The present disclosure relates generally to hemostasis valves. More specifically, the present disclosure relates to hemostasis valves configured for passage of two or more elongate medical devices. This disclosure also relates to hemostasis valve systems including a hemostasis valve and a medical device such as a sheath introducer, wherein the hemostasis valve is coupleable to the medical device. Related methods are also disclosed.
The embodiments disclosed herein will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. While various aspects of the embodiments are presented in drawings, the drawings depict only typical embodiments, which will be described with additional specificity and detail through use of the accompanying drawings in which:
The various embodiments disclosed herein generally relate to hemostasis valves and hemostasis valve systems. In some embodiments, the hemostasis valve includes a valve member, wherein the valve member includes a first sealable opening disposed through a first portion of the valve member and a second sealable opening disposed through a second portion of the valve member. The valve member may also include three or more sealable openings. In certain embodiments, a hemostasis valve system may include a hemostasis valve and a first medical device (e.g., a sheath introducer). The hemostasis valve may be releasably coupleable to the first medical device.
Various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. Many of these features may be used alone and/or in combination with one another.
Embodiments may be understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of the present disclosure, as generally described and illustrated in the drawings herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the apparatus is not intended to limit the scope of the disclosure, but is merely representative of possible embodiments of the disclosure. In some cases, well-known structures, materials, or operations are not shown or described in detail. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
The phrases “connected to,” “coupled to,” and “in communication with” refer to any form of interaction between two or more entities, including but not limited to mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be coupled to each other even though they are not in direct contact with each other. For example, two components may be coupled to each other through an intermediate component.
The terms “proximal” and “distal” refer to opposite ends of a medical device, including the devices disclosed herein. As used herein, the proximal portion of a medical device is the portion nearest a practitioner during use, while the distal portion is the portion at the opposite end. For example, the proximal end of a hemostasis valve is defined as the end closest to the practitioner during utilization of the hemostasis valve. The distal end is the end opposite the proximal end, along the longitudinal direction of the hemostasis valve.
The term “resilient” refers to a component, device, or object having a particular shape that can then be elastically deformed into a different shape, but that may return to the original shape when unconstrained. For example, a wall of a valve member may have a first shape when unconstrained (i.e., when not engaged with an elongate medical device) and, in use, the wall may then be constrained (i.e., temporarily engaged with the elongate medical device) to elastically deform the wall into a second shape (i.e., displaced laterally due to interaction with a portion of the elongate medical device), then unconstrained (i.e., removed from engagement with the elongate medical device) such that the wall returns to its first shape or substantially returns to its first shape.
Various examples of hemostasis valve systems described herein comprise sealable openings configured to allow passage of instruments through a valve while maintaining hemostasis across the valve. Various examples herein reference sealable openings comprising one or more slits in a valve member. Notwithstanding any specific example to slits herein, sealable openings within the scope of this disclosure include single slits, intersecting slits, expandable holes, pin holes, multi-diameter holes, and so forth. Accordingly, any suitable sealable opening may be used in connection with the specific embodiments described herein.
In some embodiments, the hemostasis valve 110 can include a body 120 and a valve member 130 (see also
In certain embodiments, the hemostasis valve 110 can further include a cap 140. The cap 140 may be coupled to the body 120 such that at least a portion of the valve member 130 is disposed between at least a portion of the body 120 and at least a portion of the cap 140. For example, the cap 140 may secure the valve member 130 to the body 120. The cap 140 may be releasably coupleable to the body 120. For example, a practitioner may desire to remove the cap 140 to access the valve member 130. In various embodiments, the practitioner may desire to access the valve member 130, for example, to replace the valve member 130, to clean the valve member 130, etc. In various embodiments, the cap 140 may provide protection to at least a portion of the valve member 130. For example, the cap 140 may be formed from a rigid material and the cap 140 may limit or prevent at least a portion of the valve member 130 from being compromised or damaged (e.g., upon contact with a surface, a body part, another medical device, etc.). In various other embodiments, the hemostasis valve 110 may lack the cap 140. The valve member 130 may comprise a swabable or cleanable surface with or without the cap 140.
In some embodiments, the hemostasis valve 110, or at least a portion of the hemostasis valve 110, may be formed from a clear or transparent material. Accordingly, a color of a portion (e.g., an end) of an introducer that is coupled to the hemostasis valve 110 may be visible (e.g., to a practitioner) through at least a portion of the hemostasis valve 110. In certain embodiments, the color of the end of the introducer may correspond to the size (e.g., the French size) of the introducer.
