The present invention relates to helmets.
Helmets are known for use in various activities. These activities include combat and industrial purposes, such as protective helmets for soldiers and hard-hats or helmets used by builders, mine-workers, or operators of industrial machinery for example. Helmets are also common in sporting activities. For example, protective helmets may be used in ice hockey, cycling, motorcycling, motor-car racing, skiing, snow-boarding, skating, skateboarding, equestrian activities, American football, baseball, rugby, cricket, lacrosse, climbing, golf, airsoft and paintballing.
Helmets can be of fixed size or adjustable, to fit different sizes and shapes of head. In some types of helmet, e.g. commonly in ice-hockey helmets, the adjustability can be provided by moving parts of the helmet to change the outer and inner dimensions of the helmet. This can be achieved by having a helmet with two or more parts which can move with respect to each other. In other cases, e.g. commonly in cycling helmets, the helmet is provided with an attachment device for fixing the helmet to the user's head, and it is the attachment device that can vary in dimension to fit the user's head whilst the main body or shell of the helmet remains the same size. In some cases, comfort padding within the helmet can act as the attachment device. The attachment device can also be provided in the form of a plurality of physically separate parts, for example a plurality of comfort pads which are not interconnected with each other. Such attachment devices for seating the helmet on a user's head may be used together with additional strapping (such as a chin strap) to further secure the helmet in place. Combinations of these adjustment mechanisms are also possible.
Helmets are often made of an outer shell, that is usually hard and made of a plastic or a composite material, and an energy absorbing layer called a liner. Nowadays, a protective helmet has to be designed so as to satisfy certain legal requirements which relate to inter alia the maximum acceleration that may occur in the centre of gravity of the brain at a specified load. Typically, tests are performed, in which what is known as a dummy skull equipped with a helmet is subjected to a radial blow towards the head. This has resulted in modern helmets having good energy-absorption capacity in the case of blows radially against the skull. Progress has also been made (e.g. WO 2001/045526 and WO 2011/139224, which are both incorporated herein by reference, in their entireties) in developing helmets to lessen the energy transmitted from oblique blows (i.e. which combine both tangential and radial components), by absorbing or dissipating rotation energy and/or redirecting it into translational energy rather than rotational energy.
Such oblique impacts (in the absence of protection) result in both translational acceleration and angular acceleration of the brain. Angular acceleration causes the brain to rotate within the skull creating injuries on bodily elements connecting the brain to the skull and also to the brain itself.
Examples of rotational injuries include concussion, subdural haematomas (SDH), bleeding as a consequence of blood vessels rapturing, and diffuse axonal injuries (DAI), which can be summarized as nerve fibres being over stretched as a consequence of high shear deformations in the brain tissue.
Depending on the characteristics of the rotational force, such as the duration, amplitude and rate of increase, either SDH, DAI or a combination of these injuries can be suffered. Generally speaking, SDH occur in the case of accelerations of short duration and great amplitude, while DAI occur in the case of longer and more widespread acceleration loads.
As discussed in the above-referenced patent applications, helmets have been developed in which a sliding interface may be provided between two shells of the helmet in order to assist with management of an oblique impact. However, the present inventors have identified that, for some uses, it may be desirable to make adjustments to the way in which the inner and outer shell move relative to each other in response to loading. For example, this may be of interest to a user if the helmet is to be used in a plurality of circumstances in which expected conditions may differ. It may also be of interest to the user if optional components or other items that may add weight may be mounted to the helmet and may affect the behaviour of the helmet, both in the event of an impact and in normal use. Additional components that may be added to a helmet may include, for example, cameras and/or position-tracking devices.
The present invention aims to at least partially address this problem.
According to the present invention, there is provided a helmet comprising an inner shell, an outer shell, configured to be able to displace relative to the inner shell in response to an impact. The helmet further includes an impact response adjustment mechanism configured to be adjustable such that the response profile of the relative displacement over time of the outer shell in relation to the inner shell in response to an impact on the helmet varies depending on the setting of the impact response adjustment mechanism.
