions 412a, 412b, and an alignment pin 414.
To secure the power supply 400 to the mounting shoe 200, the mounting shoe receiver 406 contains a locking assembly having tabs 410a, 410b, protrusions 412a, 412b, and an alignment pin 414. The tabs 410a, 410b and protrusions 412a, 412b are resiliently biased via captured springs 415 to engage the mounting shoe 200 when the power supply 400 is slid into place. The springs are captured via cover members 423 secured to the housing 422.
To remove the power supply 400 from the mounting shoe 200, the tabs 410a, 410b are squeezed together against the bias of the springs 415 to manually disengage the protrusions 412a, 412b of the locking assembly. The protrusions 412a and 412b extend into the channel defined by the mounting shoe receiver 406. The protrusion 412a is carried on the sliding tab 410a and the protrusion 412b is carried on the sliding tab 410b such that inward squeezing of the tabs 410a and 410b causes outward movement of the protrusions 412a and 412b, thus enabling removal of the power supply 400 from the mounting shoe 200. The alignment pin 414 extends through elongate openings in the tabs 410a and 410b to align the tabs and limit the extent of sliding movement of the tabs 410a and 410b.
The mounting shoe receiver 406 and mounting shoe 200 may be of tapered, dove-tail configuration. In the depicted embodiment, the mounting shoe portion 200 includes angled or ramped edges 216 which engage aligned ramped edges 413a, 413b of the protrusions 412a, 412b, respectively, to urge the protrusions in the transverse outward direction to allow the shoe 200 to slide therepast when the power supply 400 is connected to the mounting shoe 200. The power supply 400 contains a locking mechanism 416 having lever locks 418 which pivot to releasably engage tabs 417 on the housing cover 420 to secure the top 420 to body 422 in a locked and closed position and to retain the plurality of batteries 340 (three in the embodiment shown, although other numbers of batteries are contemplated) within the housing 422 of the power supply 400. A sealing ring or gasket may be provided between the cover 420 and the housing 422 to prevent entry of moisture or environmental contamination.
As best seen in
The invention has been described with reference to the preferred embodiments. Modifications and alterations will occur to others upon a reading and understanding of the preceding detailed description. Therefore, it is not desired to limit the invention to the specific examples disclosed or the exact construction and operation shown and described. Rather, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application claims the benefit of priority under 35 U.S.C. §119(e) based on U.S. provisional application No. 61/300,770 filed Feb. 2, 2010, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61300770 | Feb 2010 | US | |
61351084 | Jun 2010 | US |