During a surgical procedure, a portion of a patient's body (e.g., vasculature) is accessed to allow for performance of a desired intervention or treatment. During such surgical procedures, it is desired to minimize patient blood loss, prevent delivery of air into the vasculature, and to maintain the sterility of the accessed portions or sites of the patient's body so as to prevent issues such as infection. Further, the desire for improved patient outcomes has led to the development of hemostasis valves that facilitate minimally invasive surgery.
In minimally invasive surgery, small incisions are created through a blood vessel which one or several catheters are inserted. Each of these one or several catheters can define a lumen extending longitudinally through that catheter. These catheters are moved to a position proximate to tissue, nerves, or other body structures targeted by the surgery, and then tools for performing the procedure are inserted through the lumens of some or all of these catheters.
To minimize blood loss, prevent delivery of air into the vasculature, and to facilitate maintenance of sterility within the patient's body (e.g., blood vessel), these catheters are equipped with hemostasis valves. These valves seal or selectably seal the lumens of the catheters. In many instances, these valves can seal the lumen of the catheter when a tool extends through the catheter, and specifically through the valve. Additionally the valves can seal the lumen when a tool is removed or does not extend through the catheter.
While such traditional hemostasis valves are greatly beneficial for intravascular access, they have some drawbacks. For example, some valves may not seal adequately for all interventional applications or tools, and/or the operation of some valves may be complicated for operator use. The drawbacks of such valve designs may in turn increase the complexity of any surgery performed therewith and/or reduce patient safety (e.g., bleeding, infection, and/or other detrimental complications). Accordingly, new and improved hemostasis valves and methods of use are desired.
The following relates to valves, medical systems incorporating valves, and methods of using the same. The valve can include a tubular member that can be constricted, collapsed, and/or sealed by one or several tensioning mechanisms. The tensioning mechanism can include at least one filament that extends around at least a portion of the tubular member. The filament can interact with the tubular member to constrict, collapse, and/or seal the tubular member via manipulation of the tensioning mechanism(s). A tool can be inserted through the valve to gain access to a patient's body and specifically to gain access to a blood vessel. Through the use of the tensioning mechanism and filament to constrict, collapse, and/or seal the tubular member, the valve can seal around a wide range of tool sizes and shapes, as well as multiple tools of differing sizes simultaneously. Additionally, such a valve creates a robust seal that maintains its seal when a vacuum is applied such as occurs during aspiration.
Aspects of the present disclosure relate to a hemostatic valve for sealing a medical device. The hemostatic valve includes an elongate member having a first end, a second end, and a central lumen extending therebetween. In some embodiments, the elongate member is pliable. The hemostatic valve can include a reinforcement structure extending along at least a portion of the elongate member, such that the reinforcement structure is coupled to the elongate member. The hemostatic valve includes an active tensioning mechanism coupled to the elongate member. In some embodiments, the tensioning mechanism is moveable between a first configuration in which the central lumen is constricted and sealed and a second configuration in which the central lumen is open. Optionally, the valve may be manually adjusted by the user to intermediate positions between fully open and fully closed. Additionally, an instrument (e.g. catheter) may provide an intermediate position where the valve creates hemostasis without user adjustment.
In some embodiments, the elongate member can be a compliant polymer tube. In some embodiments, the tensioning mechanism can include at least one filament extending at least partially around the elongate member. In some embodiments, the reinforcement structure is positioned between the at least one filament and the elongate member. In some embodiments, the reinforcement structure can be a braided mesh. In some embodiments, the reinforcement structure is coupled to the elongate member at a position proximate to the first end of the elongate member and at a position proximate to the second end of the elongate member. In some embodiments, the reinforcement structure is not coupled to the elongate member at a position between the first end of the elongate member and the second end of the elongate member. In some embodiments, the central portion of the compliant polymer tube that is constrained or collapsed by the tensioning mechanism, and at least one filament, is not coupled to the reinforcement structure.
In some embodiments, the tensioning mechanism can include an actuator coupled to the at least one filament. In some embodiments there are two tensioning mechanisms coupled to the at least one filament that operate in opposite directions. In some embodiments the two tensioning mechanisms are attached to the same filament. In some embodiments the two tensioning mechanisms are attached to opposing filaments. In some embodiments, the actuator can be moveable to control movement of the at least one filament from a first position in which the central lumen is constricted and sealed to a second position in which the central lumen is open. In some embodiments, the at least one filament is in the first position when the tensioning mechanism is in the first configuration. In some embodiments, the actuator is biased towards the first position. In some embodiments, the actuator is biased toward the second position. In some embodiments, the actuator can be a manual actuator.
In some embodiments, the at least one filament forms a loop around the elongate member. In some embodiments, the at least one filament forms a bight around a portion of the elongate member. In some embodiments, the at least one filament can include a first filament and a second filament. In some embodiments, each of the first filament and the second filament are coupled to the same actuator. In some embodiments, each of the first filament and the second filament are coupled to different actuators. In some embodiments, the first filament and the second filament are moveable from the first position to the second position. In some embodiments, each of the first filament and the second filament form a loop around the elongate member. In some embodiments, the first filament forms a first bight around a first portion of the elongate member, and the second filament forms a second bight around a second portion of the elongate member. In some embodiments, the first bight extends through the second bight.
In some embodiments, the hemostatic valve can include a shell defining a first aperture and a second aperture. In some embodiments, the elongate member extends from the first aperture to the second aperture and fluidly couples the first aperture and the second aperture. In some embodiments, the tensioning mechanism is self-adjustable to seal around tools of different sizes extending through the hemostatic valve. In some embodiments, the central lumen can comprise a single lumen, and in some embodiments, the central lumen can comprise a plurality of lumens.
One aspect of the present disclosure relates to a delivery system for intravascular access of a blood vessel within a patient's body. The delivery system includes a catheter having a first end, a second end, and a catheter lumen extending therebetween and a hemostatic valve coupled to the first end of the catheter. The hemostatic valve includes a tubular member having a first end, a second end, and a central lumen extending therebetween. In some embodiments, the central lumen of the tubular member is fluidly coupled with the catheter lumen. The hemostatic valve includes an active tensioning mechanism coupled to the tubular member, the tensioning mechanism can be moveable between a first configuration in which the tensioning mechanism constricts on the central lumen and the central lumen is sealed and a second configuration in which the central lumen is open.
In some embodiments, the hemostatic valve further includes a reinforcement structure extending along at least a portion of the tubular member. In some embodiments, the reinforcement structure is located between the tensioning mechanism and the tubular member. In some embodiments, the reinforcement structure can be a braided mesh. In some embodiments, the reinforcement structure is coupled to the tubular member at a position proximate to the first end of the tubular member and at a position proximate to the second end of the tubular member. In some embodiments, the reinforcement structure is adhered to the tubular member at the first end of the tubular member and at the second end of the tubular member. In some embodiments, the reinforcement structure is uncoupled to the tubular member between the first end of the tubular member and the second end of the tubular member.
In some embodiments, the tensioning mechanism can include at least one filament extending at least partially around the tubular member. In some embodiments, the tensioning mechanism can include an actuator coupled to the at least one filament. In some embodiments, moving the tensioning mechanism from the first configuration to the second configuration can include moving the actuator and the thereto coupled at least one filament from a first position to a second position. In some embodiments, the filament constricts and seals the central lumen of the tubular member when the filament is in the first position.