The invention is described below by way of non-limiting examples, with reference to the accompanying drawings, in which:
The proportions of the thicknesses of the various layers in the helmets depicted in the figures have been exaggerated in the drawings for the sake of clarity and can of course be adapted according to need and requirements.
Protective helmet 1 is constructed with an outer shell 2 and, arranged inside the outer shell 2, an inner shell 3 that is intended for contact with the head of the wearer.
Arranged between the outer shell 2 and the inner shell 3 is a sliding layer 4 or a sliding facilitator, and thus makes possible displacement between the outer shell 2 and the inner shell 3. In particular, as discussed below, a sliding layer 4 or sliding facilitator may be configured such that sliding may occur between two parts during an impact. For example, it may be configured to enable sliding under forces associated with an impact on the helmet 1 that is expected to be survivable for the wearer of the helmet 1. In some arrangements, it may be desirable to configure the sliding layer or sliding facilitator such that the coefficient of friction is between 0.001 and 0.3 and/or below 0.15.
Arranged in the edge portion of the helmet 1, in the
Further, the location of these connecting members 5 can be varied (for example, being positioned away from the edge portion, and connecting the outer shell 2 and the inner shell 3 through the sliding layer 4).
The outer shell 2 is preferably relatively thin and strong so as to withstand impact of various types. The outer shell 2 could be made of a polymer material such as polycarbonate (PC), polyvinylchloride (PVC) or acrylonitrile butadiene styrene (ABS) for example. Advantageously, the polymer material can be fibre-reinforced, using materials such as glass-fibre, Aramid, Twaron, carbon-fibre or Kevlar.
The inner shell 3 is considerably thicker and acts as an energy absorbing layer. As such, it is capable of damping or absorbing impacts against the head. It can advantageously be made of foam material like expanded polystyrene (EPS), expanded polypropylene (EPP), expanded polyurethane (EPU), vinyl nitrile foam; or other materials forming a honeycomb-like structure, for example; or strain rate sensitive foams such as marketed under the brand-names Poron™ and D3O™. The construction can be varied in different ways, which emerge below, with, for example, a number of layers of different materials.
Inner shell 3 is designed for absorbing the energy of an impact. Other elements of the helmet 1 will absorb that energy to a limited extend (e.g. the hard outer shell 2 or so-called ‘comfort padding’ provided within the inner shell 3), but that is not their primary purpose and their contribution to the energy absorption is minimal compared to the energy absorption of the inner shell 3. Indeed, although some other elements such as comfort padding may be made of ‘compressible’ materials, and as such considered as ‘energy absorbing’ in other contexts, it is well recognised in the field of helmets that compressible materials are not necessarily ‘energy absorbing’ in the sense of absorbing a meaningful amount of energy during an impact, for the purposes of reducing the harm to the wearer of the helmet.
A number of different materials and embodiments can be used as the sliding layer 4 or sliding facilitator, for example oil, Teflon, microspheres, air, rubber, polycarbonate (PC), a fabric material such as felt, etc. Such a layer may have a thickness of roughly 0.1-5 mm, but other thicknesses can also be used, depending on the material selected and the performance desired. The number of sliding layers and their positioning can also be varied, and an example of this is discussed below (with reference to
As connecting members 5, use can be made of, for example, deformable strips of plastic or metal which are anchored in the outer shell and the inner shell in a suitable manner.
As can be seen, the force K gives rise to a displacement 12 of the outer shell 2 relative to the inner shell 3, the connecting members 5 being deformed. A reduction in the torsional force transmitted to the skull 10 of roughly 25% can be obtained with such an arrangement. This is a result of the sliding motion between the inner shell 3 and the outer shell 2 reducing the amount of energy which is transferred into radial acceleration.
Sliding motion can also occur in the circumferential direction of the protective helmet 1, although this is not depicted. This can be as a consequence of circumferential angular rotation between the outer shell 2 and the inner shell 3 (i.e. during an impact the outer shell 2 can be rotated by a circumferential angle relative to the inner shell 3).
