One or more embodiments of the present invention generally relate to safety equipment, and more particularly, to protective helmets that protect the human head against repetitive impacts, moderate impacts and severe impacts so as to significantly reduce the likelihood of both translational and rotational brain injury and concussions.
Action sports (e.g., skateboarding, snowboarding, bicycle motocross (BMX), downhill mountain biking, and the like), motorsports (e.g., off-road and on-road motorcycle riding and racing) and traditional contact sports (e.g., football and hockey) continue to grow at a significant pace throughout the world as each of these sports expands into wider participant demographics. While technology and sophisticated training regimes continue to improve the performance capabilities for such athletes/participants, the risk of injury attendant to these activities also increases. To date, helmet-type head protection devices have not experienced any significant new technologies that improve protection of the athlete's head and brain in the event of an impact incident outside the advent of duel density foam liners made of greater thickness utilizing softer foams in general. Current “state of the art” helmets are not keeping pace with the evolution of sports and the capabilities of athletes. At the same time, science is providing alarming data related to the traumatic effects of both repetitive but moderate, and severe impacts to the head. While concussions are at the forefront of current concerns, rotational brain injuries from the same concussive impacts are no less of a concern, and in fact, are potentially more troublesome.
Head injuries result from two types of mechanical forces—contact and non-contact. Contact injuries arise when the head strikes or is struck by another object. Non-contact injuries are occasioned by cranial accelerations or decelerations caused by forces acting on the head other than through contact with another object, such as whiplash-induced forces. Two types of cranial acceleration are recognized, which can act separately or in combination with each other. “Translational” acceleration occurs when the brain's centre of gravity (CG), located approximately at the pineal gland, moves in a generally straight line. “Rotational” or angular acceleration occurs when the head turns about its CG without linear movement of the CG.
Translational accelerations/decelerations can result in so-called “coup” and “contrecoup” head injuries that respectively occur directly under the site of impact with an object and on the side of the head opposite the area that was impacted. By contrast, studies of the biomechanics of brain injury have established that forces applied to the head which result in a rotation of the brain about its CG cause diffuse brain injuries. It is this type of movement that is responsible for subdural hematomas and diffuse axonal injury (DAI), one of the most devastating types of traumatic brain injury.
Referring to
Safety helmets generally use relatively hard exterior shells and relatively soft, flexible, compressible interior padding, e.g., fit padding, foam padding, air filled bladders, or other structures, to manage impact forces. When the force applied to the helmet exceeds the capability of the combined resources of the helmet to reduce impacts, energy is transferred to the head and brain of the user. This can result in moderate concussion or severe brain injury, including a rotational brain injury, depending on the magnitude of the impact energy.
Safety helmets are designed to absorb and dissipate as much energy as possible over the greatest amount of time possible. Whether the impact causes direct linear or translational acceleration/deceleration forces or angular acceleration/deceleration forces, the helmet should eliminate or substantially reduce the amount of energy transmitted to the user's head and brain.
In accordance with one or more embodiments of the present disclosure, omnidirectional impact energy management systems are provided for protective helmets that can significantly reduce both rotational and linear forces generated from impacts to the helmets over a broad spectrum of energy levels.
The novel techniques, for one or more embodiments, enable the production of hard-shelled safety helmets that can provide a controlled internal omnidirectional relative displacement capability, including relative rotation and translation, between the internal components thereof. The systems enhance modem helmet designs for the improved safety and well being of athletes and recreational participants in sporting activities in the event of any type of impact to the wearer's head. These designs specifically address, among other things, the management, control, and reduction of angular acceleration forces, while simultaneously reducing linear impact forces acting on the wearer's head during such impacts.
In accordance with an embodiment, a safety helmet comprises an outer shell, an outer liner disposed within and coupled to the outer shell, and an inner liner disposed within and coupled in spaced opposition to the outer liner by a plurality of isolation dampers for omnidirectional movement relative to the outer liner and shell.