In some embodiments, the actuator can be a manual actuator. In some embodiments, the actuator can include a pair of opposing and depressable buttons, which buttons can be biased towards an undepressed position. In some embodiments, the central lumen is sealed when the buttons are in the undepressed position. In some embodiments, the filament can be a monofilament. In some embodiments, the filament can be at least one of: a polymer filament; or a metallic filament. In some embodiments, the catheter can include a thrombus extraction device.
One aspect of the present disclosure relates to a method of sealing a delivery device accessing a blood vessel of a patient. The method includes inserting the delivery device including a catheter and a hemostatic valve into the blood vessel of the patient. In some embodiments, the catheter can have a first end, a second end, and a catheter lumen extending therethrough. In some embodiments, the hemostatic valve can be coupled to the first end and can have a tubular member defining a central lumen fluidly coupled with the catheter lumen and a tensioning mechanism coupled with the tubular member. In some embodiments, the tensioning mechanism collapses and seals the central lumen in a first configuration and thereby seals access to the blood vessel. The method can include moving the tensioning mechanism of the hemostatic valve to a second configuration. In some embodiments, the central lumen is open and access to the blood vessel is unsealed when the tensioning mechanism is in the second configuration. The method can include advancing a shaft of a tool through the delivery device until a first end of the tool reaches a desired position within the blood vessel of the patient and a portion of the shaft is positioned within the central lumen of the tubular member. The method can include returning the tensioning mechanism of the hemostatic valve to the first configuration such that the tubular member collapses on the shaft of the tool and seals around the shaft of the tool.
In some embodiments, the method includes retracting the shaft of the tool from the delivery device. In some embodiments, the tensioning mechanism is maintained in the first configuration during and after the retracting of the shaft of the tool from the delivery device. In some embodiments, the tensioning mechanism is moved to the second configuration during the retracting of the shaft of the tool from the delivery device, and the tensioning mechanism is returned to the first configuration after the shaft of the tool is retracted from the delivery device.
In some embodiments, the tensioning mechanism can include at least one filament extending at least partially around the tubular member. In some embodiments, the at least one filament collapses the tubular member when the tensioning mechanism is in the first configuration. In some embodiments, the at least one filament circumferentially constricts the tubular member to collapse the tubular member when the tensioning mechanism is in the first configuration. In some embodiments, the hemostatic valve can include a reinforcement structure located between the at least one filament and the tubular member.
In some embodiments, the at least one filament forms a loop around the elongate member, and moving the tensioning mechanism from the second configuration to the first configuration reduces a size of the loop to thereby constrict the tubular member within the loop. In some embodiments, the filament forms at least one bight around a portion of the elongate member. In some embodiments, the filament can include a first filament and a second filament. In some embodiments, the at least one bight can include a first bight oriented in a first direction and formed by the first filament and a second bight oriented in a second direction and formed by the second filament. In some embodiments, the first and second bights overlap to encircle a portion of the tubular member within a constricting area.
In some embodiments, moving the tensioning mechanism from the second configuration to the first configuration can include moving the first bight in the first direction and the second bight in the direction to reduce the size of the constricting area and collapse and seal the central lumen of the tubular member. In some embodiments, the tensioning mechanism can include an actuator. In some embodiments, moving the tensioning mechanism to the second configuration can include manipulating the actuator. In some embodiments, the method includes applying a vacuum to the delivery device and/or delivery system to aspirate material through the catheter. In some embodiments, the central lumen remains sealed during the aspiration. In some embodiments, the tool can include a thrombus extraction device.
The present disclosure relates to a valve that can be used a hemostasis valve. This valve, also referred to herein as a garrote valve can seal with or without a tool extending through the valve. The garrote valve provides convenient, single-handed operation for a wide range of medical devices including catheters, wires, embolectomy systems, or the like. This single-handed operation of the garrote valve allows the user to easily and quickly swap different tools being used through the valve without compromising hemostasis and therefore simplifying the procedure. Combined with single-handed operation, the garrote valve provides robust sealing either with or without a tool extending through the valve. This robust sealing minimizes leakage in applications with a pressure differential on different sides of the valve. This pressure differential can arise, for example, during the application of vacuum aspiration in a procedure. Even under such conditions, as well as under other conditions, the garrote valve maintains seal integrity and prevents leakage in one or both directions.
The garrote valve includes a tubular member. The tubular member is a flexible member that defines a central lumen, which can, in some embodiments, define a single lumen, and in some embodiments, defines a plurality of lumens. In some embodiments, each of the plurality of lumens can comprise the same size and shape, and in some embodiments, some or all of the plurality of lumens can comprise different sizes and shapes. In some embodiments, for example, the plurality of lumens can comprise a lumen sized and/or shaped to receive a guide wire and a lumen sized and/or shaped to receive a tool. The tubular member extends at least partially through a constricting mechanism. The constricting mechanism can be moved from a first configuration to a second configuration, and the constricting mechanism can collapse and/or seal the central lumen of the tubular member when the constricting mechanism is in the first configuration. The constricting mechanism creates the above-discussed robust seal of the tubular member and thus of the valve.
With reference now to
The valve 104 can include an outer shell 114. The outer shell 114 can comprise a variety of shapes and sizes and can be made from a variety of materials. In some embodiments, the outer shell 114 can be made from one or several polymers or composites. The outer shell 114 can include features that allow interaction with and/or control of the valve 104 to move the valve 104 between the first configuration and the second configuration.
The outer shell 114 can include a proximal cap 116 located at a proximal end 118 of the outer shell 114 and a distal cap 120 located at a distal end 122 of the shell 114. The proximal cap 116 can include and/or house a proximal aperture 124, also referred to herein as a proximal channel 124, a first channel 124, or a first aperture 124, that extends through the proximal cap 116, and the distal cap 120 can include and/or house a distal aperture 126, also referred to herein as a distal channel 126, a second channel 126, or second aperture 126, that extends through the distal cap 120. As seen in
The proximal cap 116 and the distal cap 120 are connected via a housing 128. The housing 128 can be a one-piece housing 128 or a multi-piece housing 128. In the embodiment depicted in
The housing 128 can define an interior channel 130 through which an elongate member 132, also referred to herein as a tubular member 132, a septum 132, or a tubular septum 132, can extend and connect the proximal cap 116 and the distal cap 120. The elongate member 132 can comprise a variety of shapes and sizes and can be made from a variety of materials. In some embodiments, the elongate member 132 can comprise a compliant tubular structure that can be, for example, a thin-walled compliant tubular structure. The thin-walled structure of the elongate member 132 can facilitate the collapse, and specifically the uniform collapse of the elongate member 132 and the sealing of the elongate member 132. In some embodiments, the elongate member 132 is an elastic, resilient material that may comprise a polymer including either a natural or synthetic polymer. In some embodiments, the elongate member can comprise an elastic, resilient material that may comprise silicone, urethane, ethylene-vinyl acetate, natural or synthetic rubber or other elastomers known in the art. In some embodiments, the elongate member 132 can comprise a silicone tube.
