The present invention relates to neck rolls for helmets, and more particularly, to neck rolls that are adapted to absorb forces when impacted.
There are a variety of commercially available helmets designed to protect a wearer's head during sporting, recreational and occupational activities. Most protective helmets include a hard outer shell that forms a portion of the helmet designed to be impacted, and a liner adapted to fit between the hard outer shell and the wearer's head.
While the wearer engages in activities, they may experience an impact to the front, sides, or crown of the helmet. This impact can cause the helmet and, consequently, the wearer's head to rotate or snap in a lateral or posterior direction. If the impact is significant, the helmet and wearer's head may be rotated such that the rear edge of the helmet impacts the dorsal/back side of the wearer's head/neck. In this situation, a significant portion of impact to the helmet may be transmitted directly to the neck, spine and/or musculature of the wearer.
Some helmet configurations attempt to address this type of frontal impact and incorporate a cushioning element that cushions the back of the wearer's head and neck during an impact. For example, certain helmets include a continuous, uniform foam pad or “neck roll.” These foam pads, however, are only as good as the compressible foam from which they are constructed. Such neck rolls can be in the form of a long cylindrical foam piece that extends around a lower part of the helmet and is interposed between that lower part and the neck, shoulders and/or back of the wearer when the helmet is donned. Further, these continuous, uniform pads usually do not offer an opportunity to easily vary the impact absorption characteristics along a length of the pad, or to vary the impact absorption characteristics between foam pads. Usually, such conventional pads use foam or similar liquid-absorbing materials absorb sweat or other fluids during use. Over time, these pads may develop an undesirable odor that requires the pad to be washed or replaced.
A helmet including a neck roll is provided to cushion an impact to the helmet.
In one embodiment, the helmet can include a hard outer shell and a liner having an occipital portion terminating at a lower rim of the liner. A neck roll can be positioned adjacent the lower rim and can include a base separated from the lower rim by a preselected distance.
In another embodiment, the neck roll can include one or more support members extending between the base and the lower rim. These support members can separate the neck roll into multiple impact absorption compartments. In this configuration, an impact to the base can cause at least one of the support members to deform and/or compress at least one of the impact absorption compartments to effectively absorb the impact.
In yet another embodiment, the neck roll can include an interior wall and an exterior wall. The interior wall and/or exterior wall can extend a distance greater than the distance between the base and the liner and can be positioned adjacent a respective interior or exterior of the liner. Optionally, the interior wall and/or exterior wall can be releasably or non-releasably attached to the occipital portion of the liner.
In even another embodiment, the distance between certain adjacent support members can be different than the distance between other adjacent support members. Further, the distance between adjacent support members can decrease moving from a central region of the neck roll to one of two outer regions of the neck roll.
In still another embodiment, each support member can be at an angle relative to the base, for example, perpendicular to the base, or at some non-perpendicular angle relative to the base. Optionally, the angle between the support members and the base can vary depending on the location of the support members. As an example, the angles can decrease moving from the central region of the neck roll to the outer regions of the neck roll.
In a further embodiment, the length of at least one support member can be different than the length of another support member. Optionally, the lengths can decrease moving from the central region of the neck roll to the outer regions of the neck roll.
In yet a further embodiment, the thickness of at least one support member can be different than the thickness of another support member. Optionally, the thickness of the support members can increase or decrease moving from the central region to the outer regions of the neck roll.
In still a further embodiment, the volume of at least one impact absorption compartment can be different than the volume of another impact absorption compartment. Optionally, the volume of the impact absorption compartments can decrease moving from the central region to the outer regions of the neck roll.
The helmet and neck roll described herein can absorb at least a portion of the impact between a wearer and the helmet during an impact to the helmet. The configuration of the neck roll can provide the ability to vary the impact absorption characteristics along the length of the neck roll and vary the impact absorption characteristics between different neck rolls. Further, the neck roll can be constructed from a material that does not tend to absorb liquids, perspiration, or other smells, which can limit the development of undesirable odors.
These and other objects, advantages, and features of the invention will be more fully understood and appreciated by reference to the description of the current embodiment and the drawings.
