The diaphysis is the shaft of a major long bone between the epiphyses, the ends of the bone forming the joints. Human cadaveric diaphyseal bone is used to form implants made of bone utilized in interbody spinal fusion surgery.
As show in
As shown in
The cuts are generally spaced apart so as to form a ring of bone having a height corresponding to the restored disc space or slightly greater. Diaphyseal ring bone grafts are placed into the spine within and across the height of the space previously occupied by a spinal disc between adjacent vertebral bodies to achieve interbody fusion of those vertebral bodies through the disc space. The diaphyseal ring bone graft is incorporated into the bony fusion over time.
Interbody spinal fusion with diaphyseal bone rings, however, has had limited success in the past. While all the causes for failure may not yet be appreciated, it is nevertheless believed that a failure to gain congruity at the interfaces of the bone ring implant to the adjacent vertebral bodies, and a failure to achieve stability of the bone ring implant, may be two of the more significant factors subject to the surgeon's control contributing to such failures. Moreover, bone rings are limited to insertion from an anterior approach to the spine and require a relatively large incision for insertion.
Interbody spinal implants that are entirely or almost entirely made of cortical bone or a bone composite material offer the advantages of that material including an appropriate modulus of elasticity and strength for the prescribed use, the capacity to be bioactive, including being osteoconductive, osteoinductive, osteogenic, and to more generally provide a good substrate for the formation of new bone as fusion occurs. Further, by being bioabsorable the bone material is replaced by the patient's own bone over time, thereby preventing stress shielding and leading to the eventual elimination of any foreign body from the implantation site.
As it is desirable to take advantage of all these benefits, there exists a need for an improved interbody spinal fusion implant made of bone or a bone composite material having a configuration that provides for an improved congruity of the implant to the vertebral bodies and improved implant stability, that is adapted for insertion from either an at least in part anterior or posterior approach to the spine, and is adapted to be inserted through a relatively small incision.
In accordance with the purposes of the present invention, as embodied and broadly described herein, an interbody spinal fusion implant made of cortical bone is provided for insertion at least in part into an implantation space formed across the height of a disc space between adjacent vertebral bodies of a human spine. The implant includes a leading end for insertion first into the disc space, a trailing end opposite the leading end, and a length along a mid-longitudinal axis of the implant. The leading end has a generally straight portion from side to side. The implant also includes opposed upper and lower portions between the leading and trailing ends that are adapted to be placed within the disc space to contact and support the adjacent vertebral bodies. The upper and lower portions are non-arcuate along at least a portion of the length of the implant. The implant also includes an interior facing side, an exterior facing side opposite the interior side, and a maximum width therebetween. The maximum width of the implant is less than approximately one-half of the width of the adjacent vertebral bodies into which the implant is adapted to be inserted. The interior and exterior sides connect the upper and lower portions and the leading and trailing ends. The interior side forms a corner with the generally straight portion of the leading end. The interior side is adapted to be oriented toward an interior side of another implant when inserted within the disc space.
The implant is preferably manufactured from a bone ring obtained from a major long bone of a human having a medullary canal. The interior side of the implant includes at least a portion of the medullary canal so that when the implant is placed side by side another implant having an interior side with at least a portion of a medullary canal, a passage is formed. The passage is adapted to hold bone growth promoting material to permit for the growth of bone from vertebral body to vertebral body through the passage.
In another preferred embodiment, the implant is manufactured from a bone composite material. The interior side includes a recess so that when the implant is placed side by side another implant having an interior side including a recess, a passage is formed. The passage is adapted to hold bone growth promoting material to permit for the growth of bone from vertebral body to vertebral body through the implant.
In accordance with the purposes of another embodiment of the present invention, as embodied and broadly described herein, an interbody spinal fusion implant made of cortical bone is provided for insertion at least in part into an implantation space formed across the height of a disc space between adjacent vertebral bodies of a human spine. The implant has a leading end that is asymmetrical from side to side. The implant is manufactured from a bone ring obtained from a major long bone of a human and includes at least 40 percent of the bone ring from which it is being formed.