The elongate member 132 can comprise a proximal end 134, also referred to herein as a first end 134, that can couple to the proximal cap 116, and a distal end 136, also referred to herein as a second end 136, that can couple to the distal cap 120. The elongate member 132 can define a central lumen 138 that can extend from the first end 134 to the second end 136 of the elongate member 132. The elongate member 132 can be coupled to the proximal cap 116 such that the central lumen 138 is fluidly coupled with the proximal aperture 124 of the proximal cap 116, and the elongate member 132 can be coupled to the distal cap 120 such that the central lumen 138, as seen in
The central lumen 138 of the elongate member 132 can be defined by a wall of the elongate member 132 that can have a thickness that is uniform along the length of the elongate member 132 between the first end 134 and the second end 136, or that is non-uniform along the length of the elongate member 132 between the first end 134 and the second end 136. In some embodiments, the wall can have a thickness that is approximately between 0.005 inches and 0.05 inches, and/or approximately between 0.010 inches and 0.030 inches. As used anywhere herein, “approximately” refers to a range of +/−10% of the value and/or range of values for which “approximately” is used.
In some embodiments, the elongate member 132 can be cylindrically shaped, and specifically can be circular-cylindrically shaped. In some embodiments, the elongate member 132 can be dog-bone shaped to facilitate, for example, connection to each of the proximal cap 116 and the distal cap 120. In some embodiments, the elongate member 132 can include one or several outward-extending protuberances that engage with all or portions of a constricting mechanism 141, also referred to herein as a tensioning mechanism 141, of the valve 104 to secure a position of all or portions of the constricting mechanism 141 with respect to the elongate member 132. In some embodiments, the constricting mechanism 141 can be self-adjusting to seal around tools of different sizes extending through the valve 104.
The constricting mechanism 141 can, in some embodiments, collapse and seal the elongate member 132 via compression and/or constriction, and specifically via constriction with at least one filament 150. The constricting mechanism 141 can comprise: an actuator 142 which can be a manual actuator such as one or several buttons 144; and the at least one filament 150 that can extend at least partially around the elongate member 132. In some embodiments, the use of the constricting mechanism 141 can facilitate sealing of the valve around tools or instruments of a wide range of sizes and/or diameters, and particularly around tools or instruments that fit through the elongate member 132.
The housing 128 can further include one or several retention features 140. The one or several retention features 140 of the housing can engage with and retain all or portions of the constricting mechanism 141 of the valve 104. In some embodiments, the one or several retention features 140 of the housing 128 can retain the actuator 142 and/or can couple the actuator 142 to the housing 128. The actuator 142 can comprise any desired type of actuator including, for example, a manual actuator and/or an automated actuator such as, for example, an electromechanical actuator including a solenoid-based actuator. In some embodiments, the actuator can comprise one or several buttons 144, and specifically, as depicted in
The actuator 142 can be biased towards a configuration such as, for example, biased towards the first configuration or biased towards the second configuration. As depicted in
In some embodiments, one or both of the first spring 148-A and the second spring 148-B can generate sufficient force so as to allow actuation of the actuator 142 with a single hand and so as to collapse and seal the elongate member 132 when the constricting mechanism 141 is in the first configuration. In some embodiments, one or both of the first spring 148-A and the second spring 148-B can generate a force of: at least 0.1 pounds, at least 0.2 pounds, at least 0.3 pounds, at least 0.4 pounds, at least 0.5 pounds, at least 0.6 pounds, at least 0.7 pounds, at least 0.8 pounds, at least 0.9 pounds, at least 1 pound, at least 1.5 pounds, at least 2 pounds, at least 3 pounds, at least 5 pounds, and/or at least 10 pounds and in some embodiments one or both of the first spring 148-A and the second spring 148-B can generate a force approximately between: 0.1 and 10 pounds, 0.1 and 5 pounds, 0.1 and 1.5 pounds, 0.2 and 1 pounds, and/or 0.4 and 0.8 pounds.
The constricting mechanism 141 can include at least one filament 150 that extends at least partially around the elongate member 132. In some embodiments, the at least one filament 150 can circumferentially constrict the elongate member 132 to collapse and seal the elongate member 132 when the constricting mechanism 141 is in the first configuration. The filament can be made from a variety of materials including, for example, a polymer, a synthetic, and/or a metal. In some embodiments, the filament 150 can be nylon, stainless steel, nitinol, silicone, or the like. In some embodiments, the filament can comprise a single strand such as, for example, a monofilament, and in some embodiments, the filament can comprise a plurality of strands that can be, for example, twisted, woven, grouped, and/or fused to form the filament. In some embodiments, the filament 150 can comprise one or several threads, lines, cords, rope, ribbon, flat wire, sheet, or tape.
The filament 150 can be coupled to the actuator 142 such that the filament 150 selectively constricts, collapses, and/or seals the elongate member 132, and specifically the central lumen 138 of the elongate member 132 based on the movement and/or position of the actuator 142. In some embodiments, the filament 150 can be connected to one or both of the buttons 144-A, 144-B such that the filament 150 collapses, constricts, and/or seals the elongate member 132 and specifically the central lumen 138 of the elongate member 132 when the buttons 144-A, 144-B are in the first position, and the filament 150 can be connected to one or both of the buttons 144-A, 144-B such that the elongate member 132 and specifically the central lumen 138 of the elongate member 132 is open and uncollapsed when the buttons 144-A, 144-B are in the second position. In some embodiments in which the actuator 142 comprises a single button 144, as depicted in
In some embodiments, the at least one filament 150 can extend along an axis 152 that can be perpendicular to a central axis 154 of the elongate member 132 and/or of the apertures 124, 126. In some embodiments, the axis 152 of the at least one filament 150 can intersect and be perpendicular to the central axis 154 of the elongate member 132 and/or of the apertures 124, 126. In some embodiments, the actuator 142, and specifically the buttons 144-A, 144-B can move along this axis 152 when moved from the first position to the second position.
In
As further seen in
The distal cap 120 has a proximal end 308 and a distal end 310. The distal cap can include a mating feature 312 located on the proximal end 308 of the distal cap 120, which mating feature 312 can mate with the distal end 136 of the elongate member 132. In some embodiments, the distal end 136 of the elongate member 132 can fit over the mating feature 312 of the distal cap 123. The distal end 136 of the elongate member 132 can be compressed between the mating feature 312 of the elongate member 132 and a portion of the interior channel 130 of the housing 128 into which the mating feature 312 is inserted to thereby secure the distal end 136 of the elongate member 132 on the mating feature 312. In some embodiments, the distal end 136 of the elongate member 132 can be further secured on the mating feature 312 by a distal O-ring 314 that can be compressed between the housing 128 and the mating feature 312 of the proximal cap 116 to sealingly couple the elongate member 132 to the distal cap 120.
The distal cap 120 can, in some embodiments, further include a side port barb 314 that can extend laterally away from the distal cap 120 and specifically away from the distal aperture 126 of the distal cap 120. The side port barb 314 can define a side port channel 316 that can extend through the side port barb 314 and fluidly connect to the distal aperture 126. In some embodiments, the side port barb 314 can include a securement feature 318 such as a barb that can secure coupling of a hose or tube to the side port barb 314.
In some embodiments, the side barb 314 can be used to apply a vacuum to the portions of the delivery device 100, and particularly to portions of the delivery device 100 that are distal of the axis 152 along which the elongate member 132 seals. This vacuum can be applied to aspirate a material through the delivery device 100, and specifically through the catheter 102 of the delivery device. This aspirated material can be a biological material including, for example, bodily fluids, multi-phase bodily materials that can include, for example, a fluidic portion and at least one solid portion, or the like.
