Not applicable
Not applicable
1. Field of the Invention
This disclosure relates to improved delivery and control of hemostasis powder in vascular access procedures and in other hemostasis control procedures and more particularly to such compositions with Magnetite for enhanced control of the powdery composition.
2. Description of Related Art
Hemostasis powders are well known. Thompson et al, U.S. Pat. Nos. 4,545,974 & 4,551,326, disclose processes for the manufacture of potassium ferrate and similar high oxidation state oxyiron compounds. Patterson et al, U.S. Pat. No. 6,187,347 and Patterson et al, U.S. Pat. No. 6,521,265, disclose the mixing of potassium ferrate and anhydrous strongly acidic cation exchange resins for the cessation of bleeding. These patents are incorporated by reference herein in their entirety. Kuo et al. (J. Vasc Interv. Radiol. 19:1 72-79 2008) disclose the benefit of ferrate/resin mixtures in reducing the time to hemostasis (TTH) from 6 minutes to 4 minutes versus D-stat, the market leader in hemostasis pads. Michelson (The American Journal of Cosmetic Surgery 25-3 2008) shows that the ferrate/resin mixtures are excellent for wound care. Michelson demonstrated complete closure of a patient with twin brachial dehisced wounds following cosmetic surgery. After 16 weeks, the patient healed without scarring.
Thompson (U.S. Pat. No. 4,545,974 and U.S. Pat. No. 4,551,326) also teaches that Magnetite, Fe3O4, or iron oxide, Fe2O3 (common rust) are suitable substrates for making ferrate, FeO4−. But critically, the iron compounds have to be heated above the Curie point, that temperature at which a ferromagnetic material loses its ferromagnetic ability. For iron, the Curie point is 768° C. Thus Thompson teaches that potassium ferrate is not magnetic even if the starting raw material was magnetic.
The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those skilled in the art upon a reading of the specification and a study of the drawings.
Exemplary embodiments are illustrated in reference figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered to be illustrative rather than limiting.
This invention is directed to a composition and method of arresting the flow of blood from a bleeding wound. The composition preferably includes an anhydrous salt ferrate compound preferably combined with an effective amount of an insoluble cation exchange material (sometimes referred to as the “powder” or “powderous mixture”) and an effective amount of anhydrous Magnetite mixed uniformly together. In the method, a quantity of the composition is magnetically attached to a surface of a magnet, after which the composition is applied to the wound by pressing the surface covered with the composition against the wound for a time sufficient to clot the blood to arrest substantial further blood flow from the wound.
Magnetite addition to a potassium ferrate/strong acid cation exchange resin powderous mixture provides greatly improved delivery and control of the application of the hemostasis powder onto the wound site. Adding Magnetite to a potassium ferrate/strong acid cation exchange resin mixture at room temperature did not decrease the strength of a blood seal. Correspondingly, adding Hematite reduced the strength of the blood seal.
Magnetite is also a well-known colorant, for example often used in mascara. When Magnetite is added to the 1:7 powder, the mixture is gray-black, not brown color. The color difference distinguishes Magnetite powders from non Magnetite powder.
When powder mixtures are used for hemostasis, the bleeding surface is often not flat. Bone-dry powders tend to fall off the site at which they are aimed. Previously disclosed powder containment devices (PCD) are used to reduce the spillage. They are not, however, completely reliable, particularly for stopping bleeding around catheter lines on vertical or near vertical surfaces as the powder pile can spill over the edge of the PCD. Mixing Magnetite with the powder will allow it to be applied, transported, or held in place with a magnet. The incorporation of Magnetite to the hemostatic powder allows dramatic improvements in the delivery and control during application on a wound site.
Ferrate/resin mixtures at the preferred 1:7 (w/w) ratio are able to exchange H+ for dissolved cations, thus reducing pH. A typical cation exposure might be in a microbe attempting to penetrate a wound surrounding a catheter line. The microbe cell wall has mono- and divalent-cations for strength and life support plus ˜85% moisture. The dry ferrate/resin mixture absorbs the cation-rich water and exchanges the cations for protons. The surface pH drops to ˜2, creating a hostile environment for microbes.
In experiments, the 1:7 ferrate/resin mixture produced a >5 log kill on MRSA (Methicillin Resistant Staphylococcus Aureus, MRSE (Methicillin Resistant Staphylococcus Epidermidis), and VRE (Vancomycin Resistant Entorococci), a >4 log kill on Candida albicans, and no kill on Aspergillus niger. The experiments included a 7-day test with daily rechallenge.