In accordance with the purposes of a further embodiment of the present invention, as embodied and broadly described herein, a pair of interbody spinal fusion implants manufactured from a bone composite material is provided for insertion at least in part into an implantation space formed across the height of a disc space between adjacent vertebral bodies of a human spine. Each implant has a length that is greater than one half the depth of the vertebral bodies adjacent the disc space into which the implant is adapted to be inserted. Each implant has a leading end that is asymmetrical from side to side. Each implant has an interior facing side that includes a recess to form a passage when the implants are placed side by side with the interior sides facing each other. The combined width of the pair of implants is greater than one half the width of the adjacent vertebral bodies into which the implants are adapted to be inserted.
Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
The following description is intended to be representative only and not limiting and many variations can be anticipated according to these teachings, which are included within the scope of this inventive teaching. Reference will now be made in detail to the preferred embodiments of this invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
As shown in
Where it is desired to form two implants from a bone ring, bone ring 50 may be cut into two parts, each part including at least a portion of the medullary canal. Thereafter, the parts are machined to form a desired shape suitable for their intended use as an interbody spinal implant. Examples of tools which may be used to machine the implant include, but are not limited to, burrs, reamers, mills, saws, trephines, chisels, and the like. Each part of the bone may be machined to form an implant having a leading end. For example only, the leading end may be shaped to be asymmetrical from side to side and/or may have a straight portion from side to side at the leading end. The interior side includes at least a portion of the medullary canal and may be machined to be at least in part straight. The exterior side also may be machined to have a straight portion. The trailing end of each part may be machined to any desired shape suitable for the intended purpose and may be shaped to conform to the anatomical contour of the adjacent vertebral bodies between which the implant is adapted to be inserted. Where it is appropriate, it may be desirable to preserve at least a portion of the natural curvature of the perimeter of the bone ring as part of the configuration of the implant shape.
In a preferred embodiment of the present invention, leading end 102 and opposed sides 110, 112 are machined to have various configurations. Leading end 102 can be machined to have a generally planar configuration across at least a portion of its width from side to side. For example, leading end 102 is preferably machined to have a generally straight portion 116 from side to side that is preferably oriented at approximately 90° to the mid-longitudinal axis of the implant. Where the implantation space is prepared into the vertebral bodies to have a lip or ridge that is at least in part flat, straight portion 116 may be adapted to abut that portion of the implantation space. Interior side 110 is preferably machined to form a corner 118 with generally straight portion 116 of leading end 102. Exterior side 112 may be machined to form a corner 120 with generally straight portion 116 of leading end 102 or implant 100 may be machined to have a curved transition from straight portion 116 of leading end 102 to exterior side 112. In a preferred embodiment, corners 118, 120 can be machined so either or both of sides 110, 112 are at a 90° angle to straight portion 116 of leading end 102 to produce at least in part straight portions outwardly facing and at least in part generally parallel to each other, that can be aligned or offset from each other along sides 110, 112. One or both of sides 110, 112 may also be formed to be at least in part oriented generally parallel to the mid-longitudinal axis of implant 100. Forming the implant to have a leading end with a straight portion and an interior facing side with a straight portion permits the implant to be placed in proximity to another implant to achieve a better fill of the implantation space. Further, leading end 102 may be tapered to facilitate insertion of implant 100 between the two adjacent vertebral bodies.
An example of an implantation space adapted to receive at least a portion of implant 100 may be preferably formed with the apparatus and method described by Michelson in U.S. Pat. Nos. 6,159,214 and 6,224,607, the disclosures of which are incorporated herein by reference. The instruments and method are not the subject matter of this application. It is understood that the preparation of the implantation space shown therein are a preferred instrument and method of preparing the implantation spaces and that any method and instrumentation suitable for the purpose may be utilized to prepare the desired implantation space.
