1. Technical Field
The present invention relates to protective equipment for athletic competitions. More particularly, the present invention relates to protective helmets worn by athletes upon their heads during athletic competition.
2. Background Information
Plastic football helmets have been known in the art. Initially faceguards were rigidly fastened to the plastic helmets by methods such as bolting. Later, the welded wire faceguard was redesigned to incorporate a flexible mounting system. Further, a loop strap attachment method was designed to provide an easy and universal method to attach the faceguards onto a wide variety of helmets. The molded loop straps absorbed energy caused by the multiple collisions sustained during the game, and the loop straps prevented the impact energy from being transmitted to the plastic football shell. Further, in the case of an emergency, the two lower side mount locations could be cut, and the faceguard could pivot about the top loop strap attachment points. As technology advanced, side loop straps have been placed in angular positions and in tension positions to allow the strap to better absorb the impacted energy by creating more distance for the strap to stretch and decelerate the impacted energy.
However, the thickness of the above described loop straps create separation between the shell of the helmet and the attached faceguard. This separation prevents the faceguard from being directly in contact with the shell of the helmet, and thus, the faceguard is prevented from being totally integrated into the design of the helmet.
In order to provide for an attachment mechanism for connecting a faceguard to a helmet which allows the faceguard to become totally integrated with the shell of the helmet in order to bring the faceguard into direct or substantially close contact with the shell of the helmet, a helmet and faceguard for accomplishing this is disclosed below.
In one aspect of the present invention, a helmet includes a shell configured to fit about a head of a wearer of the helmet. The shell includes a top portion that defines a front edge. The shell also includes a bottom portion adjoining the top portion. The bottom portion defines a first side edge that is integral with a first end of the front edge and a second side edge that is integral with a second end of the front edge. The front edge, first side edge, and second side edge define a segment of a circumference of the shell. The helmet further includes a faceguard having a faceguard assembly formed in a substantially closed loop. A top portion of the faceguard assembly overlies the top portion of the shell and substantially overlies and coincides with an entire shape of the front edge. The helmet includes a clamping mechanism that removably engages the top portion of the faceguard assembly so that the top portion of the faceguard assembly makes direct contact with the top portion of the shell.
In another aspect of the present invention, a helmet includes a shell configured to fit about a head of a wearer of the helmet. The shell includes a top portion that defines a front edge. The shell also includes a bottom portion adjoining the top portion. The bottom portion defines a first side edge that is integral with a first end of the front edge and a second side edge that is integral with a second end of the front edge. The front edge, first side edge, and second side edge define a segment of a circumference of the shell. The helmet further includes a faceguard having a faceguard assembly formed in a substantially closed loop. A top portion of the faceguard assembly overlies the top portion of the shell and substantially overlies and coincides with an entire shape of the front edge. At least a segment of a top portion of the faceguard assembly makes direct contact with the top portion of the shell.
In yet another aspect of the present invention, a helmet includes a shell configured to fit about a head of a wearer of the helmet. The shell includes a top portion that defines a front edge. The shell also includes a bottom portion adjoining the top portion. The bottom portion defines a first side edge that is integral with a first end of the front edge and a second side edge that is integral with a second end of the front edge. The front edge, first side edge, and second side edge define a segment of a circumference of the shell. The helmet further includes a faceguard having a faceguard assembly formed in a substantially closed loop. A top portion of the faceguard assembly overlies the top portion of the shell and substantially overlies and coincides with an entire shape of the front edge. The helmet includes an attachment assembly affixed to the shell. The attachment assembly defines an opening to receive a free end of the faceguard assembly. The attachment assembly and the free end of the faceguard assembly interact so that removal of the free end from the attachment assembly is prevented when a force is applied to the faceguard assembly toward the top portion of the shell.