I. Overview
A helmet 10 in accordance with a current embodiment is shown in
II. Construction
A helmet 10 in accordance with a current embodiment will now be described in more detail with reference to
The liner 14 can be located substantially within the interior 13, generally adjacent the interior surface 15 of the outer shell 12. The liner can include a crown portion 16 and an occipital portion 20, as shown in
As shown in
The liner 14 can be joined with the interior surface 15 of the outer shell 12 with any suitable fasteners, including snaps, buttons, glue, adhesives, tacks, staples, screws, rivets, hook-and-loop fasteners and/or combinations of the foregoing. Optionally, additional comfort liners or padding also can be secured between the liner 14 and the outer shell 12 or on the interior of the liner 14 as desired. The comfort liners can be secured to the inner surface of the outer shell 12 and/or portions of the liner 14 by suitable fasteners, including snaps, buttons, glue, adhesives, tacks, staples, screws, rivets, hook-and-loop fasteners and/or combinations of the foregoing.
As shown in
The support members 54, 56, 58, 60, 62, 64 can extend generally upward from the base 32 toward the lower rim 22 of the occipital portion 20. The support members 54, 56, 58, 60, 62, 64 can extend partially or the entire distance between the base 32 and the lower rim 22, and further, can engage the lower rim 22 if desired. Optionally, at least one support member 54, 56, 58, 60, 62, 64 can extend the entire distance between the base 32 and the lower rim 22, while at least one other support member 54, 56, 58, 60, 62, 64 can extend only a partial distance between the base 32 and the lower rim 22, in which case there can be a gap between the lower rim 22 and the support members 54, 56, 58, 60, 62, 64 and/or a gap between the support members 54, 56, 58, 60, 62, 64 and the base 32. For example, in the embodiment shown in
The base 32 can be positioned at a preselected distance from the lower rim 22 to provide the neck roll 30 with desired impact absorption characteristics. Optionally, the preselected distance can be varied to adjust the impact absorption characteristics. For example, the preselected distance may optionally be between about 0.1 and 1 inch, further optionally between about 0.25 and 0.5 inches and even further optionally about 0.375 inches.
The interior wall 36 can extend the same distance as the preselected distance between the base 32 and the lower rim 22, or optionally, the interior wall 36 can extend a lesser or a greater distance than the preselected distance. As shown in the embodiment in
In the embodiment shown in
As shown in the embodiment in
With reference to
The base 32, exterior wall 34, interior wall 36 and support members 54, 56, 58, 60, 62, 64 can define one or more impact absorption compartments 40, 42, 44, 46, 48, 50, 52 that can compress and/or deform to absorb impact between the helmet 10 and the wearer. The impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can compress and/or deform because one or more of the elements defining and/or contained within the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can compress and/or deform. For example, the support members 54, 56, 58, 60, 62, 64 can be deformable and/or compressible such that when the base 32 is impacted, the base 32 transmits the force to the support members 54, 56, 58, 60, 62, 64, which deform and/or compress to absorb the impact. In this manner, the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can also compress and/or deform to absorb the forces of an impact. Further, the base 32, exterior wall 34 and/or the interior wall 36 can be deformable and/or compressible to further absorb impact forces transmitted to the base 32.
The impact absorption characteristics of each impact absorption compartment 40, 42, 44, 46, 48, 50, 52 can vary from one another by controlling the deformation of each impact absorption compartment 40, 42, 44, 46, 48, 50, 52. The collective impact absorption characteristics of all of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can also be varied. For example, the width of each impact absorption compartment can vary. The width of each impact absorption compartment 40, 42, 44, 46, 48, 50, 52 is defined by the distance between the corresponding adjacent support members 54, 56, 58, 60, 62, 64 that define the impact absorption compartment 40, 42, 44, 46, 48, 50, 52. Optionally, the distance between support member 58 and support member 60 may be between about 0.25 and 3.0 inches, further optionally between about 1.5 and 2.5 inches, and even further optionally about 2.0 inches. Further, the distance between support member 56 and support member 58, and the distance between support member 60 and 62, may be between about 0.25 to 2.75 inches, further optionally between about 0.5 and 2.0 inches, and even further optionally about 1.5 inches. The distance between support member 56 and support member 58 may be substantially the same as or different than the distance between support member 60 and support member 62. Optionally, the distance between support member 54 and support member 56 and the distance between support member 62 and support member 64 may be between about 0.25 and 2.25 inches, further optionally between about 0.75 and 1.75 inches and even further optionally about 1.25 inches. Further, the distance between support member 54 and support member 56 may be substantially the same as or different than the distance between support member 62 and support member 64.