In a preferred embodiment of implant 100, trailing end 104 preferably has an asymmetrical curvature from side to side, at least a portion of which is preferably adapted to conform to at least a portion of the peripheral contour of the anterior aspect of the vertebral bodies adjacent the disc space into which the implant is inserted.
As shown in
Implant 100 is preferably manufactured from a bone ring 50 and includes approximately 40 percent or more of the bone ring from which it is formed. Implant 100 preferably has a length L greater than one-half the depth of the vertebral bodies adjacent the disc space into which the implant is adapted to be inserted as measured between the anterior and posterior aspects of the vertebral bodies. Implant 100 also preferably has a maximum width W that is less than approximately one-half the width of the adjacent vertebral bodies into which the implant is adapted to be inserted.
For any of the embodiments of the implants of the present invention, instead of being machined from a single bone portion such as bone ring 50, the implant can be manufactured from a composite bone material which may include at least one of cortical bone fibers, bone filaments, bone particles, or bone dust, and a material which may or may not be bioactive and/or bioresorbable such as a plastic, ceramic, for example. By way of example only and not limitation, bioresorbable materials may include polygalactone. Once formed, the composite implant material may be machined or molded, into the desired shape.
As illustrated in
While it is preferred to form two implants from each bone ring 50, the present invention is not so limited. For example,
In any of the embodiments of the present invention, the implant may include, be made of, treated, coated, filled, used in combination with, or have a hollow or medullary canal for containing artificial or naturally occurring materials and/or substances suitable for implantation in the human spine. These materials and/or substances include any source of osteogenesis, bone growth promoting materials, bone, bone derived substances or products, demineralized bone matrix, mineralizing proteins, ossifying proteins, bone morphogenetic proteins, hydroxyapatite, genes coding for the production of bone, and bone including, but not limited to, cortical bone. The implant can include at least in part of materials that are bioabsorbable and/or resorbable in the body such as bone and/or bone growth promoting materials. The implant of the present invention can be formed of a porous material or can be formed of a material that intrinsically participates in the growth of bone from one of adjacent vertebral bodies to the other of adjacent vertebral bodies. Where such implants are for posterior implantation, the trailing ends of such implants may be treated with, coated with, or used in combination with chemical substances to inhibit scar tissue formation in the spinal canal. The implant of the present invention may be modified, or used in combination with materials to make it antibacterial, such as, but not limited to, electroplating or plasma spraying with silver ions or other substance. At least a portion of the implant may be treated to promote bone ingrowth between the implant and the adjacent vertebral bodies. The implant of the present invention may be used in combination with a spinal fixation implant such as any object, regardless of material, that can be inserted into any portion of the spine, such as but not limited to interbody spinal implants, structural bone grafts, mesh, cages, spacers, staples, bone screws, plates, rods, tethers of synthetic cords or wires, or other spinal fixation hardware
Although various embodiments of the present invention have been disclosed, they are but preferred embodiments for the purpose of illustration by example and not limitation. It should be understood that any modifications of these teachings as would be known to one of ordinary skill in the art are anticipated and within the scope of the present inventive teachings.