In various embodiments, the hemostasis valve 110, or at least a portion of the hemostasis valve 110, may include one or more indicia. The indicium may be a color. The one or more indicia of the hemostasis valve 110, or at least a portion of the hemostasis valve 110, may communicate a size of the hemostasis valve 110 to a user. For example, the hemostasis valve 110, or at least a portion of the hemostasis valve 110, may be blue and the blue color may correspond to a size of 8.5 French, which may indicate to a user that two or more elongate medical devices may be disposed through the hemostasis valve 110 that add up to a total of 8 French (e.g., two 4 French catheters, a 2 French catheter and a 6 French catheter, etc.). Other suitable colors and corresponding sizes are also within the scope of this disclosure. In some embodiments, the hemostasis valve 110 may be a neutral color, including clear or white.
In some embodiments, the valve member 130 may include a first sealable opening 132a disposed through a first portion of the valve member 130. As shown, the valve member 130 may also include a second sealable opening 132b disposed through a second portion of the valve member 130. The first and second portions of the valve member 130 may be adjacent to each other (e.g., as shown in
Furthermore, the first sealable opening 132a may include a first slit 134a disposed through at least a portion of the first sealable opening 132a and/or along at least a portion of the diameter of the first sealable opening 132a. The first sealable opening 132a may also include a second slit 134b, wherein the second slit 134b may intersect at least a portion of the first slit 134a. Likewise, the second sealable opening 132b may include the first slit 134a′ disposed through at least a portion of the second sealable opening 132b and/or along at least a portion of the diameter of the second sealable opening 132b. The second sealable opening 132b may also include a second slit 134b, wherein the second slit 134b may intersect at least a portion of the first slit 134a. As depicted, the first slits 134a, 134a′ may be disposed substantially perpendicular to the second slits 134b, 134b′. The first slit 134a may be continuous with the first slit 134′ (see
The sealable openings (e.g., the first sealable opening 132a and the second sealable opening 132b) may be configured such that an elongate medical device (e.g., a guidewire, a stylet, a catheter, etc.) may be disposed through at least a portion of the slits of the sealable opening, and the sealable opening and/or the slits may form a seal (e.g., a hemostatic seal) around the elongate medical device. In some embodiments, the sealable openings, or at least a portion of each of the sealable openings, may be formed from a resilient or stretchable material such that the sealable opening and/or the slits of the sealable opening may form a seal (e.g., around an outside surface of an elongate medical device). The sealable openings may also be configured such that the sealable openings are substantially sealed when no object (e.g., an elongate medical device) is disposed through the sealable openings. An elongate medical device may be disposed through the first sealable opening 132a and then the elongate medical device may be transitioned along at least a portion of the first slits 134a, 134a′ (e.g., when the first slits 134a, 134a′ are integral) such that the elongate medical device is disposed through the second sealable opening 132b, or vice versa.
With continued reference to
The first medical device 105 may also include a sidearm 109. The sidearm 109 may include a sidearm lumen 104, the sidearm lumen 104 extending through at least a portion of the sidearm 109. In some embodiments, the sidearm lumen 104 may be in fluid communication with a lumen or a first medical device lumen 103 of the first medical device 105 (see also
The hemostasis valve 110 may also include a coupling member (not shown) disposed, for example, at or adjacent a distal end portion 118 of the hemostasis valve 110. The coupling member may be configured to couple, or releasably couple, the hemostasis valve 110 to the first medical device 105. In certain embodiments, the coupling member may be configured to form a snap fit between the hemostasis valve 110 and the first medical device 105. In certain other embodiments, the coupling member may be configured to threadably couple the hemostasis valve 110 and the first medical device 105 to each other (e.g., the coupling member may include one or more threads). Other suitable coupling mechanisms are also within the scope of this disclosure.
As shown, the hemostasis valve lumen 111 can extend between the proximal end portion 116 and the distal end portion 118 of the hemostasis valve 110. Accordingly, there may be fluid communication between the proximal end portion 116 and the distal end portion 118 of the hemostasis valve 110.
The hemostasis valve 110 can further include the valve member 130, wherein the valve member 130 is configured to be disposed at or adjacent the proximal end portion 116 of the hemostasis valve 110. Stated another way, the valve member 130 may be coupleable to the hemostasis valve 110 at a position at or adjacent the proximal end portion 116 of the hemostasis valve 110 (e.g., at a valve member coupling portion 122). The valve member coupling portion 122 may be configured to limit or prevent movement (e.g., longitudinal movement) of the valve member 130 relative to the hemostasis valve 110 when the valve member 130 is coupled to the hemostasis valve 110. For example, the valve member coupling portion 122 may include one or more ridges which engage or interact with at least a portion of the valve member 130 such that the valve member 130 is secured to the hemostasis valve 110. The valve member coupling portion 122 may also be configured to limit or prevent leakage around an edge of the valve member 130. For example, the valve member coupling portion 122 may form a seal around at least a portion of the valve member 130 (i.e., between the body 120 and the valve member 130) when the valve member 130 is coupled to the body 120.