In accordance with an embodiment, a method for making a helmet comprises affixing an outer liner to and inside of an outer shell and coupling an inner liner in spaced opposition to and inside of the outer liner for omnidirectional movement of the inner liner relative to the outer liner and the outer shell.
The scope of this invention is defined by the claims, which are incorporated into this section by reference. A more complete understanding of embodiments of the present invention will be afforded to those skilled in the art, as well as a realization of additional advantages thereof, by a consideration of the following detailed description of one or more embodiments. Reference will be made to the appended sheets of drawings that will first be described briefly, and within which like reference numerals are used to identify like elements illustrated in one or more of the figures thereof.
In accordance with one or more embodiments of this disclosure, omnidirectional impact energy management systems for helmets are provided that can significantly reduce both rotational and linear forces generated from impacts imparted to the helmets. The systems enable a controlled internal omnidirectional relative displacement capability, including relative rotational and translational movement, between the internal components of a hard shelled safety helmet.
One or more embodiments disclosed herein are particularly well suited to helmets that can provide improved protection from both potentially catastrophic impacts and repetitive impacts of varying force that, while not causing acute brain injury, can cause cumulative harm. The problem of cumulative brain injury, i.e., Second Impact Syndrome (SIS), is increasingly recognized as a serious problem in certain sports, such as American football, where much of the force of non-catastrophic contact is transferred to the head of the wearer. In various example embodiments, isolation dampers are configured with specific flex and compression characteristics to manage a wide range of repetitive and severe impacts from all directions, thus addressing the multitude of different risks associated with diverse sports, such as football, baseball, bicycle riding, motorcycle riding, skateboarding, rock climbing, hockey, snowboarding, snow skiing, auto racing, and the like.
In accordance with one or more example embodiments hereof, safety helmets can comprise at least two layers. One of these layers, an inner liner, is disposed in contact with the wearer's head, either directly or via a fitment or so-called “comfort liner.” Another layer can comprise an outer liner affixed to a relatively hard outer shell of the helmet. In some embodiments, one or more intermediate liners can be disposed between the inner and outer liners. These layers can be formed of any suitable material, including energy absorbing materials of the types commonly used in the industry, such as expanded polystyrene (EPS) or expanded polypropylene (EPP).
In an example embodiment, an outer surface of an inner liner is coupled to an inner surface of an outer liner, which can have an outer surface affixed to an inner surface of the hard outer shell of the helmet, with shock absorbing and dampening components that enable controlled, omnidirectional relative rotational and translational displacements to take place between the inner and outer liners. Thus, the two liners are coupled with each other in such a way that they can displace relative to each other omnidirectionally in response to both angular and translational forces from a glancing or direct blow to the hard outer shell of the helmet. The engagement between the inner and outer liners enables a controlled, omnidirectional relative movement between the two liners to reduce the transfer of forces and resulting accelerations originating from the hard outer shell of the helmet to the head and brain of a wearer.
The relative movement of the inner and outer layers or liners can be controlled via various suspension, dampening, and motion controlling components that are disposed between the liners and couple them together for relative movement. In some embodiments, additional liners or partial liners can be inserted between the inner and outer liners. Thus, the energy absorbing structure can comprise various liner components, with or without air gaps between them, that enable such controlled omnidirectional relative displacement between one or more of the liners. The liners and other layers can comprise multi- or single-density EPS, EPP, or any other suitable materials, such as expanded polyurethane (EPU). Proper restraint on the wearer's head can be managed by, for example, a chin-strap and/or a neck security device of a type commonly used on conventional helmets.
The inner and outer liners 104 and 102 are coupled to each other so as to form an internal subassembly by the use of a plurality of resilient, e.g., elastomeric, structures referred to herein as “isolation dampers.” As illustrated in
In an embodiment, one or both of the concave and convex features of the isolation dampers 108 can be complementary in shape to one or both of those of the concave and convex features of the inner and outer liners 104 and 102, respectively. The isolation dampers 108 are disposed between the inner and outer liners 104 and 102 such that their concave recesses 110 are respectively disposed over a corresponding one of the convex protrusions 116 on the inner liner 104, and the convex protrusions on the isolation dampers 108 are respectively disposed within corresponding ones of the concave recesses 114 in the outer liner 102.