In still another aspect of the present invention, a helmet includes a shell configured to fit about a head of a wearer of the helmet. The shell includes a top portion that defines a front edge. The shell also includes a bottom portion adjoining the top portion. The bottom portion defines a first side edge that is integral with a first end of the front edge and a second side edge that is integral with a second end of the front edge. The front edge, first side edge, and second side edge define a segment of a circumference of the shell. The helmet further includes a faceguard having a faceguard assembly formed in a substantially closed loop. A top portion of the faceguard assembly overlies the top portion of the shell and substantially overlies and coincides with an entire shape of the front edge. The helmet further includes an attachment assembly affixed to the shell. The attachment assembly defines an opening to receive a tree end of the faceguard assembly. The attachment assembly includes an impact absorbing stop that engages the free end of the faceguard assembly and compresses when a force is applied to the faceguard assembly toward the top portion of the shell so as to dissipate energy generated from the force.
In still another aspect of the present invention, a helmet includes a shell configured to fit about a head of a wearer of the helmet. The shell includes a top portion that defines a front edge. The shell also includes a bottom portion adjoining the top portion. The bottom portion defines a first side edge that is integral with a first end of the front edge and a second side edge that is integral with a second end of the front edge. The front edge, first side edge, and second side edge define a segment of a circumference of the shell. The helmet further includes a faceguard having a faceguard assembly formed in a substantially closed loop. A top portion of the faceguard assembly overlies the top portion of the shell and substantially overlies and coincides with an entire shape of the front edge. The helmet includes a clamping mechanism that removably engages the top portion of the faceguard assembly so that the top portion of the faceguard assembly makes direct contact with the top portion of the shell. The helmet further includes an attachment assembly affixed to the shell. The attachment assembly defines an opening to receive a free end of the faceguard assembly of the faceguard. The attachment assembly and the free end of the faceguard assembly of the faceguard interact so that removal of the free end from the attachment assembly is prevented when a force is applied to the faceguard assembly toward the top portion of the shell.
In yet another aspect of the present invention, a helmet includes a shell configured to fit about a head of a wearer of the helmet. The shell includes a top portion that defines a front edge. The shell also includes a bottom portion adjoining the top portion. The bottom portion defines a first side edge that is integral with a first end of the front edge and a second side edge that is integral with a second end of the front edge. The front edge, first side edge, and second side edge define a segment of a circumference of the shell. The helmet further includes a faceguard having a faceguard assembly formed in a substantially closed loop. A top portion of the faceguard assembly overlies the top portion of the shell and substantially overlies and coincides with an entire shape of the front edge. The helmet includes a clamping mechanism that removably engages the top portion of the faceguard assembly so that the top portion of the faceguard assembly makes direct contact with the top portion of the shell. The helmet further includes an attachment assembly affixed to the shell. The attachment assembly defines an opening to receive a free end of the faceguard assembly of the faceguard. The attachment assembly includes an impact absorbing stop that engages the free end of the faceguard assembly and compresses when a force is applied to the faceguard assembly toward the top portion of the shell so as to dissipate energy generated from the force.
In still another aspect of the present invention, a faceguard includes a first faceguard assembly having a lop portion and a bottom portion formed in a first substantially closed loop. The faceguard further includes a second faceguard assembly having a top portion and a bottom portion formed in a second substantially closed loop. A portion of the second faceguard assembly has an exterior circumference that matches in shape a portion of an interior circumference of the first faceguard assembly. The portion of the second faceguard assembly is joined to the first faceguard assembly along the entire portion of the interior circumference.
In another aspect of the present invention, a method of attaching a faceguard to a helmet includes the steps of providing a helmet having a shell configured to fit about a head of a wearer of the helmet. The shell includes a top portion that defines a front edge and a bottom portion adjoining the top portion. The bottom portion defines a first side edge that is integral with a first end of the front edge and a second side edge that is integral with a second end of the front edge. The front edge, first side edge, and second side edge define a segment of a circumference of the shell. The helmet further includes an attachment assembly affixed to the shell defining an opening. A faceguard is provided having a faceguard assembly formed in a substantially closed loop. A free end of the faceguard assembly is inserted within the opening of the attachment assembly. The faceguard is rotated toward the top portion of the shell. A top portion of the faceguard is engaged to a clamping mechanism and the clamping mechanism is connected to the front edge of the shell.