There are two active antimicrobial compounds approved as active OTC antimicrobials, i.e., >62% alcohol, and 5-10% povidone iodine (PI). Alcohol decomposes ferrate, so povidone iodine (PI), a bone-dry powder, was chosen to be mixed with the 1:7 ferrate/resin powder. At 5 to 10% PI and 95% to 90% 1:7 powder, there was no change in TTH or strength of seal versus 100% 1:7 powder. Results showed that, with addition of as little as 2% PI, >log 4 kill of Aspergillus niger was achieved. The addition of PI to mixtures of ferrate/resin mixtures enable the hemostatic powder to have broad spectrum antimicrobial activity.
A level study of Povidone Iodine (PI) in 1:7 powder was tested with Aspergillus niger in a 7-day, daily re-challenge standardized test. A >4 log kill was achieved when the PI≧2%. Adding small amounts of PI to 1:7 powder had no effect on hemostasis but did provide the kill necessary to claim that the device created a 7-day antimicrobial barrier. This is a commercial breakthrough in that hospitals want and are now provided, an all-in-one product wherein hemostasis is achieved, exudate is absorbed, 24-48 hour dressing changes are eliminated and there is a reduction in hospital-acquired infections.
Referring to
The preferred procedure for testing each test sample for blood pressure to failure, i.e., when the test sample fails to maintain blood pressure under pressure within the test block, includes the following steps:
Mixtures of Magnetite (Mag), a ferrate powder commercially available as QR Powder (QR) from assignee herein, Povidone Powder (PI), dry Hydrogen Resin and Hematite were tested in the above-described dynamic pneumatic hemostasis apparatus to compare the cohesive nature of each of the mixtures. Air pressure through a ⅛″ hole was used to lift a small thin aluminum disk from a testing block. Over the aluminum disk was ˜0.5 ml of whole EDTA treated bovine blood, and ˜1 g of one of the powder mixtures. In one set of tests, a 200 gm weight was left in place over the powder, and in the other test set, the weight was removed before the system was pressurized. The system was capable of creating +500 mm Hg of pressure thru the ⅛″ hole. The measurement of cohesion for each mixture was taken at the point when the air pressure caused the disk to lift and release the pressure held beneath. The results are summarized in Table 1.
Magnetite did not decrease the strength of the cohesive nature of the seal, while Hematite did. Magnetite and Hematite are both iron oxides, so it was a surprise to get better results with Magnetite than with Hematite.
In another series of experiments, the level of Magnetite added to QR, (a 1:7 mixture of ferrate/hydrogen resin) was varied from 0% to 100% and the weight in grams of mixture lifted by a standard magnet measured. As demonstrated, more Magnetite results in more total mass being held by the magnet. The strength of the magnet affects the amount of powder that can be held. There is a minimum amount of Magnetite needed for each device depending on the type of magnet used and the amount of powder needed to be applied.
QR powder was mixed with varying amounts of Magnetite and different types of magnets were used to determine the mass of powder that could be held.
Three of the sets of data from Table 2 produced the graph shown in
Magnetite is a 10 micron RV 99 grade sourced from Reiss Viking.
QR is sourced from Biolife, L.L.C., BP03-lot #927 and is a 1:7 mix of fusion ferrate and the hydrogen form of a 2% crosslinked sulfonated polystyrene ion exchange resin.
In another experiment, the distance from a small round neodymium magnetic to a 3% Magnetite/97% QR mixture was varied to give the results shown in
A blood seal adhesion test was performed with mixtures of QR Powder with varying amount of Magnetite. A tenth (0.1) of a milliliter of stabilized bovine blood was spread out evenly on a one inch diameter circular template in a plastic tray. 300 mg of test powder was poured onto the template to cover the circular area. After three minutes of standing, the integrity of the seal (barrier) formed by the blood and test powder was evaluated by scraping with a small spatula. The amount of seal remaining after scraping was measured in an analytical balance. Qualitative readings of the following parameters were made: blood absorption, adhesion of the remaining seal, and % coverage of the seal after scrapping and is summarized in Table 3 below.
Magnetite is a 10 micron RV 99 grade sourced from Reiss Viking.
QR is sourced from BP03-lot #927 and is a 1:7 mix of fusion ferrate and the hydrogen form of a 2% crosslinked sulfonated polystyrene ion exchange resin.
The optimum range for hemostatic properties of mixtures of Magnetite and QR is from the 50% mix of Magnetite and QR to 100% QR. The optimum range was selected to provide a minimum of 30% coverage and 14 mg of seal remaining.