As depicted, the valve member 130 includes the first sealable opening 132a disposed through a first portion of the valve member 130 and the second sealable opening 132b disposed through a second portion of the valve member 130. Additionally, each of the first and second sealable openings 132a, 132b includes the first slits 134a, 134a′ and the second slits 134b, 134b′, respectively, disposed through at least a portion of the first and second sealable openings 132a, 132b. The valve member 130 can further include a wall or a flow divider 136 disposed between the first sealable opening 132a and the second sealable opening 132b. As illustrated, the first slits 134a, 134a′ can extend through the wall 136 between each of the first and second sealable openings 132a, 132b. At least a portion of the wall 136 may be resilient or deformable (e.g., at least a portion of the wall 136 may be formed from a resilient material). In some embodiments, the wall 136 may be resilient such that it may bias away from the first sealable opening 132a toward the second sealable opening 132b, or vice versa. The resilient wall 136 may be configured to release pressure on at least a portion of the valve member 130, for example, upon displacement of an elongate medical device through the first and/or the second sealable opening 132a, 132b.
In some embodiments, the wall 136 may be displaceable between at least a resting position, a first lateral position, and a second lateral position. As such, the wall 136 may be disposed in the resting position (e.g., as depicted in
Likewise, the sealable openings (e.g., the first and second sealable openings 132a, 132b) may have a resting configuration and a non-resting configuration. That is, a sealable opening may be in the resting configuration when the sealable opening is not biased or stretched (e.g., due to an interaction with an object such as an elongate medical device). The first and second sealable openings 132a, 132b, as illustrated in
Upon displacement of the wall 136 a size of the first sealable opening 132a can decrease as a size of the second sealable opening 132b increases, or vice versa. Such a configuration may aid in the displacement of elongate medical devices having different profiles or sizes (e.g., larger profiles relative to the size of the first or second sealable opening 132a, 132b in the resting configuration) through the first and second sealable openings 132a, 132b. For example, a practitioner may desire to displace a first elongate medical device having a first profile through the first sealable opening 132a. The first profile, however, may be greater than a size of the first sealable opening 132a when the first sealable opening 132a is in the resting configuration. Accordingly, the practitioner may displace the wall 136 from the resting position to the second lateral position such that the size of the first sealable opening 132a increases and displacement of the first elongate medical device through the first sealable opening 132a is allowed or permitted.
Also depicted in
At least a portion of an edge surrounding the first and/or the second cap opening 142a, 142b may be chamfered or sloped. Such a configuration may aid in guiding an elongate medical device through the first and/or the second cap opening 142a, 142b and through the first and/or the second sealable opening 132a, 132b.
The first and second sealable openings 132a, 132b can provide communication between the hemostasis valve lumen 111 and a position proximal of the hemostasis valve 110 (e.g., via the first slits 134a, 134a′ and the second slits 134b, 134b′). For example, as discussed above, an elongate medical device may be disposed through at least a portion of the slits of the sealable opening such that access is provided to the hemostasis valve lumen 111 from a position outside of the hemostasis valve 110 (e.g., from a position proximal of the hemostasis valve 110).
The hemostasis valve system 100 may also include the first medical device 105. As illustrated, the distal end portion 118 of the hemostasis valve 110 may be shaped (e.g., skirt-shaped or otherwise shaped) such that upon coupling of the hemostasis valve 110 and the first medical device 105 at least a portion of the distal end portion 118 extends around at least a portion of a proximal end portion 106 of the first medical device 105. In certain embodiments, the first medical device 105 may include a valve 108; for example, the first medical device 105 may be a valved medical device. Furthermore, the hemostasis valve 110 may include a valve bypass portion 125, wherein the valve bypass portion 125 extends distally from the distal end portion 118 of the hemostasis valve 110. In some embodiments, the hemostasis valve lumen 111 may extend through at least a portion of the valve bypass portion 125.
The valve bypass portion 125 may be configured to bypass or override the valve 108 of the valved medical device 105 when at least a portion of the valve bypass portion 125 is disposed through at least a portion of the valve 108 of the valved medical device 105. For example, at least a portion of the valve bypass portion 125 may be configured to be displaced through the valve 108 (e.g., via slits 109a, 109b of the valve 108) and the valve 108 may be configured to form a seal (e.g., a hemostatic seal) around the valve bypass portion 125. Accordingly, the valve bypass portion 125 may be configured to couple the hemostasis valve 110 to the first medical device or valved medical device 105. Upon coupling of the hemostasis valve 110 and the valved medical device 105, the hemostasis valve 110 may be in fluid communication with the valved medical device 105 (e.g., via the hemostasis valve lumen 111).