In still yet another aspect of the invention, a method of detaching a faceguard from a helmet includes the steps of providing a helmet having a shell configured to fit about a head of a wearer of the helmet. The shell includes a top portion that defines a front edge and a bottom portion adjoining the top portion. The bottom portion defines a first side edge that is integral with a first end of the front edge and a second side edge that is integral with a second end of the front edge. The front edge, first side edge, and second side edge define a segment of a circumference of the shell. A faceguard is provided including a faceguard assembly formed in a substantially closed loop. A top portion of the faceguard is connected to the front edge by a clamping mechanism and a free end of the faceguard is removably attached to an attachment mechanism, the attachment assembly defining an opening. The clamping mechanism is cut to disengage the faceguard from the shell. The faceguard is pulled in a direction away form the front edge of the shell. The faceguard is then rotated in a direction away from the top portion of the shell of the helmet. The faceguard is then removed from the attachment assembly.
In another aspect of the invention, a helmet includes a shell configured to fit about a head of a wearer of the helmet. The helmet further includes a faceguard attached to the shell having a faceguard assembly and a tab extension integral with the faceguard assembly. The helmet also includes a chinstrap having at least one leg. The tab extension is configured to engage the at least one leg of the chinstrap and the at least one leg of the chinstrap is threaded through an opening of the tab extension and attached to the shell.
In still another aspect of the invention, a method of attaching a chinstrap to a helmet includes the steps of providing a helmet, the helmet comprising a shell configured to fit about a head of a wearer of the helmet. The shell includes a top portion defining a front edge and a bottom portion adjoining the top portion. The bottom portion defines a side edge that is integral with an end of the front edge. A faceguard is provided having a faceguard assembly and a tab extension integral with the faceguard assembly. A chinstrap is provided having a leg. The leg is threaded through an opening of the tab extension in a direction towards the side edge of the shell. The leg of the chinstrap is then pulled in a direction away from the top portion of the shell and attached to the shell.
Further advantages, as well as details of the present invention ensue from the following description of the attached drawings.
Referring to
The helmet 10 includes a shell 20 configured to fit about the head of a wearer of the helmet 10. Referring to
The bottom portion 40 of the shell 20 is integrally affixed to the top portion 30 of the shell 20. The bottom portion 40 defines a first side edge 41 and a second side edge 42. As shown by
As shown in
The faceguard 100 includes a second wire or faceguard assembly 107 having top portion 110 and a bottom portion 111 that are joined together at joint 118 to form a substantially closed loop having an interior circumference 108 and an exterior circumference 109. Alternatively, the second wire assembly 101 may comprise one continuous wire segment which forms a substantially closed loop. A portion 114 of the exterior circumference 109 of the second wire assembly 104 is configured such that it matches in shape a portion 115 of the interior circumference 102 of the first wire assembly 101. Preferably, the first wire assembly 101 and the second wire assembly 107 are joined together by MIG welding. In addition, the faceguard 100 includes a third wire or faceguard assembly 112. The ends 113 of the third wire assembly 112 are preferably MIG welded to the first wire assembly 101 and the second wire assembly 107 at joint 119. Vertical wire or faceguard segments 120 interconnect the bottom portion 105 of the first wire assembly 101, the second wire assembly 107, and the third wire assembly 112. A vertical wire segment 120 also interconnects the top portion 104 of the first wire assembly 101 and the top portion 110 of the second wire assembly 107. The vertical wire segments 120 are preferably flat wire segments having two flat sides and two rounded edges. The flat wire segments provide a flatter profile on the faceguard 100 which reduces the secondary grinding operation that is prevalent when using traditional round wire. The vertical wire segments 120 are preferably resistance welded at the points the vertical wire segments 120 contact the wire assemblies of the faceguard 100.
The first wire assembly 101 includes a pair of tab extensions 121.