In some embodiments, due to the narrowing shape of the elongate member 132 when the constricting mechanism 141 is in the first configuration, a vacuum applied to the portions of the delivery device 100 distal to the axis 152 draws the elongate member 132 towards the first configuration and can, in some embodiments, increase the strength, robustness, and/or strength of the seal of the valve 104. This attribute of the valve 104 can provide benefits over other valve designs in which a vacuum can compromise the seal of the valve, and thus the ability to draw a vacuum and aspirate can be limited.
In some embodiments, the valve 104 can further include a reinforcement structure 320 that can extend along all or portions of the elongate member 132. The reinforcement structure 320 can facilitate the uniform collapse of the elongate member 132, can prevent the at least one filament 150 from cutting through and/or tearing the elongate member 132, and can assist in guiding one or several tools through the elongate member 132. The reinforcement structure 320 can be tubular, can extend along and around the elongate member 132, and can be positioned so as to be between the elongate member 132 and the at least one filament 150.
The reinforcement structure 320 can include a proximal end 322 and a distal end 324. In some embodiments, the reinforcement structure 320 extends along and around the elongate member 132, and is positioned such that the proximal end 322 of the reinforcement structure 320 is proximate to the first end 134 of the elongate member 132 and the distal end 324 of the reinforcement structure 320 is proximate to the second end 136 of the elongate member 132.
The reinforcement structure 320 can be coupled to the elongate member 132. In some embodiments, the reinforcement structure 320 is coupled to the elongate member 132 along the length of the reinforcement structure 320, and in some embodiments, the reinforcement structure 320 is coupled to the elongate member 132 and distinct positions along the length of the elongate member 132 and/or the reinforcement structure 320. In one embodiment, for example, the reinforcement structure 320 can be coupled to the elongate member 132 at one or both of the proximal end 322 of the reinforcement structure 320 and the distal end 324 of the reinforcement structure 320 and/or at one or both of the first end 134 and the second end 136 of the elongate member 132. In some embodiments, the reinforcement structure 320 can be coupled to the elongate member 132 via one or several other components of the valve 104. In some embodiments, the reinforcement structure 320 can be coupled to the elongate member 132 via the compression of the reinforcement structure 320 and the elongate member 132 between the housing 128 and one or both of the proximal 116 and the distal 120.
In some embodiments, the reinforcement structure 320 can be adhered to the elongate member 132 via, for example, an adhesive such as silicone adhesive. In some embodiments, the adhesive can be circumferentially applied to the reinforcement structure 320 and/or the elongate member 132 in an adhesive ring that can, for example, a have a length approximately between: 0.010 inches and 0.5 inches; 0.02 and 0.4 inches; 0.050 inches and 0.0250 inches, or any other or intermediate range.
In one embodiment, each of the proximal end 322 and the distal end 324 of the reinforcement structure 320 can be adhered via an adhesive to the elongate member 132. In such an embodiment, the reinforcement structure 320 may be uncoupled to the elongate member 132 at positions other than the coupling at one or both of the proximal end 322 and the distal end 324 of the reinforcement structure 320, and thus the reinforcement structure 320 is uncoupled to the elongate member 132 at a position between the first end 134 and the second end 136 of the elongate member 134 and/or between the proximal end 322 and the distal end 324 of the reinforcement structure 320.
The lack of coupling of the reinforcement structure 320 to the elongate member 132 can facilitate and improve the collapse of the elongate member 132 around a tool 400, also referred to herein as instrument 400 or device 400, inserted through the valve 104 as shown in
The reinforcement structure 320 can comprise a variety of designs, shapes, sizes, and materials. In some embodiments, the reinforcement structure 320 can be sized and shaped so as to receive elongate member 132 and to be positioned between the elongate member 132 and the at least one filament 150. In some embodiments, the reinforcement structure 320 can be made from a material sufficiently strong to prevent the cutting of the at least one filament 150 through the elongate member 132.
In some embodiments, the reinforcement structure can comprise a coil or a mesh sheath. The mesh sheath can, in some embodiments, comprise a braided mesh. The braided mesh can be made from any desired number of wires in any desired configuration. In some embodiments, the braided mesh can comprise a 4 wire braided mesh, an 8 wire braided mesh, a 12 wire braided mesh, a 16 wire braided mesh, a 20 wire braided mesh, a 24 wire braided mesh, a 32 wire braided mesh, a 48 wire braided mesh, a 64 wire braided mesh, a 72 wire braided mesh, an 80 wire braided mesh, a 96 wire braided mesh, or any other or intermediate braided mesh. In some embodiments, the braided mesh can comprise: a 1×1 configuration. In some embodiments, the wire in the braided mesh can be any desired material including, for example, a metal wire such as a nitinol wire or a stainless steel wire, a polymer wire, or a natural wire. In one embodiment, the braided mesh can comprise a 48 wire mesh in a 1×1 configuration made with a nitinol wire having a diameter of 0.003 inches.
With reference now to
In some embodiments, the filament 150 can comprise multiple filaments, and specifically, as shown in
The filament 150 can be arranged in a variety of configurations. In some embodiments, the filament 150 can be configured to form a single loop 604 that can extend around the elongate member 132 and/or through which the elongate member 132 can be received as shown in
In some embodiments, the filament 150 can be configured to form a bight 800, which bight 800 can be a single bight or multiple bights. As used herein, a “bight” refers to a U-shaped section between the two ends of the filament 150. As depicted in
In some embodiments, the bight 800, and specifically one or both of the first bight 800-A and the second bight 800-B can be formed around a portion of the elongate member 132 and/or can extend around a portion of the elongate member 132. Each bight 800 can define a partially enclosed receiving area 808 wherein the elongate member 132 can be received. Thus, the first bight 800-A can define a first receiving area 808-A and the second bight 800-B can define a second receiving area 808-B.
As seen in
The filament(s) 150 forming the bights 800 can each apply an arcuate line or narrow longitudinal zone of pressure to the elongate member 132. If the filament(s) are circular in cross-section, the zone of pressure can be very small, and can, in some embodiments, be less than the diameter or thickness of the filament. In some embodiments, the filaments have a diameter or width less than about 2.5 mm, less than about 2 mm, less than about 1.5 mm, less than about 1.25 mm, less than about 1 mm, less than about 0.75 mm, less than about 0.5 mm, and/or less than about 0.25 mm. In some embodiments, the filaments can have a diameter or width of between about 0.01 mm and 2.5 mm, between about 0.05 mm and 2 mm, between about 0.1 mm and 1 mm, and/or between about 0.125 mm and 0.70 mm. In some embodiments, the arcuate line or zone of pressure may form two opposing arcs and in other embodiments, the arcuate line of pressure may be a singular substantially circular line or zone that encircles the elongate member at least once. The longitudinal length of the of the line or zone of pressure may be very short compared to other valves known in the art. In some embodiments, the longitudinal length of the zone of pressure applied to the elongate member 132 by the filament(s) 150 may be less than about 2.0 mm and in some embodiments less than about 0.5 mm. In some embodiments, the filament(s) 150 can have any desired cross-sectional shape including, for example, a circular cross-section, a rectangular cross-section, an oval cross-section, a square cross-section, a polygonal cross-section, a triangular cross-section, or any other desired shape of cross-section.
With reference now to
After the delivery device 100 is inserted into the body of the patient, the process 1000 proceeds to block 1004, wherein the constricting mechanism 141 is moved from the first configuration to the second configuration. As described above, the central lumen 138 of the elongate member 132 is unsealed when the constricting mechanism 141 is in the second configuration. In some embodiments, the moving of the constricting mechanism 141 from the first configuration to the second configuration can include the manipulation of the actuator 142 and/or the control of the actuator 142, and specifically the depressing of the one or several buttons 144 to move the filament 150 from the first position to the second position to allow the expansion and opening of the central lumen 138 of the elongate member 132.
