Information
-
Patent Grant
-
6182492
-
Patent Number
6,182,492
-
Date Filed
Monday, November 1, 199925 years ago
-
Date Issued
Tuesday, February 6, 200124 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Gifford, Krass, Groh, Sprinkle, Anderson & Citkowski, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 072 323
- 072 381
- 072 384
- 072 448
- 072 454
- 029 24358
- 100 99
- 083 631
-
International Classifications
-
Abstract
A hemming machine of the type having a base, a nest for supporting a sheet metal part to be hemmed, and at least one die is disclosed in which the nest supporting the part to be hemmed is vertically displaced against the dies in order to form the hem. The improvement includes at least three elongated and external shafts wherein each shaft has one end rotatably mounted to the base so that the shafts are spaced apart and parallel with each other. A nut threadably engages each shaft, and these nuts are swivelly secured to the nest which permits a small amount of angular and radial deflection of the nut and shafts during movement of the nest from its lower to its upper position. An electric servo-motor is associated with each threaded shaft to rotatably drive the shafts substantially in unison with each other during the travel approach phase, and then allows in final a slight disynchronization of them, to insure an equalization of the hemming effort applied on each edge of the part, in both pre-hemming and hemming operations.
Description
BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates to hemming machines and, more particularly, to a sheet metal hemming machine utilizing a vertically movable nest supporting the sheet metal part to be hemmed to press against stationary dies which are moved into and out of an operating position.
II. Description of the Prior Art
Typically sheet metal hemming devices utilize hydraulic cylinders for imparting vertical movement to the impacting punch or nest. The vertical movement provided by the cylinders is often erratic which slows down the operation of the hemming process and otherwise causes inaccuracies. This is particularly critical where multiple actuating hydraulic cylinders are employed, even if in final, this compliance allows a perfect balancing of the hemming effort on each edge of the part.
A major disadvantage of the previously known use of hydraulic cylinders for hemming machines is the inevitable leakage of the hydraulic fluid and the resulting mess created by such leakage.
There have, however, been previously known hemming machines which utilize electric servo-motors in order to vertically displace the nest to perform the hemming operation. These previously known electric motor actuated hemming machines, however, have required a complete synchronization between the rotation of the actuating shafts in order to achieve the vertical displacement of the nest. In practice, however, such absolute synchronization between the rotatable shafts cannot be achieved in every situation, and does not allow a perfect balancing of the hemming effort applied on each edge of the part, in both pre-hemming and hemming positions. Furthermore, any lack of synchronization between the electric motor actuated shafts may result in seizure and even destruction of the hemming machine.
SUMMARY OF THE PRESENT INVENTION
The present invention provides a hemming machine which utilizes electric servo-motor actuated shafts for vertically displacing the nest which overcomes all of the above-mentioned disadvantages of the previously known devices.
In brief, the hemming machine of the present invention includes a base and a nest for supporting a sheet metal part to be hemmed. At least one die is mounted to the base and is movable between an extended position in which the die registers with the nest, and a retracted position in which the die is retracted from the nest thus permitting the completed hemmed part to be removed from the nest as well as a new sheet metal part to be placed on and supported by the nest.
At least three and preferably four elongated and externally threaded shafts each have their lower ends rotatably mounted to the base so that the shafts are spaced apart and parallel to each other. An electric servo-motor is operatively coupled with each shaft so that, upon actuation of the master servomotor, the other slave servo-motors drive the shaft substantially, although as a practical matter not entirely, in synchronism with the master servo-motor.
Means are mounted to the nest for threadably receiving the second or upper end of each shaft and this threadable receiving means is fixed against rotation to the nest. Consequently, rotation of the threaded shafts vertically displace the nest due to their coaction with the threadable receiving means.
In the preferred embodiment of the invention, the threadable receiving means comprises a nut which is threadably engaged with the shaft. A first externally splined annulus is coaxially disposed around the nut and this first annulus is secured against movement to the nest.
A second externally splined annulus is then coaxially disposed around and secured to the nut so that the second annulus is axially spaced from and coaxial with the first annulus. An internally splined tube is then disposed around the first and second annuli so that the internal splines on the tube intermesh with the external splines on the annuli. Consequently, the annuli, together with the internally splined tube, preclude rotation of the nut relative to the nest so that rotation of the shaft axially displaces the nut together with the nest.