A second embodiment of a faceguard 200 to be used with the shell and the helmet of
When the faceguard 200 is positioned upon the shell 20 and the curved wire segments 206 are secured in the attachment assemblies 80 of the helmet 10, the top portion 204 of the first wire assembly 201 overlies the top portion 30 of the shell 20 and substantially overlies and coincides with an entire shape of the front edge 50 of the shell 20. The faceguard 200 also includes tab extensions 221 with an opening 222 to receive an upper leg 161 of a chinstrap 160. The opening 222 is configured to receive an upper leg of a four point chinstrap and may have a diameter of about 0.625 inches. In operation, the upper leg 161 of the chinstrap 160 is threaded through the opening 222 of the tab extension 221 from the inside of the faceguard 200. After threading the upper leg 161 of the chinstrap 160 through the opening, the wearer of the helmet 10 pulls the upper leg 161 in a direction away from the top portion 30 of the shell 20 and attaches to the shell 20. This chinstrap routing location provides a better mechanical advantage when the wearer of the helmet 10 adjusts the chinstrap 160 because it allows the wearer to apply a downward force away from the shell 20 of the helmet 10. This downward force causes the shell 20 to move in the direction of the wearer in order to produce a closer fit. A second upper leg of the chinstrap 160 may be attached on the opposite side of the shell 20 in the same manner. In the alternative, when the faceguard 200 is attached to the front edge 50 of the shell 10, a space may be provided between the faceguard 200 and the shell 20 to allow the upper leg 161 of a chinstrap 160 to be placed in the more traditional position upon the top portion 30 of the shell 20 by the use of a connector 73. Furthermore, a V-shaped notch (not shown) can be placed on either side 21, 22 of the shell 20, where a lower leg 162 of a chinstrap 160 may be passed through the notch and attached to one of the connectors 73. A protective plastic coating may also be added to the surface of the faceguard 200 to cover the wire terminations of the wire assemblies and wire segments of the faceguard 200.
A third embodiment of the faceguard 300 to be used with the shell and the helmet of
When the faceguard 300 is positioned upon the shell 20 and the curved wire segments 306 are secured in the attachment assemblies 80 of the helmet 10, the top portion 304 of the first wire assembly 301 overlies the top portion of the shell 20 and substantially overlies and coincides with an entire shape of the front edge 50 of the shell 20. The faceguard 300 also includes tab extensions 321 with an opening 322 to receive a leg of a chinstrap. The opening 322 is configured to receive an upper leg 161 of a four point chinstrap 160 and may have a diameter of about 0.625 inches. In operation, the upper leg 161 of the chinstrap 160 is threaded through the opening 322 of the tab extension 321 from the inside of the faceguard 300. After threading the upper leg 161 of the chinstrap 160 through the opening, the wearer of the helmet 10 pulls the upper leg 161 in a direction away from the top portion 30 of the shell 20 and attaches to the shell 20. This chinstrap routing location provides a better mechanical advantage when the wearer of the helmet 10 adjusts the chinstrap 160 because it allows the wearer to apply a downward force away from the shell 20 of the helmet 10. This downward force causes the shell 20 to move in the direction of the wearer in order to produce a closer fit. A second upper leg of the chinstrap 160 may be attached on the opposite side of the shell 20 in the same manner. In the alternative, when the faceguard 300 is attached to the front edge 50 of the shell 10, a space may be provided between the faceguard 300 and the shell 20 to allow the upper leg 161 of a chinstrap 160 to be placed in the more traditional position upon the top portion 30 of the shell 20 by the use of a connector 73. Furthermore, a V-shaped notch (not shown) can be placed on either side 21, 22 of the shell 20, where a lower leg 162 of a chinstrap 160 may be passed through the notch and attached to one of the connectors 73. A protective plastic coating may also be added to the surface of the faceguard 300 to cover the wire terminations of the wire assemblies and wire segments of the faceguard 300.