After the constricting mechanism 141 is moved from the first configuration to the second configuration, the process 1000 proceeds to block 1006, wherein the tool 400, and specifically the shaft 402 of the tool 400 is advanced through the delivery device 100 and specifically through the valve 104 until a first end of the tool reaches a desired position within the body of the patient. In some embodiments, a portion of the shaft 402 can be positioned within the central lumen 138 of the elongate member 132 after the advancing of the tool 400 through the delivery device 100. In some embodiments, after the tool 400 is advanced through the delivery device 100, the desired procedure can be performed with the tool.
After the tool 400 is advanced through the delivery device 100, or while the tool 400 is being advanced through the delivery device 100, the process 1000 proceeds to block 1008, wherein the constricting mechanism 141 is returned to the first configuration. In some embodiments, the returning of the constricting mechanism 141 to the first configuration can include the release of the one or several buttons 144 and/or the control of the actuator 142 to reconfigure the constricting mechanism 141 to the first configuration. In some embodiments, the return of the constricting mechanism 141 to the first configuration can result in the collapse and/or sealing of the elongate member 132 and specifically the central lumen 138 of the elongate member 132 around the tool 400 and specifically around the shaft 402 of the tool 400. The return of the constricting mechanism 141 to the first configuration, or the movement of the constricting mechanism 141 to the first configuration can include the decreasing of the size and/or diameter of one or several loops formed by the filament 150 and/or the movement of one or several bights 800 such as, for example, the movement of the first bight 800-A in the first direction indicated by arrow 810 and the movement of the second bight 800-B in the second direction indicated by arrow 812 to reduce the size of the constricting area 814. In some embodiments, after the constricting mechanism is returned to the first configuration, the desired procedure can be performed with the tool.
After the constricting mechanism is returned to the first configuration, the process 1000 proceeds to block 1010, wherein the tool 400, and specifically the shaft 402 of the tool 400 is retracted from the delivery device 100, and more specifically from the valve 104. In some embodiments, the valve 104 can remain sealed during the retracing of the tool 400 and/or the shaft 402 of the tool. In some embodiments, the valve 104 remains sealed during the retracting of the tool 400 and/or the retracting of the shaft 402 of the tool 400 as the constricting mechanism 141 can remain in the first configuration during the retracing of the tool 400 and/or the shaft 402 of the tool 400.
In some embodiments, the constricting mechanism 141 can be moved to the second configuration to allow the retraction of the tool 400 and/or the shaft 402 of the tool 400 from the valve 104, and the constricting mechanism 141 can be returned to the first configuration when the tool 400 and/or the shaft 402 of the tool 400 is removed from the valve 104. In some embodiments, the retraction of the tool 400 and/or shaft 402 of the tool 400 from the valve 104 can be performed with the constricting mechanism 141 left in the first configuration. In some embodiments, the constricting mechanism 141 can be moved to the second configuration, and then returned to the first configuration via the manipulation and/or control of the actuator 142, which manipulation and/or control of the actuator 142 can include the depressing of the one or several buttons 144 to move the constricting mechanism 141 to the second configuration, and the release of the one or several buttons 144 to return the constricting mechanism 141 to the first configuration. In some embodiments, if the procedure is complete, the delivery device 100 can then be removed from the body of the patient, and any incision created for the procedure can be closed.
With reference now to
With reference now to
In some embodiments, the proximal exterior member 1200 can be coupled, and in some embodiments, rotatingly coupled to the proximal channel member 1202 in a manner to allow the rotation of the proximal exterior member 1200 without rotating the proximal channel member 1202. Similarly, in some embodiments, the distal exterior member 1204 can be rotatingly coupled to the distal channel member 1206 in a manner to allow the rotation of the distal exterior member 1204 without the rotating of the distal channel member 1206. In some such embodiments, the channel members 1202, 1206 can be non-rotatable with respect to the housing 128 and/or the tubular member 132, and one or both of the exterior members 1200, 1204 can be rotatable with respect to the housing 128 and/or the tubular member 132. In such an embodiment, the maintaining of the rotational position of the channel members 1202, 1206 with respect to the housing 128 and/or the tubular member 132 can prevent the twisting of the tubular member 132 which can result in the sealing of the tubular member 132 regardless of the configuration of the constructing mechanism 141.
The exterior members 1200, 1204 can comprise a variety of shapes and sizes and can include a variety of features. In some embodiments, one or both of the exterior members 1200, 1204 can be coupled to, for example, a shaft similar to the shaft 106 shown in
Several aspects of the present technology are set forth in the following examples.
1. A hemostatic valve for sealing a medical device, the hemostatic valve comprising:
2. The hemostatic valve of example 1, wherein the elongate member comprises a compliant polymer tube.
3. The hemostatic valve of example 1 or 2, wherein the tensioning mechanism comprises at least one filament extending at least partially around the elongate member.
4. The hemostatic valve of example 3, wherein the reinforcement structure is positioned between the at least one filament and the elongate member.
5. The hemostatic valve of example 4, wherein the reinforcement structure comprises a braided mesh.
6. The hemostatic valve of example 4 or 5, wherein the reinforcement structure is coupled to the elongate member at a position proximate to the first end of the elongate member and at a position proximate to the second end of the elongate member.
7. The hemostatic valve of example 6, wherein the reinforcement structure is not coupled to the elongate member at a position between the first end of the elongate member and the second end of the elongate member.
8. The hemostatic valve of any one of examples 3-7, wherein the tensioning mechanism comprises an actuator coupled to the at least one filament, wherein the actuator is moveable to control movement of the at least one filament from a first position wherein the central lumen is constricted and sealed to a second position wherein the central lumen is open, wherein the at least one filament is in the first position when the tensioning mechanism is in the first configuration.
9. The hemostatic valve of example 8, wherein the actuator is biased towards the first position.
10. The hemostatic valve of example 8 or 9, wherein the actuator is biased toward the second position.
11. The hemostatic valve of any one of examples 8-10, wherein the actuator comprises a manual actuator.
12. The hemostatic valve of any one of examples 8-11, wherein the at least one filament forms a loop around the elongate member.
13. The hemostatic valve of any one of examples 8-12, wherein the at least one filament forms a bight around a portion of the elongate member.
14. The hemostatic valve of any one of examples 8-13, wherein the at least one filament comprises a first filament and a second filament, wherein each of the first filament and the second filament are coupled to the actuator, and wherein the first filament and the second filament are moveable from the first position to the second position.
15. The hemostatic valve of example 14, wherein each of the first filament and the second filament form a loop around the elongate member.
16. The hemostatic valve of example 14 or 15, wherein the first filament forms a first bight around a first portion of the elongate member, and wherein the second filament forms a second bight around a second portion of the elongate member.
17. The hemostatic valve of example 16, wherein the first bight extends through the second bight.
18. The hemostatic valve of any one of examples 1-17, further comprising a shell defining a first aperture and a second aperture, wherein the elongate member extends from the first aperture to the second aperture and fluidly couples the first aperture and the second aperture.
19. The hemostatic valve of any one of examples 1-18, wherein the tensioning mechanism is self-adjustable to seal around tools of different sizes extending through the hemostatic valve.