In order to permit angular or slight radial displacement of the shafts relative to each other as would occur unless the shafts are absolutely synchronized for rotation to each other, the nut is swivelly mounted to the nest. In the preferred embodiment of the invention, this swivel mounting means comprises a thrust bushing having a semispherical surface and a bushing retainer which secures the bushing against pure vertical movement to the nest. A complementary semispherical surface formed on the nut abuts against the semispherical surface on the bushing to thereby permit limited swiveling movement of the nut relative to the nest. Such limited swivel capability of the nut relative to the nest is sufficient to compensate for limited non-synchronism of the rotation of the threaded shafts, and let the servo-motor controller react against any incidental situation.
In the preferred embodiment of the invention, the bearing retainer is secured to the nest by compression washers, preferably Belleville washers, which will compress whenever the axial force exerted on the compression washer exceeds a predetermined minimum amount. Thus, in the event that a machine jam or other failure results in an excessive axial force exerted between the nut and bearing retainer relative to the nest, the compression washers will compress slightly thus axially displacing the bushing retainer relative to the nest. Any such displacement of the bearing retainer relative to the nest is detected by a sensor which can then be used to terminate the operation of the hemming machine thereby protecting the hemming machine against destructive forces which might otherwise occur (kinetic energy generated by motor inertia).
BRIEF DESCRIPTION OF THE DRAWING
A better understanding of the present invention will be had upon reference to the following detailed description, when read in conjunction with the accompanying drawing, wherein like reference characters refer to like parts throughout the several views, and in which:
FIG. 1
is a diagrammatic side view illustrating a preferred embodiment of the present invention;
FIG. 2
is a fragmentary longitudinal sectional view illustrating a portion of the preferred embodiment of the present invention;
FIG. 3
is a sectional view taken substantially along line
4
-
4
in
FIG. 4
;
FIG. 4
is a view similar to FIG.
2
and illustrating the operation of the preferred embodiment of the present invention; and
FIG. 5
is a fragmentary side view illustrating the operation of the preferred embodiment of the invention in an overload condition.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE PRESENT INVENTION
With reference first to
FIG. 1
, a diagrammatic view of a preferred embodiment of the hemming machine
10
of the present invention is there shown. The hemming machine
10
includes a base
12
and a nest
14
. The nest
14
is adapted to receive and support a sheet metal part
16
to be hemmed at its peripheral surface
18
. The hemming machine
10
, in the conventional fashion, includes at least one and preferably four dies
20
which are laterally movable by an actuator
22
between a retracted position, illustrated in solid line in
FIG. 1
, and an extended position, illustrated in phantom line in FIG.
1
. In its extended position, the die
20
registers with the part to be hemmed while, conversely, in its retracted position, the die
20
is moved laterally out of registry with the nest
14
in order to permit the finished hemmed part
16
to be removed from the nest
14
as well as a new sheet metal part
16
to be hemmed to be positioned on the nest surface
18
.
Conventionally, the die set
20
includes two dies
24
and
26
. The die
24
is shaped to form an initial bend of approximately 45 degrees, as shown at
28
, as the nest
14
is vertically displaced with its supported sheet metal part
16
against the die
24
. Conversely, the die
26
is shaped to complete the hem on the sheet metal part
16
, i.e. to substantially flatly abut the edges of the sheet metal part together as shown at
30
.
During a typical operation of the nest
14
, after the sheet metal part
16
to be hemmed is positioned on the support surface
18
of the nest
14
, the nest
14
is vertically displaced such that the sheet metal part
16
is positioned in between the dies
24
and
26
. The die set
20
is then moved to its extended position so that the die
24
registers with the outer edge of the sheet metal part
16
to be hemmed. Further vertical extension of the nest
14
then compresses the sheet metal part to be hemmed
16
against the die
24
thus performing the 45 degree bend as illustrated at
28
.
Following the initial bend, the die set
20
is moved to its retracted position by the actuator
22
. The nest
14
is then lowered so that the part
16
to be hemmed is positioned under the second die
26
. The die set
20
is then moved to its extended position so that the die
26
registers with the part
16
. The nest
14
is then again vertically displaced upwardly against the die
26
thus completing the hem
30
. Thereafter, the die set
20
is moved to its retracted position and the finished sheet metal part
16
is removed from the nest support surface
18
. A new sheet metal part to be hemmed is then positioned on the nest support surface
18
and the above process is repeated.
The foregoing description of the operation of the hemming machine
10
is set forth for completeness only. The operation of the hemming machine
10
thus far described is conventional in nature.
Still referring to
FIG. 1
, in order to vertically displace the nest
14
and thus perfom the hemming operation, the hemming machine
10
includes at least three and preferably four elongated and externally threaded shafts
34
(only two shafts are illustrated in FIG.