A fourth embodiment of the faceguard 400 to be used with the shell and the helmet of
When the faceguard 400 is positioned upon the shell 20 and the curved wire segments are secured in the attachment assemblies 80 of the helmet 10, the top portion 404 of the first wire assembly 401 overlies the top portion of the shell 20 and substantially overlies and coincides with an entire shape of the front edge 50 of the shell 20. The faceguard 400 also includes tab extensions 421 with an opening 422 to receive a leg of a chinstrap. The opening 422 is configured to receive an upper leg 161 of a four point chinstrap 160 and may have a diameter of about 0.625 inches. In operation, the upper leg of the chinstrap is threaded through the opening 422 of the tab extension 421 from the inside of the faceguard 400. After threading the upper leg 161 of the chinstrap 160 through the opening, the wearer of the helmet 10 pulls the upper leg 161 in a direction away from the top portion 30 of the shell 20 and attaches to the shell 20. This chinstrap routing location provides a better mechanical advantage when the wearer of the helmet 10 adjusts the chinstrap 160 because it allows the wearer to apply a downward force away from the shell 20 of the helmet 10. This downward force causes the shell 20 to move in the direction of the wearer in order to produce a closer fit. A second upper leg of the chinstrap 160 may be attached on the opposite side of the shell 20 in the same manner. In the alternative, when the faceguard 400 is attached to the front edge 50 of the shell 10, a space may be provided between the faceguard 400 and the shell 20 to allow the upper leg 161 of a chinstrap 160 to be placed in the more traditional position upon the top portion 30 of the shell 20. Furthermore, a V-shaped notch (not shown) can be placed on either side 21, 22 of the shell 20, where a lower leg 162 of a chinstrap 160 may be passed through the notch and attached to one of the connectors 73. Furthermore, a V-shaped notch (not shown) can be placed on either side 21, 22 of the shell 20. A lower leg of a chinstrap may be passed through the notch and attached to one of the connectors 73. A protective plastic coating may also be added to the surface of the faceguard 400 to cover the wire terminations of the wire assemblies and wire segments of the faceguard 400.
Referring back to
As shown in
During use, each attachment assembly 80 has a corresponding impact absorbing stop 90 inserted in the opening 81 prior to insertion of the curved wire segment 106 therein. When a force is applied to the faceguard 100 in the direction of the top portion 30 of the shell 20, the top portion 104 of the faceguard 100 pivots about a clamping mechanism 130, discussed in further detail below, and the curved wire segments 106 rotate in an upward direction and engage with the inner surface 93 of the impact absorbing stop 90. The impact absorbing stop 90 compresses as the force is applied to the facemask 100 as described above and dissipates the energy created by the applied force. Further, the impact absorbing stop 90 acts to hold the faceguard 100 securely to the shell 20 as the wearer of the helmet 10 participates in the game. The curved wire segments 106 are placed in the closed channel created by the inside surface 93 of the impact absorbing stop 90 and the curved bottom edge 82. Thus, the curved wire segments 106 are sandwiched between the impact absorbing stop 90 and the attachment assembly 80, and lateral movement of the faceguard 100 in a direction away from the shell 20 is prevented.
Referring back to
Preferably, the edges of the legs 131 and 132 are configured to coincide with the shape of the corrugated channel 60. The cross element 133 is attached to the legs 131 and 132. The cross element 133 is configured to fit over the front edge 50 of the shell 20. Preferably, as shown by