A blood seal adhesion test was performed with hydrogen resin with varying amounts of Magnetite. A tenth of a milliliter (0.1 ml) of stabilized bovine blood was spread out evenly on a one inch diameter circular template in a plastic tray. 300 mg of test powder was poured onto the template to cover the circular area. After three minutes of standing, the integrity of the seal (barrier) formed by the blood and test powder was evaluated by scraping with a small spatula. The amount of seal remaining after scraping was measured in an analytical balance. Qualitative readings of the following parameters were made: blood absorption, adhesion of the remaining seal, and % coverage of the seal after scrapping. The measures are recorded as a mean average of 3 to 6 runs.
QR Control without Magnetite:
26.3 mg seal remaining; 50% coverage; very good to excellent adhesion; good blood absorption.
Magnetite is a 10 micron RV 99 grade sourced from Reiss Viking.
H+ Resin is a dried hydrogen form of 2% crosslinked sulfonated polystyrene ion exchange resin.
QR is from lot #390907 (exp April 2012) and is a 1:7 mix of fusion ferrate and H+ Resin.
The composition based on 100% Magnetite gave extremely poor blood seal properties. Blood seal properties picked up with the inclusion of 30-50% H+ Resin but blood absorption was poor to fair only and % coverage was below 30%. At higher H+ Resin levels of >70%, and in particular 80%, 90% and 97%, properties were equal to the QR control, a very effective commercial hemostatic powder. Without Magnetite, 100% H+ Resin gave less mg seal remaining and less coverage compared to the QR control. As will be shown herebelow, this composition does not have magnetic properties compared to a composition with Magnetite.
In another experiment, the ratio of ferrate-to-resin was changed to 1:12 and then 10% Magnetite added. Thompson discloses that the 1:7 ratio can sting an open wound such as a skin tear. Increasing the resin to 1:12 reduces the sting, but also reduces the strength of the seal. Adding the Magnetite to 1:12 strengthens the seal to about the same as 1:7 powder, thus reducing sting with no change in seal strength.
The addition of Magnetite also allows the material to be moved or held in place by the use of a magnet. The magnet, Magnetite, and dry ferrate/resin mixture (QR Powder) may be employed in combination with a pad, stick or other applicator with openings large enough to trap the powder, resulting in more “holding” power than either alone. For example a magnet behind a very open cell foam, a gauze bandage, or a flocked surface would hold powder more strongly than would either the magnet or foam, bandage or flocked surface alone. This was tested using a flocked substrate and a flat magnet.
Referring now to
In
The application of Magnetite to influence delivery of medical devices including powders has been demonstrated for mixtures with ferrate and resin as well as with resin alone. It is within the scope of this invention to include the use of Magnetite in improving the delivery and control of application of all medical powders to the wound site. It is also well within the scope of this invention to include all other magnetic powders or materials aside from Magnetite to improve the delivery and control of application of all medical powders to the wound site.
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permeations and additions and subcombinations thereof. It is therefore intended that the following appended claims and claims hereinafter introduced are interpreted to include all such modifications, permeations, additions and subcombinations that are within their true spirit and scope.
This application is a continuation of application Ser. No. 12/719,434, filed Mar. 8, 2010, which is a nonprovisional of Application No. 61/209,359, filed Mar. 6, 2009.
Number | Name | Date | Kind |
---|---|---|---|
4046591 | Laguerre | Sep 1977 | A |
4545974 | Thompson | Oct 1985 | A |
4551326 | Thompson | Nov 1985 | A |
6187347 | Patterson et al. | Feb 2001 | B1 |
6521265 | Patterson | Feb 2003 | B1 |
6790429 | Ciampi | Sep 2004 | B2 |
6946078 | Minevski et al. | Sep 2005 | B2 |
6974562 | Ciampi et al. | Dec 2005 | B2 |
7303759 | Mershon | Dec 2007 | B2 |
7476324 | Ciampi et al. | Jan 2009 | B2 |
7595429 | Hursey | Sep 2009 | B2 |
20020197302 | Cochrum et al. | Dec 2002 | A1 |
20070269499 | Hen et al. | Nov 2007 | A1 |
20100151049 | Thompson et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
2 369 921 | Jun 2003 | CA |
2125453 | Jan 1999 | RU |
2008151041 | Dec 2008 | WO |
Entry |
---|
Moskowitz, Bruce M., Hitchhiker's Guide to Magnetism (2002). Accessed at http://irm.umn.edu/hg2m/hg2m.pdf on Aug. 29, 2011. |
Number | Date | Country | |
---|---|---|---|
20130150652 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61209359 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12719434 | Mar 2010 | US |
Child | 13760319 | US |