20. The hemostatic valve of any one of examples 1-19, wherein the central lumen comprises a single lumen.
21. The hemostatic valve of any one of examples 1-20, wherein the central lumen comprises a plurality of lumens.
22. A delivery system for intravascular access of a blood vessel within a patient's body, the delivery system comprising:
a catheter having a first end, a second end, and a catheter lumen extending therebetween;
a hemostatic valve coupled to the first end of the catheter, the hemostatic valve comprising:
23. The delivery system of example 22, wherein the hemostatic valve further comprises a reinforcement structure extending along at least a portion of the tubular member.
24. The delivery system of example 22 or 23, wherein the reinforcement structure is located between the tensioning mechanism and the tubular member.
25. The delivery system of example 24, wherein the reinforcement structure comprises a braided mesh.
26. The delivery system of example 24 or 25, wherein the reinforcement structure is coupled to the tubular member at a position proximate to the first end of the tubular member and at a position proximate to the second end of the tubular member.
27. The delivery system of example 26, wherein the reinforcement structure is adhered to the tubular member at the first end of the tubular member and at the second end of the tubular member.
28. The delivery system of example 27, wherein the reinforcement structure is uncoupled to the tubular member between the first end of the tubular member and the second end of the tubular member.
29. The delivery system of any one of examples 22-28, wherein the tensioning mechanism comprises at least one filament extending at least partially around the tubular member.
30. The delivery system of example 29, wherein the tensioning mechanism comprises an actuator coupled to the at least one filament, wherein moving the tensioning mechanism from the first configuration to the second configuration comprises moving the actuator and the thereto coupled at least one filament from a first position to a second position, wherein the filament constricts and seals the central lumen of the tubular member when the filament is in the first position.
31. The delivery system of example 30, wherein the actuator comprises a manual actuator.
32. The delivery system of example 31, wherein the actuator comprises a pair of opposing and depressable buttons, wherein the buttons are biased towards an undepressed position.
33. The delivery system of example 31 or 32, wherein the central lumen is sealed when the buttons are in the undepressed position.
34. The delivery system of any one of examples 30-33, wherein the filament comprises a monofilament.
35. The delivery system of any one of examples 30-34, wherein the filament comprises at least one of: a polymer filament; or a metallic filament.
36. The delivery system of any one of examples 22-35, wherein the catheter comprises a thrombus extraction device.
37. A method of sealing a delivery device accessing a blood vessel of a patient, the method comprising:
38. The method of example 37, further comprising retracting the shaft of the tool from the delivery device.
39. The method of example 38, wherein the tensioning mechanism is maintained in the first configuration during and after the retracting of the shaft of the tool from the delivery device.
40. The method of example 38 or 39, wherein the tensioning mechanism is moved to the second configuration during the retracting of the shaft of the tool from the delivery device, and wherein the tensioning mechanism is returned to the first configuration after the shaft of the tool is retracted from the delivery device.
41. The method of any one of examples 37-40, wherein the tensioning mechanism comprises at least one filament extending at least partially around the tubular member, wherein the at least one filament collapses the tubular member when the tensioning mechanism is in the first configuration.
42. The method of example 41, wherein the at least one filament circumferentially constricts the tubular member to collapse the tubular member when the tensioning mechanism is in the first configuration.
43. The method of example 41 or 42, wherein the hemostatic valve comprises a reinforcement structure located between the at least one filament and the tubular member.
44. The method of any one of examples 41-43, wherein the at least one filament forms a loop around the elongate member, and wherein moving the tensioning mechanism from the second configuration to the first configuration reduces a size of the loop to thereby constrict the tubular member within the loop.
45. The method of any one of examples 41-44, wherein the filament forms at least one bight around a portion of the elongate member.
46. The method of example 45, wherein the filament comprises a first filament and a second filament, and wherein the at least one bight comprises a first bight oriented in a first direction and formed by the first filament and a second bight oriented in a second direction and formed by the second filament, wherein the first and second bights overlap to encircle a portion of the tubular member within an constricting area.
47. The method of example 46, wherein moving the tensioning mechanism from the second configuration to the first configuration comprises moving the first bight in the first direction and the second bight in the direction to reduce the size of the constricting area and collapse and seal the central lumen of the tubular member.
48. The method of any one of examples 37-47, wherein the tensioning mechanism comprises an actuator, and wherein moving the tensioning mechanism to the second configuration comprises manipulating the actuator.
49. The method of any one of examples 37-48, further comprising applying a vacuum to the delivery device to aspirate material through the catheter, wherein the central lumen remains sealed during the aspiration.
50. The method of any one of examples 37-49, wherein the tool comprises a thrombus extraction device.
51. A hemostatic valve for sealing a medical device, the hemostatic valve comprising:
Other variations are within the spirit of the present invention. Thus, while the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims.
In the previous description, various embodiments of the present invention are described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the embodiments. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details. Furthermore, well-known features may be omitted or simplified in order not to obscure the embodiment being described.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