As illustrated, the valve member 130 can include the first sealable opening 132a disposed through a first portion of the valve member 130 and the second sealable opening 132b disposed through a second portion of the valve member 130. The hemostasis valve 110 can further include the sidearm 112 (see
As discussed above, the distal end portion 118 of the hemostasis valve 110 may be shaped such that upon coupling the hemostasis valve 110 and the first medical device 105 at least a portion of the distal end portion 118 extends around at least a portion of the proximal end portion 106 of the first medical device 105. In the illustrated embodiment, at least a portion of the distal end portion 118 is skirt-shaped. In some other embodiments, at least a portion of the distal end portion 118 may be conical, cap-shaped, or otherwise suitably shaped. Furthermore, the hemostasis valve 110 may include the valve bypass portion 125 extending distally from the distal end portion 118 of the hemostasis valve 110. As illustrated, the hemostasis valve lumen 111 can extend through at least a portion of the valve bypass portion 125.
With continued reference to
The raised portion 124 may be configured to receive one of the recessed portions 144a, 144b. Upon coupling the cap 140 to the body 120, the recessed portion 144a or the recessed portion 144b may engage or interact with the raised portion 124. The engagement of the raised portion 124 with one of the recessed portions 144a, 144b can form a key/lock mechanism, such that when the cap 140 is coupled to the body 120, the cap 140 cannot be rotated relative to the body 120, or vice versa. Stated another way, the key/lock mechanism may “lock” the rotational position of the cap 140 in relation to the body 120. In some embodiments, the cap 140 may include one, three, four, five or another suitable number of recessed portions and the proximal end portion 116 of the body 120 may include two, three, four, five, or another suitable number of raised portions 124.
The valve member 230 may also include a third sealable opening 232c disposed through a third portion of the valve member 230. Furthermore, a first slit 234a″ and a second slit 234b″ may be disposed through at least a portion of the third sealable opening 232c. As depicted, the third sealable opening 232c may be larger than each of the first sealable opening 232a and the second sealable opening 232b. In various embodiments, a practitioner may displace a first guidewire through the first sealable opening 232a and a second guidewire through the second sealable opening 232b. The practitioner may also displace an elongate medical device having a larger profile than either of the first or second guidewire through the third sealable opening 232c (e.g., such as a balloon catheter).
In some embodiments, the hemostasis valve 210 may include one or more exchange slits (not shown) and may lack a cap. For example, the exchange slit can be disposed through a portion of the valve member 230 and extend between the first sealable opening 232a and the third sealable opening 232c. As such, the practitioner may dispose the first guidewire through the first sealable opening 232a, through the hemostasis valve 210, and then into at least a portion of a vessel of a patient. The practitioner may then displace the first guidewire from the first sealable opening 232a to the third sealable opening 232c via the exchange slit. Upon displacement of the first guidewire to the third sealable opening 232c, the practitioner may then dispose an elongate medical device such as a balloon catheter over and along the first guidewire and through the third sealable opening 232c of the hemostasis valve 210. The hemostasis valve 210 may include one, two, three, or more exchange slits. For example, a second exchange slit may be disposed between the second sealable opening 232b and the third sealable opening 232c.
Other relative sizes of the each of the first, second, and third sealable openings 232a, 232b, 232c are also within the scope of this disclosure. For example, in some other embodiments, each of the first, second, and third sealable openings 232a, 232b, 232c may be a different size (e.g., the first sealable opening 232a may be a first size, the second sealable opening 232b may be a second size, and the third sealable opening 232c may be a third size).
The sealable openings (e.g., the first sealable opening 232a, the second sealable opening 232b, the third sealable opening 232c) may be configured such that an elongate medical device (e.g., a guidewire, a stylet, a catheter, etc.) may be disposed through at least a portion of the slits of the sealable opening and the sealable opening and/or the slits may form a seal (e.g., a hemostatic seal) around the elongate medical device.
In some embodiments, a first balloon catheter may be disposed through the first sealable opening 232a and a second balloon catheter may be disposed through the second sealable opening 232b. Furthermore, a contrast agent (e.g., for an angiogram) may be introduced through the third sealable opening 232c (e.g., via a catheter). For example, the first and second sealable openings 232a, 232b may be configured to seal around at least a portion of 12 French first and second balloon catheters and the third sealable opening 232c may be configured to seal around at least a portion of a 14 French contrast agent catheter.