In the embodiment shown in
In other words, in the embodiment shown in
Optionally, one or more of the distances between adjacent support members 54, 56, 58, 60, 62, 64 can be varied from the illustrated embodiment of the neck roll 30 to create impact absorption and deformation characteristics that differ from the illustrated embodiment. If the attachment of the neck roll to the helmet is releasable, different embodiments of the neck roll 30 with different impact absorption characteristics (described above and below) can be interchanged with the helmet 10 to provide a wearer with a precisely-designed level of impact absorption.
The impact absorption characteristics of each impact absorption compartment 40, 42, 44, 46, 48, 50, 52 can also be varied by varying the angle of the support members 54, 56, 58, 60, 62, 64. Each support member 54, 56, 58, 60, 62, 64 is positioned at an angle relative to the base 32. As shown in the embodiment illustrated in FIGS. 6 and 8A-8C, support member 60 is positioned at angle A, support member 62 is positioned at angle B, and support member 64 is positioned at angle C. In the illustrated embodiment, the angles A, B, C each have different values. Optionally, angle A may be between about 65° and 90°, further optionally between about 75° and 90°, and even further optionally about 85°. Optionally, angle B may be between about 60° and 90°, further optionally between about 70° and 85°, and even further optionally about 80°. Optionally, angle C may be between about 35° and 65°, further optionally between about 45° and 55°, and even further optionally about 50°. Optionally, the angles of support member 54, support member 56 and support member 58 may be substantially supplementary to respective angles A, B, C (i.e. mirror images), or further optionally, may have other values.
Varying the angle of the support members 54, 56, 58, 60, 62, 64 can create different impact absorption and deformation characteristics between different impact absorption compartments 40, 42, 44, 46, 48, 50, 52. A support member 54, 56, 58, 60, 62, 64 with a lesser angle will generally deform more easily than a support member with a greater angle. In this manner, the angles may be varied to vary the rigidity of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52, and the rigidity of the neck roll 30, as described above in connection with varying the width of the impact absorption compartments.
The angle of the support members 54, 56, 58, 60, 62, 64 can decrease when moving from the central region 70 to the outer regions 72, 74 to provide desired impact absorption characteristics. In other words, in the embodiment shown in FIGS. 6 and 8A-8C, the angle A of support member 60 can be greater than the angle B of support member 62, which can be greater than the angle C of support member 64. Optionally, one or more of the angles of the support members 54, 56, 58, 60, 62, 64 can be varied from the illustrated embodiment of the neck roll 30 to create impact absorption and deformation characteristics that differ from the illustrated embodiment.
The impact absorption characteristics of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can also be varied by varying the length of the support members 54, 56, 58, 60, 62, 64. Each support member 54, 56, 58, 60, 62, 64 has a length extending from base 32, perhaps best shown in the embodiment in FIGS. 6 and 8A-8C. As shown in
Varying the length of the support members 54, 56, 58, 60, 62, 64 can create different impact absorption and deformation characteristics between different impact absorption compartments 40, 42, 44, 46, 48, 50, 52. A support member 54, 56, 58, 60, 62, 64 with a greater length will generally deform more easily than a support member with a lesser length. In this manner, the lengths of the support members 54, 56, 58, 60, 62, 64 may be varied to vary the rigidity of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52, and the rigidity of the neck roll 30, as described above in connection with varying the width of the impact absorption compartments.