Other arrangements of the protective helmet 1 are also possible. A few possible variants are shown in
In
An attachment device 13 is provided, for attachment of the helmet 1 to a wearer's head. As previously discussed, this may be desirable when energy absorbing layer 3 and rigid shell 2 cannot be adjusted in size, as it allows for the different size heads to be accommodated by adjusting the size of the attachment device 13. The attachment device 13 could be made of an elastic or semi-elastic polymer material, such as PC, ABS, PVC or PTFE, or a natural fibre material such as cotton cloth. For example, a cap of textile or a net could form the attachment device 13.
Although the attachment device 13 is shown as comprising a headband portion with further strap portions extending from the front, back, left and right sides, the particular configuration of the attachment device 13 can vary according to the configuration of the helmet. In some cases the attachment device may be more like a continuous (shaped) sheet, perhaps with holes or gaps, e.g. corresponding to the positions of vents 7, to allow air-flow through the helmet.
A sliding facilitator 4 is provided radially inwards of the energy absorbing layer 3. The sliding facilitator 4 is adapted to slide against the energy absorbing layer or against the attachment device 13 that is provided for attaching the helmet to a wearer's head.
The sliding facilitator 4 is provided to assist sliding of the energy absorbing layer 3 in relation to an attachment device 13, in the same manner as discussed above. The sliding facilitator 4 may be a material having a low coefficient of friction, or may be coated with such a material.
As such, in the
However, it is equally conceivable that the sliding facilitator 4 may be provided on or integrated with the outer surface of the attachment device 13, for the same purpose of providing slidability between the energy absorbing layer 3 and the attachment device 13. That is, in particular arrangements, the attachment device 13 itself can be adapted to act as a sliding facilitator 4 and may comprise a low friction material.
In other words, the sliding facilitator 4 is provided radially inwards of the energy absorbing layer 3. The sliding facilitator can also be provided radially outwards of the attachment device 13.
When the attachment device 13 is formed as a cap or net (as discussed above), sliding facilitators 4 may be provided as patches of low friction material.
The low friction material may be a waxy polymer, such as PTFE, ABS, PVC, PC, Nylon, PFA, EEP, PE and UHMWPE, or a powder material which could be infused with a lubricant. The low friction material could be a fabric material. As discussed, this low friction material could be applied to either one, or both of the sliding facilitator and the energy absorbing layer
The attachment device 13 can be fixed to the energy absorbing layer 3 and/or the outer shell 2 by means of fixing members 5, such as the four fixing members 5a, 5b, 5c and 5d in
According to the embodiment shown in
A frontal oblique impact I creating a rotational force to the helmet is shown in
In general, in the helmets of
In an arrangement of the present invention, a helmet is provided with an impact response adjustment mechanism that is configured to enable adjustment of the response of the relative displacement between the inner shell and the outer shell in the event of an impact on the helmet. The displacement between the inner shell and the outer shell may be implemented by the provision of a sliding interface between the two shells. Alternatively, other arrangements may be provided, including but not limited to the provision of one or more components between the two shells that shear. It will be appreciated that, in such an arrangement, the inner and the outer surface of the one or more shearing components may be considered to be sliding relative to each other, enabling sliding of the shells relative to each other.
An adjustment mechanism may be configured such that a user can make adjustments in a controlled manner, for example enabling them to make an adjustment with an understanding of the expected effect of an adjustment that they make. This may be distinct from variations in the performance of a helmet that may arise from natural variations in the process of assembling a helmet.
The inner and outer shells of the helmet for which the impact response adjustment mechanism may adjust the relative displacement may, in general, be any two layers of a helmet between which a sliding interface, or other interface enabling relative displacement, is provided. In particular, such an impact response adjustment mechanism may be provided to any of the helmet arrangements discussed above.
For example, in an arrangement, the inner shell may be a layer that is configured to contact the head of the wearer and/or to be mounted to the head of the wearer and the outer shell may be an energy absorbing layer for absorbing impact energy. In another arrangement, the inner shell may be a first energy absorbing layer for absorbing impact energy and the outer shell may be a second energy absorbing layer for absorbing impact energy. In a further example, the inner shell may be an energy absorbing layer for absorbing impact energy and the outer shell may be a relatively hard shell, for example formed from a material that is harder than the material used to form the energy absorbing layer.