1
). A lower end of each shaft
34
is rotatably mounted within a gear box
36
so that the shafts
34
are spaced apart and parallel to each other. Typically, the nest
14
is generally polygonal in shape and one shaft
34
is aligned with each comer of the nest
14
. Furthermore, lateral guides
19
engage the sides of the nest
14
to center the rest
14
with respect to the dies
24
and
26
.
An electric servo-motor
37
(illustrated only diagrammatically) is associated with each gear box
36
so that actuation of each electric motor
37
rotatably drives its associated threaded shaft
34
. A servo-motor control system
40
is operatively coupled with the motors
37
so that operation of any slave servo-motors
37
can substantially, but as a practical matter not systematically, synchronous with the master servo-motor
With reference now to
FIG. 2
, the shaft
34
is threadably secured to the nest
14
by a swivel mounting means
36
. The swivel mounting means
36
comprises a nut
38
which threadably engages the shaft
34
. The nut
38
includes an upper semispherical surface
40
around its outer periphery which abuts against a complementary semispherical surface
42
on a thrust bushing
44
. An annular bushing retainer
46
extends circumferentially around the nut
38
so that a portion
48
of the bushing retainer
46
sandwiches the thrust bushing
44
and outer periphery of the nut
38
between the bushing retainer portion
48
and nest
14
.
A plurality of elongated threaded members or bolts
50
extend through registering bores
52
and
54
in the bushing retainer
46
and nest, respectively, and threadably engage an internally threaded bore
56
of a retainer ring
58
. Preferably a number of compressible washers
60
, such as Belleville washers, are sandwiched in between the upper end of the threaded fastener
50
and the bushing retainer
48
.
During normal operation, the bolts
50
secure the bushing retainer
46
to the nest
14
against axial displacement relative to the threaded shaft
34
. In doing so, the bushing retainer
46
together with the thrust bushing
44
retains the nut
38
against axial movement relative to the nest
14
. However, as best shown in
FIG. 5
, in the event that the axial force exerted by the shaft
34
on the nut
38
exceeds a predetermined amount, indicative of a machine failure or jam up, the compressible washers
60
compress together thus allowing limited axial displacement “x” of the bushing retainer
46
relative to the nest
14
. This limited axial displacement is detected, as well as a weakage in the thrust bushing
44
, by a conventional sensor
62
activated by a connecting rod
63
, which generates an output signal to the motor control
40
(
FIG. 1
) to terminate operation of the motors
37
thereby preventing continued operation of the motors
37
, and the possible damage or destruction of the hemming machine
10
.
Still referring to
FIG. 2
, in order to lock the nut
38
to the nest
14
against rotation, a first annulus
70
(
FIG. 2
) having a plurality of circumferentially spaced and outwardly extending crowned splines
72
is coaxially disposed around the shaft
34
. This annulus
70
, further, is secured against rotation to the ring retainer
58
, and thus to the nest
14
, by fasteners
74
.
A second annulus
76
is also coaxially disposed around the shaft
34
but axially spaced from the first annulus
70
. The second annulus
76
is secured against rotation to the nut
38
by any conventional means, such as transverse pins
78
. The second annulus
76
also includes circumferentially spaced and outwardly extending crowned splines
80
. Furthermore, for a reason to be subsequently described in greater detail, the outer periphery of the splines
72
on the first annulus
70
, as well as the splines
80
on the second annulus
76
, are longitudinally arcuately curved along their length and crowned.
As shown in
FIGS. 2-4
, an internally splined tube
84
is then coaxially disposed around both annuli
70
and
76
so that the internal splines
86
of the tube
84
mesh with the crowned splines
72
and
80
on the first annulus
70
and second annulus
76
respectively. Since the first annulus
70
is rigidly locked against rotation to the nest
14
by the fasteners
74
, the tube
34
and second annulus
76
.
With reference now to
FIGS. 2 and 4
, the coupling provided by the semispherical surface
42
on the bushing
44
and its cooperation with the complementary spherical surface
40
on the nut
38
allows the nut
38
to swivel relative to the nest from the axially aligned position shown in FIG.
2
and to the slightly misaligned position shown in FIG.
4
. In doing so, the second annulus
76
will swivel or slightly pivot relative to the first annulus
70
and the longitudinally extending arcuate outer surface on the splines
80
facilitate this slight pivotal action relative to the internally splined tube
84
. Furthermore, the swivel or pivotal action between the annuli
70
and
76
is achieved while still locking the nut
38
against rotation relative to the nest
14
.
In practice, the actuation of the electric motors
37
(
FIG. 1
) by the motor control
40
will substantially synchronously rotatably drive the shafts
34
in unison with each other. However, some asynchronism of the shafts
34
with respect to each other will always occur in an electric motor driven system. The swivel connection
36
between the nuts
38
and the nest
14
compensates for such slight asynchronism between the rotation of the shafts
34
thus allowing vertical movement of the nest
14
without jamming or the imposition of other potentially destructive machine forces.