The hemostasis valve 210 may also include the cap 240. The cap 240 may be coupleable to a proximal end portion of the hemostasis valve 210 such that at least a portion of the valve member 230 is disposed between the cap 240 and a body of the hemostasis valve 210. As stated above, in some other embodiments, the hemostasis valve 210 may lack a cap. The cap 240 can include a first cap opening 242a and a second cap opening 242b. The first cap opening 242a may be disposed through the cap 240 such that upon coupling of the cap 240 to the hemostasis valve 210, the first cap opening 242a is in substantial alignment with the first sealable opening 232a. The second cap opening 242b may be disposed through the cap 240 such that upon coupling of the cap 240 to the hemostasis valve 210, the second cap opening 242b is in substantial alignment with the second sealable opening 232b. The cap 240 may also include a third cap opening 242c. The third cap opening 242c may be disposed through the cap 240 such that upon coupling of the cap 240 to the hemostasis valve 210, the third cap opening 242c is in substantial alignment with the third sealable opening 232c.
The hemostasis valve 310 may also include a cap 340. The cap 340 can include a cap opening 342. The cap opening 342 may be disposed through the cap 340 such that upon coupling of the cap 340 to the hemostasis valve 310, the cap opening 342 is disposed around each of the first and second sealable openings 332a, 332b and/or provides access (e.g., to a practitioner) to each of the first and second sealable openings 332a, 332b.
The valve member 430 can include a first sealable opening 432a disposed through a first portion of the valve member 430 and a second sealable opening 432b disposed through a second portion of the valve member 430. The hemostasis valve 410 can further include a sidearm 412. The sidearm 412 can include a sidearm lumen 414, wherein the sidearm lumen 414 can extend through at least a portion of the sidearm 412. As depicted, the sidearm lumen 414 may be in fluid communication with at least a portion of a hemostasis valve lumen 411 of the hemostasis valve 410. Furthermore, the hemostasis valve lumen 411 can extend through at least a portion of the hemostasis valve 410. As illustrated, the hemostasis valve lumen 411 extends between the proximal end portion 416 and the distal end portion 418 of the hemostasis valve 410. As discussed above regarding the hemostasis valve lumen 111, the shape of the hemostasis valve lumen 411 can aid in the displacement of an elongate medical device through the hemostasis valve 410.
The distal end portion 418 of the hemostasis valve 410 may be configured such that the hemostasis valve 410 can be coupled to another medical device. For example, a coupling mechanism may be coupled to or disposed at or adjacent the distal end portion 418 (e.g., a luer connector, a snap fit mechanism, a plurality of threads). In some embodiments, another medical device may extend distally from the distal end portion 418 of the hemostasis valve 410. For example, a sheath introducer may be integral with the hemostasis valve 410 and the sheath introducer may extend distally from the distal end portion 418. Other suitable medical devices may also be coupled to or integral with the hemostasis valve 410 (e.g., a catheter, medical tubing, etc.).
Analogous to the introducer sheath 401 of
Upon coupling of the hemostasis valve 510 to a valve member 530, the first elongate portion 562 and the second elongate portion 568 may be configured to couple, engage with, and/or interact with the valve member 530. The first elongate portion 562 and the second elongate portion 568 may be configured as a divider displaceable along a sealable opening 532 of the valve member 530. The divider may allow a practitioner to divide the sealable opening 532 into a first side and a second side, for example to separate two guidewires positioned in different points of a patient's anatomy. Displacement of the valve dividing member 560 in one direction may increase the available space to advance a larger therapy (such as a balloon) over one guidewire. At the conclusion of the initial therapy, the valve dividing member 560 could be displaced in the other direction to provide more space for treatment via a wire on the other side of the valve dividing member 560. This embodiment may allow a practitioner to separate two guidewires and accommodate larger therapies when needed, while minimizing the overall size of the hemostasis valve 510.
The first elongate portion 562 and the second elongate portion 568 may provide structure and support above and below the valve member 530 such that a practitioner may displace the first elongate portion 562 and the second elongate portion 568 to change the effective length of the sealable opening 532 on other side of the first elongate portion 562 and the second elongate portion 568. This support structure may allow the sealable opening 532 to remain sealed on a guidewire on one side of the valve dividing member 560 while a large therapy such as a balloon is inserted through the sealable opening 532 on the other side of the valve dividing member 560. The support structure may facilitate simultaneous sealing of the sealable opening 532 on both the balloon on one side and a guidewire on the other side of the valve dividing member 560.