As shown in
Referring back to
The helmet 10 further includes protective padding 140. The protective padding 130 engages an inner surface of the shell 20, The protective padding 140 provides added cushioning and protection to the head of the wearer of the helmet. As shown by
Referring now to
Referring now to
The method of attaching the faceguard to the shell of the helmet and the method of removing the faceguard from the shell of the helmet would work in a similar manner for faceguards 200, 300, and 400 of
It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
1522952 | Goldsmith | Jan 1925 | A |
1892943 | Geyer | Jan 1933 | A |
2140716 | Pryale | Dec 1938 | A |
2296335 | Brady | Sep 1942 | A |
2969546 | Morgan, Jr. | Jan 1961 | A |
3166761 | Strohm | Jan 1965 | A |
3186004 | Carlini | Jun 1965 | A |
3263236 | Humphrey | Aug 1966 | A |
3274613 | Sowle | Sep 1966 | A |
3609764 | Morgan | Mar 1969 | A |
3548409 | Aileo | Dec 1970 | A |
3761959 | Dunning | Oct 1973 | A |
3882547 | Morgan | May 1975 | A |
3897598 | Bednarczuk et al. | Aug 1975 | A |
4028743 | Christensen | Jun 1977 | A |
4075714 | Ryder et al. | Feb 1978 | A |
4086664 | Humphrey et al. | May 1978 | A |
4233687 | Lancellotti | Nov 1980 | A |
4287613 | Schulz | Sep 1981 | A |
D267287 | Gooding | Dec 1982 | S |
4363140 | Correale | Dec 1982 | A |
4370759 | Zide | Feb 1983 | A |
4390995 | Walck | Jul 1983 | A |
4404690 | Farquharson | Sep 1983 | A |
4633531 | Nimmons | Jan 1987 | A |
4646368 | Infusino et al. | Mar 1987 | A |
4692947 | Black et al. | Sep 1987 | A |
4744107 | Föhl | May 1988 | A |
4774729 | Coates et al. | Oct 1988 | A |
4794652 | Piech von Planta et al. | Jan 1989 | A |
4831668 | Schulz | May 1989 | A |
4837866 | Rector et al. | Jun 1989 | A |
4853980 | Zarotti | Aug 1989 | A |
4903346 | Reddemann et al. | Feb 1990 | A |
4916759 | Arai | Apr 1990 | A |
4947490 | Hayden | Aug 1990 | A |
5014365 | Schulz | May 1991 | A |
5035009 | Wingo, Jr. et al. | Jul 1991 | A |
5142700 | Reed | Aug 1992 | A |
D332507 | Anderson et al. | Jan 1993 | S |
5175889 | Infusino | Jan 1993 | A |
5177816 | Schmidt et al. | Jan 1993 | A |
5263203 | Kraemer et al. | Nov 1993 | A |
5267353 | Milligan | Dec 1993 | A |
5293649 | Corpus | Mar 1994 | A |
D350710 | Keiffer | Sep 1994 | S |
D364487 | Tutton et al. | Nov 1995 | S |
5555567 | Corpus | Sep 1996 | A |
D383953 | DeFilippo | Sep 1997 | S |
5675875 | Servatius | Oct 1997 | A |
5732414 | Monica | Mar 1998 | A |
5799337 | Brown | Sep 1998 | A |
D408236 | Rennick | Apr 1999 | S |
5956777 | Popovich | Sep 1999 | A |
5963990 | White | Oct 1999 | A |
5966744 | Smith, Jr. | Oct 1999 | A |
6079053 | Clover et al. | Jun 2000 | A |
6128786 | Maddux et al. | Oct 2000 | A |
6189156 | Loiars | Feb 2001 | B1 |
6219850 | Halstead et al. | Apr 2001 | B1 |
6226801 | Alexander et al. | May 2001 | B1 |
6370699 | Halstead et al. | Apr 2002 | B1 |
D459032 | Gatellet | Jun 2002 | S |
D459554 | Gatellet | Jun 2002 | S |
6438762 | Jenkins | Aug 2002 | B1 |
D465067 | Ide et al. | Oct 2002 | S |
6481024 | Grant | Nov 2002 | B1 |
D466651 | Halstead et al. | Dec 2002 | S |
D475486 | Ide et al. | Jun 2003 | S |
6934971 | Ide et al. | Aug 2005 | B2 |
7036151 | Ide et al. | May 2006 | B2 |
D528705 | Ide et al. | Sep 2006 | S |
7146652 | Ide et al. | Dec 2006 | B2 |
7240376 | Ide et al. | Jul 2007 | B2 |
D584001 | Hunter et al. | Dec 2008 | S |
D587857 | Nimmons et al. | Mar 2009 | S |
7607179 | Shih | Oct 2009 | B2 |
20020104533 | Kalhok et al. | Aug 2002 | A1 |
20070192944 | Ide et al. | Aug 2007 | A1 |
20080163410 | Udelhofen | Jul 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090106882 A1 | Apr 2009 | US |