This application is a continuation of U.S. application Ser. No. 11/338,395, filed Jan. 24, 2006 now U.S. Pat. No. 7,611,536; which is a continuation of U.S. application Ser. No. 10/112,745, filed Apr. 2, 2002 now U.S. Pat. No. 6,989,031; which claims the benefit of U.S. Provisional Application No. 60/281,187, filed Apr. 3, 2001, and U.S. Provisional Application No. 60/281,112, filed Apr. 2, 2001; all of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2677369 | Knowles | May 1954 | A |
3426364 | Lumb | Feb 1969 | A |
3848601 | Ma et al. | Nov 1974 | A |
3867728 | Stubstad et al. | Feb 1975 | A |
3875595 | Froning | Apr 1975 | A |
3905047 | Long | Sep 1975 | A |
D245259 | Shen | Aug 1977 | S |
4070514 | Eatherly et al. | Jan 1978 | A |
4309777 | Patil | Jan 1982 | A |
4349921 | Kuntz | Sep 1982 | A |
4501269 | Bagby | Feb 1985 | A |
RE31865 | Roux | Apr 1985 | E |
4599086 | Doty | Jul 1986 | A |
4636217 | Ogilvie et al. | Jan 1987 | A |
4714469 | Kenna | Dec 1987 | A |
4743256 | Brantigan | May 1988 | A |
4759766 | Buettner-Janz et al. | Jul 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4820305 | Harms et al. | Apr 1989 | A |
4834757 | Brantigan | May 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
4863477 | Monson | Sep 1989 | A |
4877020 | Vich | Oct 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4904261 | Dove et al. | Feb 1990 | A |
4911718 | Lee et al. | Mar 1990 | A |
4936848 | Bagby | Jun 1990 | A |
4955908 | Frey et al. | Sep 1990 | A |
4961740 | Ray et al. | Oct 1990 | A |
5015247 | Michelson | May 1991 | A |
5015255 | Kuslich | May 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5055104 | Ray | Oct 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5062845 | Kuslich et al. | Nov 1991 | A |
5071437 | Steffee | Dec 1991 | A |
5122130 | Keller | Jun 1992 | A |
5123926 | Pisharodi | Jun 1992 | A |
5171278 | Pisharodi | Dec 1992 | A |
5192327 | Brantigan | Mar 1993 | A |
5246458 | Graham | Sep 1993 | A |
5258031 | Salib et al. | Nov 1993 | A |
5290312 | Kojimoto et al. | Mar 1994 | A |
5306308 | Gross et al. | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5397364 | Kozak et al. | Mar 1995 | A |
5423855 | Marienne | Jun 1995 | A |
5425772 | Brantigan | Jun 1995 | A |
5443514 | Steffee | Aug 1995 | A |
5458638 | Kuslich et al. | Oct 1995 | A |
5484437 | Michelson | Jan 1996 | A |
5489307 | Kuslich et al. | Feb 1996 | A |
5507813 | Dowd et al. | Apr 1996 | A |
5522899 | Michelson | Jun 1996 | A |
5534031 | Matsuzaki et al. | Jul 1996 | A |
5571109 | Bertagnoli | Nov 1996 | A |
D377527 | Michelson | Jan 1997 | S |
5593409 | Michelson | Jan 1997 | A |
5607424 | Tropiano | Mar 1997 | A |
5609635 | Michelson | Mar 1997 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5645084 | McKay | Jul 1997 | A |
5645598 | Brosnahan, III | Jul 1997 | A |
5658337 | Kohrs et al. | Aug 1997 | A |
5669909 | Zdeblick et al. | Sep 1997 | A |
5683463 | Godefroy et al. | Nov 1997 | A |
5702449 | McKay | Dec 1997 | A |
5741253 | Michelson | Apr 1998 | A |