The length of the support members 54, 56, 58, 60, 62, 64 can decrease when moving from the central region 70 to the outer regions 72, 74 to provide desired impact absorption characteristics. In other words, the embodiment shown in FIGS. 6 and 8A-8C can be modified such that the length of support member 60 can be greater than the length of support member 62, which can be greater than the length of support member 64. Optionally, one or more of the lengths of the support members 54, 56, 58, 60, 62, 64 can be varied from the illustrated embodiment of the neck roll 30 to create impact absorption and deformation characteristics that differ from the illustrated embodiment.
The impact absorption characteristics of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can also be varied by varying the thickness of the support members 54, 56, 58, 60, 62, 64. Each support member 54, 56, 58, 60, 62, 64 has a thickness, perhaps best shown in the embodiment in FIGS. 6 and 8A-8C. As shown in
Varying the thickness of the support members 54, 56, 58, 60, 62, 64 can create different impact absorption and deformation characteristics between different impact absorption compartments 40, 42, 44, 46, 48, 50, 52. A support member 54, 56, 58, 60, 62, 64 with a lesser thickness will generally deform more easily than a support member with a greater thickness. In this manner, the thicknesses of the support members 54, 56, 58, 60, 62, 64 may be varied to vary the rigidity of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52, and the rigidity of the neck roll 30, as described above in connection with varying the width of the impact absorption compartments. Further optionally, one or more of the thicknesses of the support members 54, 56, 58, 60, 62, 64 can be varied from the illustrated embodiment of the neck roll 30 to create impact absorption and deformation characteristics that differ from the illustrated embodiment.
The impact absorption characteristics of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can also be varied by varying the volume of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52. Each impact absorption compartment 40, 42, 44, 46, 48, 50, 52 has a volume generally bounded by the base 32, two adjacent support members 54, 56, 58, 60, 62, 64, the exterior wall 34, the interior wall 36 and the lower rim 22 of the liner 14. Each impact absorption compartment can be partially bounded or partially defined by only some of these elements. For example, the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can be capped, such that each impact absorption compartment 40, 42, 44, 46, 48, 50, 52 is air-tight and the cap, rather than the lower rim 22, combines with the other elements to define the volume of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52.
As shown in the embodiment in
Varying the volume of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can create different impact absorption and deformation characteristics between different impact absorption compartments 40, 42, 44, 46, 48, 50, 52. An impact absorption compartment 40, 42, 44, 46, 48, 50, 52 with a greater volume will generally deform more easily than an impact absorption compartment with a lesser volume. In this manner, the volumes of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 may be varied to vary the rigidity of the individual impact absorption compartments, and the rigidity of the neck roll 30, as described above in connection with varying the width of the impact absorption compartments. Further optionally, one or more of the volumes of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can be varied from the illustrated embodiment of the neck roll 30 to create impact absorption and deformation characteristics that differ from the illustrated embodiment.
Optionally, one or more of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52 can be partially or completely filled with a material that affects the impact absorption and deformation characteristics of the impact absorption compartments 40, 42, 44, 46, 48, 50, 52. For example, the material may be elastic compressible or more rigid, depending on the desired characteristics. The material may be expanded polypropylene, expanded polyethylene, vinyl nitrile, polyurethane, polystyrene, foam, rubber, plastic, composite, or any other suitable material.
The neck roll 30 can be constructed from any of a variety of suitable elastomeric materials, including but not limited to, flexible plastics, elastomers, thermoplastic elastomers and thermoplastic rubbers. The neck roll 30 can be constructed using a single material with uniform performance characteristics and physical properties. Of course, different elements of the neck roll can be constructed using different materials, or the same material with different characteristics, to provide the desired impact absorption characteristics. For example, the base 32, exterior wall 34 and interior wall 36 can be constructed from one material, and the support members 54, 56, 58, 60, 62, 64 can be constructed from another material. Optionally, the different materials may have different densities to provide different compressibility and physical characteristics between the materials. The neck roll 30 can be manufactured using any of a variety of suitable processes, including single shot injection molding, multiple shot injection molding and thermoforming.
The above descriptions are those of the preferred embodiments of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. Any references to claim elements in the singular, for example, using the articles “a,” “an,” “the,” or “said,” is not to be construed as limiting the element to the singular. Any reference to claim elements as “at least one of X, Y and Z” is meant to include any one of X, Y or Z individually, and any combination of X, Y and Z, for example, X, Y, Z; X, Y; X, Z; and Y, Z.