The valve dividing member 560 may be configured to be displaceable between at least a resting position, a first lateral position, and a second lateral position. The resting position may correlate to a central position when the valve dividing member 560 is disposed in a middle portion of the valve member 530 (e.g., as depicted in
Likewise, displacement of valve dividing member 560 in a second direction as indicated by the arrow D2 may displace at least a portion of the first elongate portion 562 and the second elongate portion 568 in the second direction (i.e., to the second lateral position). This displacement may provide a greater effective length of the sealable opening 532 on the side of the valve dividing member 560 associated with the first direction.
In some other embodiments, a first iris-like support member may provide structure and support above a valve member and/or a second iris-like support member may provide structure and support below the valve member. At least a portion of the iris-support member may be analogous to a camera aperture. The first and/or second iris-like support members may be configured to transition from a first diameter to a second diameter, wherein the first diameter is greater than the second diameter. The first and/or second iris-like support members may be disposed around a sealable opening, as provided herein, having a first slit and a second slit wherein the intersecting first and second slits form at least four leaflets in the valve member at the sealable opening.
When the first and/or second iris-like support members are in the first diameter, a first elongate medical device having a first diameter may be disposed through the sealable opening and the leaflets can form a seal around the first elongate medical device. When a second elongate medical device having a second, smaller diameter is disposed through the sealable opening, a practitioner may transition the first and/or second iris-like support members to the second smaller diameter such that the leaflets are supported (i.e., by the first and/or second iris-like support members) and can form a seal around the second elongate medical device having the second, smaller diameter.
The valve member 630 can further include a wall 636 disposed between the first sealable opening 632a and the second sealable opening 632b. As illustrated, the first slit 634a can extend through the wall 636 between each of the first and second sealable openings 632a, 632b. As discussed above, at least a portion of the wall 636 may be resilient or deformable. At least a portion of a first edge 639a surrounding the first sealable opening 632a and/or at least a portion of a second edge 639b surrounding the second sealable opening 632b may be chamfered or sloped. Such a configuration may aid in guiding an elongate medical device through the first and/or the second sealable openings 632a, 632b.
With reference to
With reference to
With reference to
With reference to
As depicted, the first valve member 1030a includes a first sealable opening 1032a disposed through a first portion of the first valve member 1030a and a second sealable opening 1032b disposed through the second valve member 1030b. As discussed above, each of the first and second sealable openings 1032a, 1032b can include one or more slits disposed through at least a portion of the first and second valve members 1030a, 1030b. In some embodiments, the hemostasis valve 1010 may include three, four, five, or more valve members.
Any of the valve members depicted in
In some embodiments, the first medical device 1105 may be a traditional hemostasis valve, a valved sheath introducer, or another valved medical device. The first medical device 1105 may be an off-the-shelf medical device such that the tubing 1171 has a standard length. For example, the tubing 1171 of an off-the-shelf first medical device 1105 may be about 8 inches in length or another suitable length. In certain embodiments, the length of the tubing 1181 of the hemostasis valve 1110 may be greater than the length of the tubing 1171 of the first medical device 1105. For example, if the length of the tubing 1171 of the first medical device 1105 is 8 inches, the length of the tubing 1181 of the hemostasis valve 1110 may be between about 8.5 inches and about 9.5 inches, about 9 inches, between about 9.5 inches and about 10.5 inches, about 10 inches, between about 10.5 inches and about 11 inches, about 11 inches, or another suitable length. In certain other embodiments, the length of the tubing 1181 of the hemostasis valve 1110 may be less than the length of the tubing 1171 of the first medical device 1105. For example, if the length of the tubing 1171 of the first medical device 1105 is 8 inches, the length of the tubing 1181 of the hemostasis valve 1110 may be between about 6.5 inches and about 7.5 inches, about 7 inches, between about 5.5 inches and about 6.5 inches, about 6 inches, between about 4.5 inches and about 5.5 inches, about 5 inches, or another suitable length. Accordingly, the length of the tubing 1181 of the hemostasis valve 1110 may be an indicium. Stated another way, the length of the tubing 1181 of the hemostasis valve 1110 may be an indicium that communicates to a user which tubing is coupled to the hemostasis valve and which tubing is coupled to the first medical device 1105. The first and second lengths of the tubings 1171, 1181 can distinguish the tubings 1171, 1181 (and/or the first medical device 1105 and the hemostasis valve 1110) from each other. Other suitable indicia may also be used. For example, while the tubing 1171 of the first medical device may be clear or transparent, the tubing 1181 of the hemostasis valve 1110 may have a color or tint (e.g., the tubing 1181 may be green). Likewise, the stopcocks 1174, 1184 may be color coded to correspond with a portion of the hemostasis valve 1100, 1110 to which they are directly coupled.