As illustrated in
In some embodiments, limits or “stops” can be designed into and between the liners to prevent over-rotation or over-displacement between the layers during an impact incident. Referring again to
In other embodiments, one or more additional layers or liners can be inserted between an inner liner and outer liner. Such “intermediate” liners can be formed of, for example, EPS, EPP, EPU, or any other suitable materials. For example, as illustrated in
As further illustrated in
As illustrated in
In other embodiments, a similar system of lugs 136 and isolation dampers 130 can be implemented using only two layers or liners 138, 142, or alternatively, using three or more liners. It will be readily understood by those of skill in the art that a wide range of different configurations can be devised for the lugs 136 and isolation dampers 130 described herein. Indeed, the lugs 136 and isolation dampers 130 can take on a wide range of shapes, sizes, materials, and specific physical properties. They can also be configured to engage different layers differently than as illustrated and described herein.
In some embodiments, the isolation dampers 130 can be configured with specific physical properties that enable them to couple an inner liner 138 with an outer layer 142 and maintain a predetermined gap therebetween, or otherwise control the spatial relationship between the two liners 138, 142. Where a space is maintained between different layers, the space can comprise an air gap, or can be completely or partially filled with any suitable material in any form, including without limitation, a liquid, gel, foam, or gas cushion.
As illustrated in, e.g.,
As described above, in some embodiments, the isolation dampers 108 are configured so as to return the inner and outer liners 104 and 102 back to their respective initial or “neutral” resting positions relative to each other, once the rotational or translational force of an impact is removed from them. Thus, the outer shell 144 and internal liners of a helmet incorporating such an arrangement will quickly and automatically re-align themselves relative to each other after an impact. In this regard, it should be understood that the dimensions, shape, positioning, alignment, and materials of the isolation dampers 130 can be varied widely to tune the helmet to the specific application at hand.
An example embodiment of an isolation damper 200 and its positioning with respect to an inner liner 202 and outer liner 204 disposed within a helmet assembly is illustrated in
As illustrated in
In some embodiments, the apertures or recesses 210, 214 in the corresponding inner and outer liners 202 and 204 used to respectively retain the opposite ends 208 and 212 of the isolation dampers 200 can include specific geometries to manage the interaction between the isolation dampers 200 and the liners 202 and 204. For example, as illustrated in
As those of some skill will understand, the specific shape and material properties of an isolation damper 200 are the primary control elements that affect its spring rate. As the geometry and/or material specifications of the isolation damper 200 are changed, the associated spring rate will change accordingly, following basic physical property relationships. For example, if only the length is increased, the spring rate will decrease, and the isolation damper 200 will become less resistant, in force per displacement, over a particular range of values. Further, if the geometric shape of the isolation damper is changed from one shape to another, for example, from a cylinder to an hourglass shape, the spring rate of the isolation damper 200 in axial compression versus its spring rate in a direction orthogonal to the direction of the axial compression can be altered and significantly changed to effect the desired performance requirements.
In addition to the physical shape of the isolation damper 200 and its material properties, the method by which the isolation damper 200 is constrained and allowed to deform, or prevented from deforming, is another design technique that can be used to control the dynamic interactions of an impact force acting on a helmet and how it is transferred from one liner to another liner. The opposing frusto-conical recesses 220 in opposing faces of the liners 202 and/or 204 described above are only one technique by which the dynamic movement characteristics of the isolation dampers 200 can be managed to control and modify the ability of the outer liner 204 to move in a desired fashion in both compression and shear directions relative to the inner layer 202.