This application is a continuation of U.S. patent application Ser. No. 17/705,189, filed on Mar. 25, 2022, entitled “HEMOSTASIS VALVES AND METHODS OF USE,” which is a continuation of U.S. patent application Ser. No. 17/226,318, filed on Apr. 9, 2021, entitled “HEMOSTASIS VALVES AND METHODS OF USE,” which is a continuation of U.S. patent application Ser. No. 16/117,519, filed on Aug. 30, 2018, now issued as U.S. Pat. No. 11,000,682, and entitled “HEMOSTASIS VALVES AND METHODS OF USE,” which claims the benefit of U.S. Provisional Patent Application No. 62/554,931, filed on Sep. 6, 2017, and entitled “HEMOSTASIS VALVES AND METHODS OF USE,” each of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2846179 | Monckton | Aug 1958 | A |
2955592 | Maclean | Oct 1960 | A |
3088363 | Sparks | May 1963 | A |
3197173 | Taubenheim | Jul 1965 | A |
3435826 | Fogarty | Apr 1969 | A |
3515137 | Santomieri | Jun 1970 | A |
3675657 | Gauthier | Jul 1972 | A |
3892161 | Sokol | Jul 1975 | A |
3923065 | Nozick et al. | Dec 1975 | A |
4030503 | Clark, III | Jun 1977 | A |
4034642 | Iannucci et al. | Jul 1977 | A |
4222380 | Terayama | Sep 1980 | A |
4243040 | Beecher | Jan 1981 | A |
4287808 | Leonard et al. | Sep 1981 | A |
4324262 | Hall | Apr 1982 | A |
4393872 | Reznik et al. | Jul 1983 | A |
4469100 | Hardwick | Sep 1984 | A |
4523738 | Raftis et al. | Jun 1985 | A |
4551862 | Haber | Nov 1985 | A |
4604094 | Shook | Aug 1986 | A |
4611594 | Grayhack et al. | Sep 1986 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4646736 | Auth et al. | Mar 1987 | A |
4650466 | Luther | Mar 1987 | A |
4776337 | Palmaz | Oct 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4863440 | Chin et al. | Sep 1989 | A |
4870953 | DonMichael et al. | Oct 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4890611 | Monfort et al. | Jan 1990 | A |
4898575 | Fischell et al. | Feb 1990 | A |
4946440 | Hall | Aug 1990 | A |
4960259 | Sunnanvader et al. | Oct 1990 | A |
4978341 | Niederhauser | Dec 1990 | A |
5059178 | Ya | Oct 1991 | A |
5100423 | Fearnot | Mar 1992 | A |
5127626 | Hilal et al. | Jul 1992 | A |
5129910 | Phan et al. | Jul 1992 | A |
5135484 | Wright | Aug 1992 | A |
5154724 | Andrews | Oct 1992 | A |
5158533 | Strauss et al. | Oct 1992 | A |
5158564 | Schnepp-Pesch et al. | Oct 1992 | A |
5192274 | Bierman | Mar 1993 | A |
5192286 | Phan et al. | Mar 1993 | A |
5192290 | Hilal | Mar 1993 | A |
5197485 | Grooters | Mar 1993 | A |
5329923 | Lundquist | Jul 1994 | A |
5360417 | Gravener et al. | Nov 1994 | A |
5364345 | Lowery et al. | Nov 1994 | A |
5376101 | Green et al. | Dec 1994 | A |
5383887 | Nadal | Jan 1995 | A |
5389100 | Bacich et al. | Feb 1995 | A |
5419774 | Willard et al. | May 1995 | A |
5421824 | Clement et al. | Jun 1995 | A |
5443443 | Shiber | Aug 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5476450 | Ruggio | Dec 1995 | A |
5490859 | Mische et al. | Feb 1996 | A |
5496365 | Sgro | Mar 1996 | A |
5527326 | Hermann et al. | Jun 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5591137 | Stevens | Jan 1997 | A |
5653684 | Laptewicz et al. | Aug 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5746758 | Nordgren et al. | May 1998 | A |
5749858 | Cramer | May 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5782817 | Franzel et al. | Jul 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5827229 | Auth et al. | Oct 1998 | A |
5846251 | Hart | Dec 1998 | A |
5860938 | Lafontaine et al. | Jan 1999 | A |
5873866 | Kondo et al. | Feb 1999 | A |
5873882 | Straub et al. | Feb 1999 | A |
5876414 | Straub | Mar 1999 | A |
5895406 | Gray et al. | Apr 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5911710 | Barry et al. | Jun 1999 | A |
5911733 | Parodi | Jun 1999 | A |
5911754 | Kanesaka et al. | Jun 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5947985 | Imran | Sep 1999 | A |
5954737 | Lee | Sep 1999 | A |
5971938 | Hart et al. | Oct 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5974938 | Lloyd | Nov 1999 | A |
5989233 | Yoon | Nov 1999 | A |
5993483 | Gianotti | Nov 1999 | A |
6030397 | Moneti et al. | Feb 2000 | A |
6059814 | Ladd | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6068645 | Tu | May 2000 | A |
6126635 | Simpson et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6146396 | Konya et al. | Nov 2000 | A |
6146403 | St. Germain | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6156055 | Ravenscroft | Dec 2000 | A |
6159230 | Samuels | Dec 2000 | A |
6165196 | Stack et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6228060 | Howell | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6245078 | Ouchi | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6254571 | Hart | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6322572 | Lee | Nov 2001 | B1 |
6350271 | Kurz et al. | Feb 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6368339 | Amplatz | Apr 2002 | B1 |
6383205 | Samson et al. | May 2002 | B1 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6413235 | Parodi | Jul 2002 | B1 |
6423032 | Parodi | Jul 2002 | B2 |
6432122 | Gilson et al. | Aug 2002 | B1 |
6451036 | Heitzmann et al. | Sep 2002 | B1 |
6458103 | Albert et al. | Oct 2002 | B1 |
6475236 | Roubin et al. | Nov 2002 | B1 |
6485502 | Don Michael | Nov 2002 | B2 |
6508782 | Evans et al. | Jan 2003 | B1 |
6511492 | Rosenbluth et al. | Jan 2003 | B1 |
6514273 | Voss et al. | Feb 2003 | B1 |
6530923 | Dubrul et al. | Mar 2003 | B1 |
6530935 | Wensel et al. | Mar 2003 | B2 |
6544276 | Azizi | Apr 2003 | B1 |
6544278 | Vrba et al. | Apr 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6551342 | Shen et al. | Apr 2003 | B1 |
6564828 | Ishida | May 2003 | B1 |
6569181 | Burns | May 2003 | B1 |
6575995 | Huter et al. | Jun 2003 | B1 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6596011 | Johnson et al. | Jul 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6605074 | Zadno-Azizi et al. | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6620148 | Tsugita | Sep 2003 | B1 |
6620179 | Brook et al. | Sep 2003 | B2 |
6620182 | Khosravi et al. | Sep 2003 | B1 |
6623460 | Heck | Sep 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6645222 | Parodi et al. | Nov 2003 | B1 |
6660013 | Rabiner et al. | Dec 2003 | B2 |
6660014 | Demarais et al. | Dec 2003 | B2 |
6663650 | Sepetka et al. | Dec 2003 | B2 |