The hemostasis valve 1110 can include a body 1120 and a valve member 1130. The valve member 1130 can be coupled to the body 1120 at a position at or adjacent a proximal end portion 1116 of the body 1120. The valve member 1130 may include a first sealable opening 1132a disposed through a first portion of the valve member 1130. The valve member 1130 may also include a second sealable opening 1132b disposed through a second portion of the valve member 1130. As discussed herein, a hemostasis valve having two or more sealable openings may aid in access and/or treatment. In certain embodiments, the valve member 1130 may include a third sealable opening, a fourth sealable opening, a fifth sealable opening, a sixth sealable opening, a seventh sealable opening, an eighth sealable opening, or more sealable openings.
With continued reference to
The first medical device 1105 may also include a sidearm 1109. The sidearm 1109 may include a sidearm lumen 1104, the sidearm lumen 1104 extending through at least a portion of the sidearm 1109. In some embodiments, the sidearm lumen 1104 may be in fluid communication with a lumen or a first medical device lumen 1103 of the first medical device 1105. In certain embodiments, the sidearm lumen 1104 may be in fluid communication with a lumen or a first elongate member lumen 1172 of the first elongate member 1170. As shown, the first elongate member 1170 may be coupled or releasably coupled to the sidearm 1109 and the second elongate member 1180 may be coupled or releasably coupled to the sidearm 1112.
As discussed above, the sidearm 1112 may rotate independent of the sidearm 1109, for example, when the hemostasis valve 1110 is coupled to the first medical device 1105. The hemostasis valve 1110 may also be configured such that upon coupling of the hemostasis valve 1110 to the first medical device 1105, the sidearm lumen 1104 is not blocked by a portion of the hemostasis valve 1110. In various embodiments, each of the first and second elongate member lumens 1172, 1182 may be in fluid communication with each of the first medical device lumen 1103 and the hemostasis valve lumen 1111 (e.g., when the first medical device 1105 comprising the first elongate member 1170 is coupled to the hemostasis valve 1110 comprising the second elongate member 1180).
Methods of using the hemostasis valve systems and hemostasis valves are also disclosed herein. In some embodiments, a method of using a hemostasis valve system or hemostasis valve as disclosed herein may include displacing a first elongate medical device (e.g., a first guidewire) through a first sealable opening of the hemostasis valve. The method may further include displacing a second elongate medical device (e.g., a second guidewire) through a second sealable opening of the hemostasis valve.
In certain embodiments, the method of using the hemostasis valve system or hemostasis valve may include coupling the hemostasis valve to a valved medical device (e.g., another hemostasis valve) such that a lumen of the hemostasis valve is in fluid communication with a lumen of the valved medical device, and such that the hemostasis valve bypasses the valve of the valved medical device. In various embodiments, the hemostasis valve may be sealably coupled to the valved medical device.
Procedures wherein a hemostasis device having multiple sealable openings is coupled to a valved medical device during use of the valved medical device are within the scope of this disclosure. For instance, during a procedure wherein a single guidewire or other device is disposed within a single sealable opening valved medical device, a practitioner may desire placement of a second guidewire or medical device. Simply inserting a second guidewire or medical device through a standard sealable opening may cause blood loss, as the sealable opening is not configured to seal around two devices. Rather, such sealable openings may be configured to seal about the outside diameter of one medical device.
Upon disposition of the guidewire 2 within the valved medical device 1205, a distal end of the guidewire 2 may be disposed distal of the distal end portion 1207 of the valved medical device 1205 and a proximal end of the guidewire 2 may be disposed proximal of the proximal end portion 1206 of the valved medical device 1205. In certain embodiments, at least the distal end of the guidewire 2 may be disposed within a patient (e.g., within a vasculature of the patient).
The valved medical device 1205 may have a single sealable opening. However, as noted above, in some embodiments, a practitioner may desire to dispose more than one elongate medical device through the valved medical device 1205. Stated another way, the practitioner may desire to introduce two or more medical devices into a patient via the valved medical device 1205. Accordingly, the practitioner can use a hemostasis valve as provided herein. For example, the practitioner may use a hemostasis valve as discussed above, such as, but not limited to, hemostasis valves 110, 210, 310, 410, 510, 1010, 1110.
The insertion device 1290 can also include a side opening 1295 disposed through a sidewall of the insertion device 1290. The side opening 1295 can provide fluid communication between the lumen 1292 and an exterior of the insertion device 1290. As depicted, the insertion 1290 may also include a bend or curve portion 1299. The side opening 1295 can be disposed at or adjacent the bend portion 1299 such that at least a portion of an elongate medical device such as the guidewire 2 can be displaced from within the lumen 1292, through the side opening 1295, and to the exterior of the insertion device 1290. In certain embodiments, the insertion device 1290 may also include a slit (not shown) extending through at least a portion of the side wall of the insertion device 1290, for example, between the opening 1294 and the side opening 1295. The slit may be configured such that at least a portion of an elongate medical device such as the guidewire 2 can be displaced from within the lumen 1292, through the slit, and to the exterior of the insertion device 1290.