As is explained below in relation to specific examples of arrangements of the impact response adjustment mechanism, the impact response adjustment mechanism may be configured such that it can be manually adjusted by a wearer of the helmet. Accordingly, the adjustment of the impact response adjustment mechanism may be performed after a user has purchased a helmet rather than being set, for example, in the manufacturing/assembly process. A user may also be able to repeatedly adjust the impact response adjustment mechanism to different settings.
In some arrangements, a tool may be used in order to adjust the impact response adjustment mechanism. In other arrangements, the impact response adjustment mechanism may be configured such that the user can adjust the setting of the impact response adjustment mechanism without requiring the use of a tool. For example, the impact response adjustment mechanism may be configured such that changing the setting of the impact response adjustment mechanism may be effected using their hand/fingers.
In general, an impact response adjustment mechanism may be provided at any convenient point on a helmet. In some arrangements, the impact response adjustment mechanism may be provided at the edge of a helmet. This may be convenient for providing access for a user to the impact response adjustment mechanism. For example, this may permit the user to change the setting of the impact response adjustment mechanism while wearing the helmet. Alternatively or additionally, providing an impact response adjustment mechanism at an edge of a helmet may facilitate the manufacture of a helmet with such an impact response adjustment mechanism.
The impact response adjustment mechanism may enable adjustment of the response profile of the relative displacement over time between the inner shell and the outer shell. Accordingly, for a given magnitude of impact at a specific location on the helmet, a characteristic profile of the displacement over time of the outer shell relative to the inner shell over time may be altered by changing the setting of the impact response adjustment mechanism. Depending on the impact response adjustment mechanism used, the effect of the change may be to change at least one of the maximum relative velocity, the maximum rate of change of the relative velocity, namely the relative acceleration, the time above a threshold relative velocity and the time above a threshold relative acceleration.
As explained above, the comparison of the effect of the performance of a helmet for different settings of the impact response adjustment mechanism may be understood by considering the change of the response profile of the relative displacement over time between the inner shell and the outer shell for a given magnitude of impact at a specific location on the helmet. Such an impact may be a standard impact, namely of a standard impact force at a standard location. However, It should be appreciated that the effect of changing the setting of the impact response adjustment mechanism in a helmet may also be such that, for the different settings, the helmet may be able to withstand different levels of impact whilst having the same, or a similar, response profile of the relative displacement over time between the inner shell and the outer shell.
In an arrangement, the impact response adjustment mechanism includes a friction pad that is mounted on one of the inner shell and the outer shell and contacts an opposing surface on the other of the inner shell and the outer shell. In such an arrangement, the impact response adjustment mechanism may be configured such that changing the setting of the impact response adjustment mechanism adjusts the friction force between the friction pad and the opposing surface. In so doing, the response profile of the relative displacement over time of the outer shell relative to the inner shell is also adjusted.
In the arrangement depicted in
It should be appreciated that, although in the arrangement depicted in
Similarly, although in the arrangement depicted in
Furthermore, although in the arrangement depicted in
In an arrangement, the impact response adjustment mechanism may comprise a controller that is configured to be operated by a user and may, in turn, control the friction pad to adjust the reaction force between the friction pad and the opposing surface.
In an arrangement such as that depicted in
In an arrangement, the impact response adjustment mechanism may include at least one tensile element, such as a wire, band or tape that provides a connection between the controller and the friction pad. The controller may be configured such that it can adjust the tension in the wire, band or tape. The friction pad may be arranged such that the tension in the wire, band or tape determines the reaction force between the friction pad and the opposing surface against which it acts. Accordingly, by means of adjusting the controller, a user may adjust the friction between the inner and outer shell, adjusting the response profile of the relative displacement over time of the outer shell in relation to the inner shell in response to an impact on the helmet.