Number | Name | Date | Kind |
---|---|---|---|
3017639 | Foley | Jan 1962 | A |
3134106 | Shaffer et al. | May 1964 | A |
3497872 | Mitchell | Mar 1970 | A |
3514784 | McDavid | Jun 1970 | A |
3609763 | Raney | Oct 1971 | A |
3657739 | Holmes, Sr. | Apr 1972 | A |
3671974 | Sims | Jun 1972 | A |
3765029 | Germain | Oct 1973 | A |
3818509 | Romo et al. | Jun 1974 | A |
3855631 | Ettinger | Dec 1974 | A |
3873996 | Varteressian | Apr 1975 | A |
3900896 | Ackerman | Aug 1975 | A |
3981027 | Anderson | Sep 1976 | A |
4135252 | Latina et al. | Jan 1979 | A |
4158242 | Mitchell | Jun 1979 | A |
4219193 | Newman | Aug 1980 | A |
4319362 | Ettinger | Mar 1982 | A |
4501023 | Bilberry | Feb 1985 | A |
4638510 | Hubbard | Jan 1987 | A |
4821339 | Fair | Apr 1989 | A |
4870705 | Higby et al. | Oct 1989 | A |
4881529 | Santos | Nov 1989 | A |
4989265 | Santos | Feb 1991 | A |
4996720 | Fair | Mar 1991 | A |
5121507 | Brown | Jun 1992 | A |
D329508 | Fair | Sep 1992 | S |
5261125 | Cartwright et al. | Nov 1993 | A |
5272770 | Allen et al. | Dec 1993 | A |
5287562 | Rush, III | Feb 1994 | A |
5353437 | Field et al. | Oct 1994 | A |
5390367 | Rush, III | Feb 1995 | A |
5404590 | Monica, Jr. | Apr 1995 | A |
5437613 | Reggio et al. | Aug 1995 | A |
5483698 | Douglas, Jr. | Jan 1996 | A |
5493736 | Allison | Feb 1996 | A |
5517699 | Abraham, II | May 1996 | A |
5546601 | Abeyta | Aug 1996 | A |
5546609 | Rush, III | Aug 1996 | A |
5581820 | Cartwright et al. | Dec 1996 | A |
5652959 | Proctor | Aug 1997 | A |
5771493 | Proctor | Jun 1998 | A |
5862523 | Proctor | Jan 1999 | A |
5956777 | Popovich | Sep 1999 | A |
6052835 | O'Shea | Apr 2000 | A |
6058517 | Hartunian | May 2000 | A |
6067665 | DePalma et al. | May 2000 | A |
6125851 | Walker et al. | Oct 2000 | A |
6385781 | Rose et al. | May 2002 | B1 |
6434756 | Hoop | Aug 2002 | B1 |
6481026 | McIntosh | Nov 2002 | B1 |
6499149 | Ashline | Dec 2002 | B2 |
6532962 | Walker et al. | Mar 2003 | B1 |
6810535 | Moloney | Nov 2004 | B1 |
6874170 | Aaron | Apr 2005 | B1 |
6971123 | Weaver | Dec 2005 | B2 |
D522178 | Ashline | May 2006 | S |
7225477 | Rodriguez | Jun 2007 | B1 |
7661164 | Chen | Feb 2010 | B2 |
7849525 | Ghajar | Dec 2010 | B2 |
7861326 | Harty | Jan 2011 | B2 |
20040060100 | Reiterman | Apr 2004 | A1 |
20050246824 | Berger et al. | Nov 2005 | A1 |
20060248623 | Miller | Nov 2006 | A1 |
20070163032 | Kerr | Jul 2007 | A1 |
20090064385 | Crossman et al. | Mar 2009 | A1 |
20090126085 | Gale | May 2009 | A1 |
20100192290 | Husain | Aug 2010 | A1 |
20110099675 | Parks et al. | May 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120291183 A1 | Nov 2012 | US |