If the volume of the isolation damper 200 cannot be reduced to zero, it must be displaced into another volume when it is compressed. If the spring rate of the isolation damper 200 is a function of its material properties and its ratio of compressibility into itself, then its spring rate will be nonlinear and will increase at an increasing rate. This increasing spring rate will grow as the isolation damper 200 is compressed and deformed, until it can no longer deform freely, at which time, the spring rate of the isolation damper 200 will increase rapidly such that it becomes virtually incompressible and exhibits an almost infinite resistance thereto. The frusto-conical recesses 200 in each liner 202, 204 at the respective attachment points of the isolation dampers 200 can be used to optimize these desired functions of movement in linear compression, shear movement and the point of contact of one liner with another liner by their geometric relationships to those of the associated isolation dampers 200, and also reducing the damage to the outer and inner liners that would be imposed onto them by the dampers as an additional control element.
The specific configurations, spacing, and quantity of the isolation dampers 200 can also be modified to obtain particular helmet impact absorbing characteristics suitable for the specific application at hand. Another example embodiment of an isolation damper 200 that is configured with more rounded contours is illustrated in
As illustrated in
The inserts 308 can be held in the associated liner 304 or 306 by, for example, friction, or alternatively, by any other suitable means, including adhesives, heat bonding and/or welding, and similarly, the respective ends of the isolation dampers 310 can held in the corresponding inserts 308 by friction, or alternatively, be fixed in the inserts 308 by any suitable method or means. The inserts 308 can be made of any suitable material, including thermosetting or thermoforming plastics, such as acrylonitrile butadiene styrene (ABS), polyvinylchloride (PVC), polyurethane (PU), polycarbonates, nylon, various alloys of metals, and the like.
Similarly, the isolation dampers 200 can be formed of a wide variety of elastomeric materials, including MCU (micro-cellular urethane), EPU, natural rubber, synthetic rubbers, foamed elastomers of various chemical constituents, solid cast elastomers of various chemical constituents, encased liquids, gels or gasses providing flexible structures, and any flexible assembly of any other kind that will provide the desired degree of omnidirectional movement.
The specific thicknesses of the various liners and gaps, if any, between them can be varied widely depending on the particular application of the helmet. The geometries and relative arrangement of the various liners and any gaps between them can also be varied to manage the characteristics of the helmet in response to impacts from a range of different directions and magnitudes. For example, in one specific example embodiment, inner and outer EPS liners with respective thicknesses of about twenty (20) millimeters and twelve (12) millimeters can be used with an air gap of about six (6) millimeter between them.
As those of some skill will understand, interconnecting some or all of the inserts 504 can be used to manage the load distribution from the isolation dampers 506 across the liner 502. Of course, the same technique can be used in an outer liner and/or an intermediate layer (not illustrated) to good effect. Interconnections 508 with various geometries can be provided among a group of inserts 504 to increase the respective load distribution areas of the liners and/or layers. Interconnection of the inserts 504 can also add significant tensile strength to the liner or layer as a whole. Interconnections 508 can also help to separate the elastic deformation and spring rate of the isolation dampers 506 from those of the associated liner or layer itself, providing for a greater control over the response of the helmet 500 to different types of impact forces.
For example, when used with an EPS liner 502, an interconnected web structure 508 can decrease the force per unit area of the shear and compressive forces respectively exerted by the isolation dampers 508 on the liner 502. This creates a larger, less sensitive range of elastomer compression by reducing the elastic deformation of the EPS foam material of the liner 502 and minimizing failure of the EPS air cells that can, dependent on the EPS foam density rating, rupture under certain impact force levels. Since the rupturing of air cells in EPS is inimical to its impact absorbing performance, the inserts 504 and interconnections 508 can eliminate or substantially reduce the damage resulting from small and medium force impacts and preserve the ability of the EPS to absorb the forces of larger impacts.