With continued reference to
The insertion device 1290 can be configured to be disposed through at least a portion of the hemostasis valve 1210. In some embodiments, the hemostasis valve 1210 may include two or more sealable openings (see, e.g.,
In
As illustrated in
With continued reference to
In some embodiments, the methods may include inserting the proximal end of the guidewire 2 through the opening 1294 at the distal end of the insertion device 1290. Furthermore, at least a portion of the guidewire 2 may be displaced through at least a portion of the insertion device 1290 such that the proximal end of the guidewire 2 is disposed proximal of each of the hemostasis valve 1210 and the valved medical device 1205. The hemostasis valve 1210 may also be coupled to the valved medical device 1205, or vice versa. In various embodiments, when the hemostasis valve 1210 is coupled to the valved medical device 1205 a lumen of the hemostasis valve 1210 may be in fluid communication with a lumen of the valved medical device 1205 and the hemostasis valve 1210 may bypass a valve of the valved medical device 1205.
In certain embodiments, methods of disposing the guidewire 2 through the hemostasis valve 1210 may include displacing the proximal end of the guidewire 2 through the side opening 1295 disposed adjacent a proximal portion of the insertion device 1290. Additionally, the insertion device 1290 can be removed or retrieved from within the hemostasis valve 1210 such that the guidewire 2 remains disposed through each of the hemostasis valve 1210 and the valved medical device 1205. In some embodiments, the methods may also include inserting a second guidewire through a second sealable opening of the hemostasis valve 1210 and displacing the second guidewire through each of the hemostasis valve 1210 and the valved medical device 1205.
In various embodiments, a practitioner may dispose the insertion device 1290 through a first sealable opening or a second sealable opening of the hemostasis valve 1210. The practitioner may displace the insertion device 1290 along a proximal portion of a first guidewire that is disposed through the valved medical device 1205. The practitioner may then remove or retrieve the insertion device 1290 from within the hemostasis valve 1210 when the first guidewire is disposed through each of the hemostasis valve 1210 and the valved medical device 1205.
In some embodiments, the practitioner may couple (e.g., sealably couple) the hemostasis valve 1210 to the valved medical device 1205. Furthermore, the practitioner may dispose a second guidewire through the second sealable opening when the first guidewire is disposed through the first sealable opening or dispose the second guidewire through the first sealable opening when the first guidewire is disposed through the second sealable opening. In some embodiments, the hemostasis valve 1290 may include three or more sealable openings, as discussed above. In such a configuration, the practitioner may dispose three or more elongate medical devices, such as guidewires, through the hemostasis valve.
Additional methods and/or method steps can be derived from
References to approximations are made throughout this specification, such as by use of the term “substantially.” For each such reference, it is to be understood that, in some embodiments, the value, feature, or characteristic may be specified without approximation. For example, where qualifiers such as “about” and “substantially” are used, these terms include within their scope the qualified words in the absence of their qualifiers. For example, where the term “substantially sealed” is recited with respect to a feature, it is understood that in further embodiments, the feature can have a precisely sealed configuration.
Reference throughout this specification to “an embodiment” or “the embodiment” means that a particular feature, structure, or characteristic described in connection with that embodiment is included in at least one embodiment. Thus, the quoted phrases, or variations thereof, as recited throughout this specification are not necessarily all referring to the same embodiment.
Similarly, in the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment.
The claims following this written disclosure are hereby expressly incorporated into the present written disclosure, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations of the independent claims with their dependent claims. Moreover, additional embodiments capable of derivation from the independent and dependent claims that follow are also expressly incorporated into the present written description.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the invention to its fullest extent. The claims and embodiments disclosed herein are to be construed as merely illustrative and exemplary, and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having ordinary skill in the art, with the aid of the present disclosure, which changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure herein. In other words, various modifications and improvements of the embodiments specifically disclosed in the description above are within the scope of the appended claims. Moreover, the order of the steps or actions of the methods disclosed herein may be changed by those skilled in the art without departing from the scope of the present disclosure. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order or use of specific steps or actions may be modified. The scope of the invention is therefore defined by the following claims and their equivalents.
This application claims priority to U.S. Provisional Application No. 62/593,441, filed on Dec. 1, 2017 and titled “Hemostasis Valve Systems and Associated Methods,” which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62593441 | Dec 2017 | US |