However, in the event of a machine jam or other malfunction, the compressible washers
60
allow limited axial displacement of the bushing retainer
46
relative to the nest
14
as shown in FIG.
5
. Such axial displacement is detected by the sensor
62
which generates an output signal to the motor control
40
to terminate operation of the motors
38
and prevent damage to the hemming machine
10
.
From the foregoing, it can be seen that the present invention provides a simple and yet highly effective electric motor driven hemming machine which overcomes the above-mentioned disadvantages of the previously known devices. Having described my invention, however, many modifications thereto will become apparent to those skilled in the art to which it pertains without deviation from the spirit of the invention as defined by the scope of the appended claims.
Claims
- 1. In a hemming machine of the type having a base, a nest for supporting a sheet metal part to be hemmed, at least one die, and means for moving at least one die into and out of registry with said nest, an improved actuator for vertically moving said nest relative to said base toward and away from said die comprising:at least three elongated and externally threaded shafts, each shaft having one end rotatably mounted to said base so that said shafts are spaced apart and parallel with each other, means mounted to said nest for threadably receiving a second end of each shaft, said threadably receiving means being fixed against rotation to said nest, servo-motor means associated with each shaft for rotatably driving said shafts substantially in synchronism with each other, wherein said threadably receiving means further comprises a nut which threadably engages said shaft, a first externally splined annulus coaxially disposed around said nut, said first annulus secured to the nest, a second externally splined annulus coaxially disposed around and secured to said nut so that said second annulus is axially spaced from said first annulus, an internally splined tube disposed around first and second annuli so that said internal spines on said tube intermesh with said external splines on said annuli, and means for swivelly mounting said nut to the nest.
- 2. The invention as defined in claim 1 wherein said swivel mounting means comprises a bushing having a semispherical surface, a bushing retainer and means for securing said bushing retainer to the nest for retaining said bushing to the nest, and wherein said nut includes a semispherical surface complementary to and in abutment with said bushing semispherical surface.
- 3. The invention as defined in claim 2 wherein said means for securing said bushing retainer to the nest includes means for permitting limited axial displacement of said bushing retainer relative to the nest when an axial force exerted by said screw shaft on said nut exceeds a predetermined amount.
- 4. The invention as defined in claim 3 wherein said means for permitting limited axial displacement comprises a plurality of threaded members, each extending through registering bores in the nest and said nut retainer, a plurality of nuts, one nut engaging each threaded member, and at lest one compressible washer sandwiched between each nut and the nest.
- 5. The invention as defined in claim 4 wherein each compressible washer is a Belleville washer.
- 6. The invention as defined in claim 4 and comprising means for detecting axial movement between said bushing retainer and the nest.
- 7. The invention as defined in claim 6 wherein the means used to detect an overload on a shaft may also detect an underload when the nut becomes under tension.
- 8. The invention as defined in claim 6 wherein at the last stage of both the pre-hemming and the hemming operations, the pure synchronization of the servo-motor may be broken for a while and under a limited stroke to allow each shaft to develop a presetted pushing effort to insure an equalization of the hemming effort applied on each edge of the part, even in case of slight initial mismatching between die and nest.
- 9. The invention as defined in claim 7 wherein at the last stage of both the pre-hemming and the hemming operations, the pure synchronization of the servo-motor may be broken for a while and under a limited stroke to allow each shaft to develop a presetted pushing effort to insure an equalization of the hemming effort applied on each edge of the part, even in case of slight initial mismatching between die and nest.
- 10. The invention as defined in claim 1 wherein each externally threaded shaft is a ball screw.
- 11. The invention as defined in claim 10 wherein at the last stage of both the pre-hemming and the hemming operations, the pure synchronization of the servo-motor may be broken for a while and under a limited stroke to allow each shaft to develop a presetted pushing effort to insure an equalization of the hemming effort applied on each edge of the part, even in case of slight initial mismatching between die and nest.
- 12. The invention as defined in claim 1 wherein each spline on said annuli includes an arcuately curved and axially extending outer crowned surface.
- 13. The invention as defined in claim 12 wherein at the last stage of both the pre-hemming and the hemming operations, the pure synchronization of the servo-motor may be broken for a while and under a limited stroke to allow each shaft to develop a presetted pushing effort to insure an equalization of the hemming effort applied on each edge of the part, even in case of slight initial mismatching between die and nest.
US Referenced Citations (3)