5766252 | Henry et al. | Jun 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5776199 | Michelson | Jul 1998 | A |
5782919 | Zdeblick et al. | Jul 1998 | A |
D397439 | Koros et al. | Aug 1998 | S |
5800547 | Schafer et al. | Sep 1998 | A |
5800550 | Sertich | Sep 1998 | A |
5814084 | Grivas et al. | Sep 1998 | A |
5846484 | Scarborough et al. | Dec 1998 | A |
5860973 | Michelson | Jan 1999 | A |
5861041 | Tienboon | Jan 1999 | A |
5865845 | Thalgott | Feb 1999 | A |
5888222 | Coates et al. | Mar 1999 | A |
5888226 | Rogozinski | Mar 1999 | A |
5888227 | Cottle | Mar 1999 | A |
5899939 | Boyce et al. | May 1999 | A |
5904719 | Errico et al. | May 1999 | A |
5906635 | Maniglia | May 1999 | A |
5972368 | McKay | Oct 1999 | A |
5989289 | Coates et al. | Nov 1999 | A |
6033438 | Bianchi et al. | Mar 2000 | A |
6034295 | Rehberg et al. | Mar 2000 | A |
6037519 | McKay | Mar 2000 | A |
6039762 | McKay | Mar 2000 | A |
D425989 | Michelson | May 2000 | S |
6080155 | Michelson | Jun 2000 | A |
6083228 | Michelson | Jul 2000 | A |
6111164 | Rainey et al. | Aug 2000 | A |
6113638 | Williams et al. | Sep 2000 | A |
6120503 | Michelson | Sep 2000 | A |
6136031 | Middleton | Oct 2000 | A |
6143032 | Schafer et al. | Nov 2000 | A |
6159214 | Michelson | Dec 2000 | A |
6174311 | Branch et al. | Jan 2001 | B1 |
6179875 | Von Strempel | Jan 2001 | B1 |
6200347 | Anderson et al. | Mar 2001 | B1 |
6206923 | Boyd et al. | Mar 2001 | B1 |
6210412 | Michelson | Apr 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6224631 | Kohrs | May 2001 | B1 |
6231610 | Geisler | May 2001 | B1 |
6241770 | Michelson | Jun 2001 | B1 |
6241771 | Gresser et al. | Jun 2001 | B1 |
6245108 | Biscup | Jun 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6261586 | McKay | Jul 2001 | B1 |
6270528 | McKay | Aug 2001 | B1 |
6277149 | Boyle et al. | Aug 2001 | B1 |
6294041 | Boyce et al. | Sep 2001 | B1 |
6294187 | Boyce et al. | Sep 2001 | B1 |
6342074 | Simpson | Jan 2002 | B1 |
6348071 | Steffee et al. | Feb 2002 | B1 |
6350283 | Michelson | Feb 2002 | B1 |
6371988 | Pafford et al. | Apr 2002 | B1 |
6383221 | Scarborough et al. | May 2002 | B1 |
6391058 | Kuslich et al. | May 2002 | B1 |
6395031 | Foley et al. | May 2002 | B1 |
6402785 | Zdeblick et al. | Jun 2002 | B1 |
6409765 | Bianchi et al. | Jun 2002 | B1 |
6423095 | Van Hoeck et al. | Jul 2002 | B1 |
6468311 | Boyd et al. | Oct 2002 | B2 |
6471724 | Zdeblick et al. | Oct 2002 | B2 |
6482233 | Aebi et al. | Nov 2002 | B1 |
6482584 | Mills et al. | Nov 2002 | B1 |
6485517 | Michelson | Nov 2002 | B1 |
6511509 | Ford et al. | Jan 2003 | B1 |
6530955 | Boyle et al. | Mar 2003 | B2 |
6554863 | Paul et al. | Apr 2003 | B2 |
6562072 | Fuss et al. | May 2003 | B1 |
6572654 | Santilli | Jun 2003 | B1 |
6575981 | Boyd et al. | Jun 2003 | B1 |
6629998 | Lin | Oct 2003 | B1 |
6635086 | Lin | Oct 2003 | B2 |
6666890 | Michelson | Dec 2003 | B2 |
6706067 | Shimp et al. | Mar 2004 | B2 |
6749636 | Michelson | Jun 2004 | B2 |
6808585 | Boyce et al. | Oct 2004 | B2 |
6827740 | Michelson | Dec 2004 | B1 |