The ability to control and separate the spring rates of the different components using inserts 504 and interconnections 508 increases the ability to tune the protective characteristics of the helmet 500 and provide superior protective qualities. For example, the isolation dampers 506 can be configured using different materials and geometries not only to allow for rotational deformation, but also to increase their effective spring rate at the point of contact between one EPS liner and another so as to prevent a hard impact or rapid acceleration between the two liners.
An embodiment of a helmet outer liner assembly 600 in accordance with the present disclosure is illustrated in the perspective view of
Initial laboratory testing of prototype helmets using the omnidirectional impact energy management systems of the invention indicates that it is highly effective in managing both translational and rotational impact forces. Testing indicated that the prototype helmets exceed DOT, ECE, and Snell test standards, while providing significantly better overall protection against the likelihood of brain injury, particularly in the range of lower threshold impact velocities less than about 120 G-force peak accelerations. It is commonly understood that concussion injuries commonly occur in the range of about 80 to about 100 G-force peak acceleration in adult males. The prototypes also performed significantly better in terms of time attenuation, that is, slowing down the transfer of energy during an impact. The chart below (Table 1) compares the best performing prototype helmet test to date (“Proto 6”) against a control helmet of the same model having a conventional liner for peak acceleration (measured in g-force) and Head Impact Criteria (“HIC”) values, including the percentage increase up or down.
By using different materials and configurations, it is possible to adjust or tune the protection provided by helmets that use the systems of the disclosure, as would be understood by one skilled in the art. The liners and any other layers can be formed from materials with distinct flexibility, compression, and crush characteristics, and the isolation dampers can be formed from various types of elastomers or other appropriate energy absorbing materials, such as MCU. Thus, by controlling the density and stiffness of the isolation dampers and related internal constructional materials, safety helmets can be configured to strategically manage impact energy based on the known range of common head weights expected to be present in any given helmet, and by helmet size, and by any give sporting activity.
The foregoing description is presented so as to enable any person skilled in the art to make and use the invention. For purposes of explication, specific nomenclature has been set forth to provide a thorough understanding of the disclosure. However, it should be understood that the descriptions of specific embodiments or applications provided herein are provided only by way of some example embodiments of the invention and not by way of any limitations thereof. Indeed, various modifications to the embodiments will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other embodiments and applications without departing from the spirit and scope of the invention. Thus, the present invention should not be limited to the particular embodiments illustrated and described herein; but should be accorded the widest possible scope consistent with the principles and features disclosed herein.
This patent application is a continuation of U.S. patent application Ser. No. 13/368,866, filed Feb. 8, 2012, which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 13/368,866 claims the benefit of and priority to U.S. Provisional Patent Application No. 61/462,914 filed Feb. 9, 2011 and 61/554,351 filed Nov. 1, 2011, both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3039108 | Lohrenz | Jun 1962 | A |