The controller may be provided by one of a number of arrangements. In a simple arrangement a controller 31 such as that depicted in
As shown in
In an arrangement in which a friction pad 25 is connected to a controller 34 by way of a wire, band or tape, alternative arrangements for converting changes of the tension in the wire, band or tape 33 into changes in the reaction force between the friction pad 25 and the opposing surface may be provided. For example, as depicted in
As shown in
It should be appreciated that other arrangements may be provided for connecting a controller 34 to be operated by a user and one or more friction pads that form an impact response adjustment mechanism. For example, a tube may be provided between a controller and one or more friction pads. The controller may be configured such that a user may use the controller to adjust the pressure of a fluid such as air, within the tube. The impact response adjustment mechanism may be configured such that the pressure in the tube determines the reaction force between the one or more friction pads and the opposing surface.
As shown in
It should also be appreciated that, a controller that is configured to adjust the pressure within a tube 40 may be connected to, and control the pressure within, a plurality of tubes.
In such an arrangement, when the inner and outer shells 21, 22, slide relative to one another, a surface of the deformable member 51 may engage with the surface of the opening 52, affecting the sliding of one shell relative to another as the deformable member 51 deforms.
If the deformable member 51 is smaller than the opening 52, the inner and outer shells 21, 22 may slide relative to one another for a distance corresponding to the initial separation before contact is made between the deformable member 51 and the surface of the opening 52. Accordingly, for an initial distance, the inner and outer shells, 22 may slide relative to one another without interference. At the point at which the deformable member 51 contacts the surface of the opening 52, the sliding of the inner shell relative to the outer shell 22 will be restricted by the extent to which the deformable member 51 deforms.
The impact response adjustment mechanism including a deformable member 51 may include a controller 53 that can deform the deformable member 51 in order to provide a desired setting of the impact response adjustment mechanism.
For example, the controller 53 may deform the shape of the deformable member 51 in order to control the initial separation between an edge of the deformable member 51 and the edge of the opening 52. This may control the extent to which the inner and outer shells 21, 22, may slide relative to one another before the engagement between the deformable member 51 and the edge of the opening 52 starts to affect the sliding of the outer shell 21 relative to the inner shell 22.
Alternatively or additionally, the adjustment by the controller 53 may adjust the pre-stress applied to the deformable member 51. The higher the level of pre-stress applied to the deformable member 51, the greater the force that must be applied to the deformable member 51 by the edge of the opening 52 in order to compress the deformable member 51 a given distance. Accordingly, this may adjust the response profile of the relative displacement over time of the inner and outer shells in response to an impact on the helmet.
In an arrangement, the deformable member 51 may be in contact with the edge of the opening 52 for the full range of settings available to be set by the controller 53. Accordingly, the controller may purely control the pre-stress applied to the deformable member 51.
Alternatively or additionally, the controller 53 may adjust the shape of the deformable member 51 in order to adjust the initial separation between the edge of the deformable member 51 and the opening 52.
In an arrangement, the deformable member 51 may be formed from a single piece of a deformable material such as an elastomer. Alternatively or additionally, as shown in
In an arrangement, the impact response adjustment mechanism may include a removable stud that is configured to be removably inserted into a socket in one of the inner shell and outer shell. The impact response adjustment mechanism may be configured such that a part of the stud may engage with a surface on the other of the inner and the outer shell in the event of an impact on the helmet in order to affect the relative sliding of the inner and the outer shell.
For example, as shown in
The removable stud 62 may be removed and replaced with a different stud 63, 64, 65. The different studs may have different shapes, for example different sized protrusions as depicted in
It should be appreciated that, although
In other arrangements, a helmet may have a plurality of sockets and the user may select desired studs for one or more of those sockets as appropriate. In an arrangement, a user may be provided with a sufficient number of studs of each type that each socket may be provided with the same type of stud.
In the arrangement shown in
Number | Date | Country | Kind |
---|---|---|---|
1800255.0 | Jan 2018 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/050173 | 1/4/2019 | WO | 00 |