6855168 | Crozet | Feb 2005 | B2 |
6890355 | Michelson | May 2005 | B2 |
6923810 | Michelson | Aug 2005 | B1 |
6984245 | McGahan et al. | Jan 2006 | B2 |
6989031 | Michelson | Jan 2006 | B2 |
7022137 | Michelson | Apr 2006 | B2 |
7048762 | Sander et al. | May 2006 | B1 |
7087082 | Paul et al. | Aug 2006 | B2 |
7115146 | Boyer | Oct 2006 | B2 |
7156875 | Michelson | Jan 2007 | B2 |
7387643 | Michelson | Jun 2008 | B2 |
7435262 | Michelson | Oct 2008 | B2 |
7455692 | Michelson | Nov 2008 | B2 |
7462195 | Michelson | Dec 2008 | B1 |
7479160 | Branch et al. | Jan 2009 | B2 |
7534254 | Michelson | May 2009 | B1 |
7534265 | Boyd et al. | May 2009 | B1 |
7540882 | Michelson | Jun 2009 | B2 |
7611536 | Michelson | Nov 2009 | B2 |
7637951 | Michelson | Dec 2009 | B2 |
7637954 | Michelson | Dec 2009 | B2 |
20010010020 | Michelson | Jul 2001 | A1 |
20010018614 | Bianchi | Aug 2001 | A1 |
20010031254 | Bianchi et al. | Oct 2001 | A1 |
20020091447 | Shimp et al. | Jul 2002 | A1 |
20020099444 | Boyd et al. | Jul 2002 | A1 |
20020107571 | Foley | Aug 2002 | A1 |
20020116064 | Middleton | Aug 2002 | A1 |
20020116065 | Jackson | Aug 2002 | A1 |
20020193881 | Shapiro et al. | Dec 2002 | A1 |
20030028249 | Baccelli et al. | Feb 2003 | A1 |
20030083748 | Lee et al. | May 2003 | A1 |
20040064185 | Michelson | Apr 2004 | A1 |
20040210313 | Michelson | Oct 2004 | A1 |
20050216089 | Michelson | Sep 2005 | A1 |
20060235519 | Michelson | Oct 2006 | A1 |
20090105821 | Michelson | Apr 2009 | A1 |
20090270991 | Michelson | Oct 2009 | A1 |
20100145463 | Michelson | Jun 2010 | A1 |
20110208313 | Michelson | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
35 05 567 | May 1986 | DE |
0 077 159 | Apr 1983 | EP |
0 179 695 | Apr 1986 | EP |
0 260 044 | Mar 1988 | EP |
0 307 241 | Mar 1989 | EP |
0 392 076 | Mar 1989 | EP |
0 577 179 | Jan 1994 | EP |
0 599 419 | Jun 1994 | EP |
0 627 204 | Dec 1994 | EP |
0 637 440 | Nov 1997 | EP |
0 834 295 | Apr 1998 | EP |
2 724 312 | Mar 1993 | FR |
2 703 580 | Oct 1994 | FR |
2 761 879 | Oct 1998 | FR |
57029348 | Sep 1982 | JP |
61-122859 | Jun 1986 | JP |
62155846 | Jul 1987 | JP |
5-269160 | Oct 1993 | JP |
8-266563 | Oct 1996 | JP |
WO 9214423 | Sep 1992 | WO |
WO 9301771 | Feb 1993 | WO |
WO 9508306 | Mar 1995 | WO |
WO 9508964 | Apr 1995 | WO |
WO 9622747 | Aug 1996 | WO |
WO 9640020 | Dec 1996 | WO |
WO 9723174 | Jul 1997 | WO |
WO 9723175 | Jul 1997 | WO |
WO 9844877 | Oct 1998 | WO |
WO 9848738 | Nov 1998 | WO |
WO 9855052 | Dec 1998 | WO |
WO 9963891 | Dec 1999 | WO |
WO 0007527 | Feb 2000 | WO |
WO 0074608 | Dec 2000 | WO |
WO 0128465 | Apr 2001 | WO |
WO 0168005 | Apr 2001 | WO |
WO 0149220 | Jul 2001 | WO |
WO 0162191 | Aug 2001 | WO |
WO 0168004 | Sep 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20100030333 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
60281187 | Apr 2001 | US | |
60281112 | Apr 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11338395 | Jan 2006 | US |
Child | 12587196 | US | |
Parent | 10112745 | Apr 2002 | US |
Child | 11338395 | US |