3413656 | Vogliano et al. | Dec 1968 | A |
3877076 | Summers et al. | Apr 1975 | A |
4012794 | Nomiyama | Mar 1977 | A |
4024586 | Lamb | May 1977 | A |
4064565 | Griffiths | Dec 1977 | A |
4213202 | Larry | Jul 1980 | A |
4290149 | Aileo | Sep 1981 | A |
4307471 | Lovell | Dec 1981 | A |
4345338 | Frieder, Jr. | Aug 1982 | A |
4432099 | Grick et al. | Feb 1984 | A |
4472472 | Schultz | Sep 1984 | A |
4555816 | Broersma | Dec 1985 | A |
4586200 | Poon | May 1986 | A |
4627114 | Mitchell | Dec 1986 | A |
4987609 | Zahn | Jan 1991 | A |
5068922 | Zahn | Dec 1991 | A |
5086520 | Arai | Feb 1992 | A |
5204998 | Liu | Apr 1993 | A |
5309576 | Broersma | May 1994 | A |
5581819 | Garneau | Dec 1996 | A |
5619756 | Garneau | Apr 1997 | A |
5669079 | Morgan | Sep 1997 | A |
5815846 | Calonge | Oct 1998 | A |
5833796 | Matich | Nov 1998 | A |
5950244 | Fournier et al. | Sep 1999 | A |
5956777 | Popovich | Sep 1999 | A |
5978972 | Stewart et al. | Nov 1999 | A |
6009566 | Hubbard | Jan 2000 | A |
6052835 | O'Shea | Apr 2000 | A |
6070271 | Williams | Jun 2000 | A |
6070905 | Renault | Jun 2000 | A |
6093468 | Toms et al. | Jul 2000 | A |
6314586 | Duguid | Nov 2001 | B1 |
6378140 | Abraham | Apr 2002 | B1 |
6401260 | Porth | Jun 2002 | B1 |
6418564 | Sheridan | Jul 2002 | B1 |
6453476 | Moore, III | Sep 2002 | B1 |
6536052 | Tao et al. | Mar 2003 | B2 |
6560787 | Mendoza | May 2003 | B2 |
6658671 | Von Holst et al. | Dec 2003 | B1 |
6751808 | Puchalski | Jun 2004 | B2 |
6925657 | Takahashi et al. | Aug 2005 | B2 |
6931669 | Ashline | Aug 2005 | B2 |
6996856 | Puchalski | Feb 2006 | B2 |
D521191 | Berger | May 2006 | S |
7076811 | Puchalski | Jul 2006 | B2 |
7159249 | Dennis et al. | Jan 2007 | B2 |
7207071 | Pierce | Apr 2007 | B2 |
7299505 | Dennis et al. | Nov 2007 | B2 |
7328462 | Straus | Feb 2008 | B1 |
7376981 | Shida | May 2008 | B2 |
7574754 | Arai | Aug 2009 | B2 |
7676854 | Berger et al. | Mar 2010 | B2 |
7735157 | Ikeda | Jun 2010 | B2 |
7735158 | Tsurumi | Jun 2010 | B2 |
7748059 | Arai | Jul 2010 | B2 |
7802320 | Morgan | Sep 2010 | B2 |
7832023 | Crisco | Nov 2010 | B2 |
7895681 | Ferrara | Mar 2011 | B2 |
7930771 | Depreitere et al. | Apr 2011 | B2 |
20010032351 | Nakayama | Oct 2001 | A1 |
20020023291 | Mendoza | Feb 2002 | A1 |
20040117896 | Madey et al. | Jun 2004 | A1 |
20050246824 | Berger | Nov 2005 | A1 |
20060059606 | Ferrara | Mar 2006 | A1 |
20070000032 | Morgan | Jan 2007 | A1 |
20070190292 | Ferrara | Aug 2007 | A1 |
20070190293 | Ferrara | Aug 2007 | A1 |
20080155735 | Ferrara | Jul 2008 | A1 |
20080256686 | Ferrara | Oct 2008 | A1 |
20090320185 | Hassler | Dec 2009 | A1 |
20100000009 | Morgan | Jan 2010 | A1 |
20100186150 | Ferrara | Jul 2010 | A1 |
20100205722 | Kim | Aug 2010 | A1 |
20100258988 | Darnell et al. | Oct 2010 | A1 |
20100295221 | Kligerman et al. | Nov 2010 | A1 |
20110047685 | Ferrara | Mar 2011 | A1 |
20120060251 | Schimpf | Mar 2012 | A1 |
20120139172 | Hawkins | Jun 2012 | A1 |
20130247284 | Hoshizaki et al. | Sep 2013 | A1 |
20140013491 | Hoshizaki | Jan 2014 | A1 |
20150157082 | Weber et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
693175 | Aug 1964 | CA |
1316207 | Oct 2001 | CN |
1997506 | Jul 2007 | CN |
101827537 | Sep 2010 | CN |
1142495 | Oct 2001 | EP |
2428129 | Mar 2012 | EP |
WO2011139224 | Nov 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20150157082 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61462914 | Feb 2011 | US | |
61554351 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13368866 | Feb 2012 | US |
Child | 14607004 | US |