6692504 | Kurz et al. | Feb 2004 | B2 |
6699260 | Dubrul et al. | Mar 2004 | B2 |
6702830 | Demarais et al. | Mar 2004 | B1 |
6719717 | Johnson et al. | Apr 2004 | B1 |
6755847 | Eskuri | Jun 2004 | B2 |
6767353 | Shiber | Jul 2004 | B1 |
6790204 | Zadno-Azizi et al. | Sep 2004 | B2 |
6800080 | Bates | Oct 2004 | B1 |
6818006 | Douk et al. | Nov 2004 | B2 |
6824545 | Sepetka et al. | Nov 2004 | B2 |
6824550 | Noriega et al. | Nov 2004 | B1 |
6824553 | Gene et al. | Nov 2004 | B1 |
6830561 | Jansen et al. | Dec 2004 | B2 |
6846029 | Ragner et al. | Jan 2005 | B1 |
6902540 | Dorros et al. | Jun 2005 | B2 |
6939361 | Kleshinski | Sep 2005 | B1 |
6942682 | Vrba et al. | Sep 2005 | B2 |
6945977 | Demarais et al. | Sep 2005 | B2 |
6960189 | Bates et al. | Nov 2005 | B2 |
6960222 | Vo et al. | Nov 2005 | B2 |
7004931 | Hogendijk | Feb 2006 | B2 |
7004954 | Voss et al. | Feb 2006 | B1 |
7036707 | Aota et al. | May 2006 | B2 |
7041084 | Fotjik | May 2006 | B2 |
7052500 | Bashiri et al. | May 2006 | B2 |
7056328 | Arnott | Jun 2006 | B2 |
7063707 | Bose et al. | Jun 2006 | B2 |
7069835 | Nishri et al. | Jul 2006 | B2 |
7094249 | Thomas et al. | Aug 2006 | B1 |
7179273 | Palmer et al. | Feb 2007 | B1 |
7223253 | Hogendijk | May 2007 | B2 |
7232432 | Fulton, III et al. | Jun 2007 | B2 |
7244243 | Lary | Jul 2007 | B2 |
7285126 | Sepetka et al. | Oct 2007 | B2 |
7300458 | Henkes et al. | Nov 2007 | B2 |
7306618 | Demond et al. | Dec 2007 | B2 |
7320698 | Eskuri | Jan 2008 | B2 |
7323002 | Johnson et al. | Jan 2008 | B2 |
7331980 | Dubrul et al. | Feb 2008 | B2 |
7534234 | Fotjik | May 2009 | B2 |
7578830 | Kusleika et al. | Aug 2009 | B2 |
7621870 | Berrada et al. | Nov 2009 | B2 |
7674247 | Fotjik | Mar 2010 | B2 |
7691121 | Rosenbluth et al. | Apr 2010 | B2 |
7695458 | Belley et al. | Apr 2010 | B2 |
7763010 | Evans et al. | Jul 2010 | B2 |
7766934 | Pal et al. | Aug 2010 | B2 |
7775501 | Kees | Aug 2010 | B2 |
7780696 | Daniel et al. | Aug 2010 | B2 |
7905877 | Oscar et al. | Mar 2011 | B1 |
7905896 | Straub | Mar 2011 | B2 |
7938809 | Lampropoulos et al. | May 2011 | B2 |
7938820 | Webster et al. | May 2011 | B2 |
7967790 | Whiting et al. | Jun 2011 | B2 |
7976511 | Fotjik | Jul 2011 | B2 |
7993302 | Hebert et al. | Aug 2011 | B2 |
7993363 | Demond et al. | Aug 2011 | B2 |
8043313 | Krolik et al. | Oct 2011 | B2 |
8052640 | Fiorella et al. | Nov 2011 | B2 |
8057496 | Fischer, Jr. | Nov 2011 | B2 |
8057497 | Raju et al. | Nov 2011 | B1 |
8066757 | Ferrera et al. | Nov 2011 | B2 |
8070769 | Broome | Dec 2011 | B2 |
8070791 | Ferrera et al. | Dec 2011 | B2 |
8075510 | Aklog et al. | Dec 2011 | B2 |
8088140 | Ferrera et al. | Jan 2012 | B2 |
8092486 | Berrada et al. | Jan 2012 | B2 |
8100935 | Rosenbluth et al. | Jan 2012 | B2 |
8109962 | Pal | Feb 2012 | B2 |
8118829 | Carrison et al. | Feb 2012 | B2 |
8197493 | Ferrera et al. | Jun 2012 | B2 |
8246641 | Osborne et al. | Aug 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8267897 | Wells | Sep 2012 | B2 |
8298257 | Sepetka et al. | Oct 2012 | B2 |
8317748 | Fiorella et al. | Nov 2012 | B2 |
8337450 | Fotjik | Dec 2012 | B2 |
RE43902 | Hopkins et al. | Jan 2013 | E |
8357178 | Grandfield et al. | Jan 2013 | B2 |
8361104 | Jones et al. | Jan 2013 | B2 |
8409215 | Sepetka et al. | Apr 2013 | B2 |
8486105 | Demond et al. | Jul 2013 | B2 |
8491539 | Fotjik | Jul 2013 | B2 |
8512352 | Martin | Aug 2013 | B2 |
8535283 | Heaton et al. | Sep 2013 | B2 |
8535334 | Martin | Sep 2013 | B2 |
8545526 | Martin et al. | Oct 2013 | B2 |
8568432 | Straub | Oct 2013 | B2 |
8574262 | Ferrera et al. | Nov 2013 | B2 |
8579915 | French et al. | Nov 2013 | B2 |
8585713 | Ferrera et al. | Nov 2013 | B2 |
8608754 | Wensel et al. | Dec 2013 | B2 |
8657867 | Dorn et al. | Feb 2014 | B2 |
8696622 | Fiorella et al. | Apr 2014 | B2 |
8715314 | Janardhan et al. | May 2014 | B1 |
8721714 | Kelley | May 2014 | B2 |
8753322 | Hu et al. | Jun 2014 | B2 |
8771289 | Mohiuddin et al. | Jul 2014 | B2 |
8777893 | Malewicz | Jul 2014 | B2 |
8784441 | Rosenbluth et al. | Jul 2014 | B2 |
8784442 | Jones et al. | Jul 2014 | B2 |
8795305 | Martin et al. | Aug 2014 | B2 |
8795345 | Grandfield et al. | Aug 2014 | B2 |
8801748 | Martin | Aug 2014 | B2 |
8808259 | Walton et al. | Aug 2014 | B2 |
8814927 | Shin et al. | Aug 2014 | B2 |
8820207 | Marchand et al. | Sep 2014 | B2 |
8826791 | Thompson et al. | Sep 2014 | B2 |
8828044 | Aggerholm et al. | Sep 2014 | B2 |
8833224 | Thompson et al. | Sep 2014 | B2 |
8845621 | Fotjik | Sep 2014 | B2 |
8852226 | Gilson et al. | Oct 2014 | B2 |
8939991 | Krolik et al. | Jan 2015 | B2 |
8945143 | Ferrera et al. | Feb 2015 | B2 |
8945172 | Ferrera et al. | Feb 2015 | B2 |
8956384 | Berrada et al. | Feb 2015 | B2 |
8992504 | Castella et al. | Mar 2015 | B2 |
9005172 | Chung | Apr 2015 | B2 |
9028401 | Bacich et al. | May 2015 | B1 |
9078682 | Lenker et al. | Jul 2015 | B2 |
9101382 | Krolik et al. | Aug 2015 | B2 |
9125683 | Farhangnia et al. | Sep 2015 | B2 |
9126016 | Fulton | Sep 2015 | B2 |
9149609 | Ansel et al. | Oct 2015 | B2 |
9155552 | Ulm, III | Oct 2015 | B2 |
9161766 | Slee et al. | Oct 2015 | B2 |
9173668 | Ulm, III | Nov 2015 | B2 |
9186487 | Dubrul et al. | Nov 2015 | B2 |
9204887 | Cully et al. | Dec 2015 | B2 |
9216277 | Myers | Dec 2015 | B2 |
9358037 | Farhangnia et al. | Jan 2016 | B2 |
9259237 | Quick et al. | Feb 2016 | B2 |
9283066 | Hopkins et al. | Mar 2016 | B2 |
9351747 | Kugler et al. | May 2016 | B2 |
9439664 | Sos | Sep 2016 | B2 |
9439751 | White et al. | Sep 2016 | B2 |
9456834 | Folk | Oct 2016 | B2 |
9463035 | Greenhalgh et al. | Oct 2016 | B1 |
9463036 | Brady et al. | Oct 2016 | B2 |
9526864 | Quick | Dec 2016 | B2 |
9526865 | Quick | Dec 2016 | B2 |
9566424 | Pessin | Feb 2017 | B2 |
9579116 | Nguyen et al. | Feb 2017 | B1 |
9616213 | Furnish et al. | Apr 2017 | B2 |
9636206 | Nguyen et al. | May 2017 | B2 |
9643035 | Mastenbroek | May 2017 | B2 |
9700332 | Marchand et al. | Jul 2017 | B2 |
9717514 | Martin et al. | Aug 2017 | B2 |
9717519 | Rosenbluth et al. | Aug 2017 | B2 |
9744024 | Nguyen et al. | Aug 2017 | B2 |
9757137 | Krolik et al. | Sep 2017 | B2 |
9827084 | Bonnette et al. | Nov 2017 | B2 |
9844386 | Nguyen et al. | Dec 2017 | B2 |
9844387 | Marchand et al. | Dec 2017 | B2 |
9848975 | Hauser | Dec 2017 | B2 |
9849014 | Kusleika | Dec 2017 | B2 |
9962178 | Greenhalgh et al. | May 2018 | B2 |
9980813 | Eller | May 2018 | B2 |
9999493 | Nguyen et al. | Jun 2018 | B2 |
10004531 | Rosenbluth et al. | Jun 2018 | B2 |
10010335 | