Hemolysis and the Hematopoietic Niche

Information

  • Research Project
  • 10220129
  • ApplicationId
    10220129
  • Core Project Number
    P01HL149626
  • Full Project Number
    5P01HL149626-02
  • Serial Number
    149626
  • FOA Number
    PAR-18-405
  • Sub Project Id
    5804
  • Project Start Date
    7/20/2020 - 4 years ago
  • Project End Date
    6/30/2025 - 7 months from now
  • Program Officer Name
    MONDORO, TRACI
  • Budget Start Date
    7/1/2021 - 3 years ago
  • Budget End Date
    6/30/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    02
  • Suffix
  • Award Notice Date
    7/26/2021 - 3 years ago

Hemolysis and the Hematopoietic Niche

ABSTRACT Sickle cell disease (SCD) is a major healthcare burden with limited treatment options. Currently available treatments are limited to transfusions, hydroxyurea and L-glutamine. With increasing interest in hematopoietic stem cell (HSC) transplantation and gene therapy as treatment options for SCD, understanding how hemolytic stress alters the bone marrow (BM) microenvironment is critical for the development of appropriate therapeutic strategies. In Aim 1, we will investigate the effects of hemolysis on the BM niches including mesenchymal stem cells (MSCs), responsible for maintaining HSCs, and erythroblastic islands (EBIs), the niche for erythropoiesis. In Aim 2, we will define the mechanisms for the effects of hemolysis on erythroid progenitors/precursors. We further propose to determine whether therapy with transfusion, heme scavenger hemopexin or the combination can improve the function of MSCs and EBI macrophages. Our overall hypothesis is that free heme leads to dysfunction of the BM hematopoietic niche and hematopoietic stem/progenitor cells, which can be alleviated in part by hemopexin and/or transfusion therapy. First, we will investigate the effects of hemolysis on the BM MSC ability to regulate hematopoiesis. We will evaluate numerous MSC stem cell properties and investigate how alterations may in turn affect HSC activation state, accumulation of ROS and DNA damage. Next, we will define the mechanisms for the impaired erythropoietic activity due to hemolysis, including mechanisms for defective EBIs formation, CFU-E colony formation and enucleation. These studies are enabled by the SCD mouse model, Thal mouse model, Epor-eGFP knockin mouse model, mouse models targeting BM MSCs, our recent identification of Epor+ EBI macrophages, validation of both anti-mouse Epor and anti-human EPOR antibodies as well as the methods we have developed to purify erythroid cells at distinct developmental stage and to quantify both murine and human BM terminal erythroid differentiation. These studies will provide a comprehensive mechanistic understanding of the effects of hemolysis on BM hematopoietic niches, and contribute to the development of novel therapeutics targeting the BM niche cells and ultimately improve treatment options for patients with SCD.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    P01
  • Administering IC
    HL
  • Application Type
    5
  • Direct Cost Amount
    422739
  • Indirect Cost Amount
    329736
  • Total Cost
  • Sub Project Total Cost
    752475
  • ARRA Funded
    False
  • CFDA Code
  • Ed Inst. Type
  • Funding ICs
    NHLBI:752475\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZHL1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    NEW YORK BLOOD CENTER
  • Organization Department
  • Organization DUNS
    073271827
  • Organization City
    NEW YORK
  • Organization State
    NY
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    100656275
  • Organization District
    UNITED STATES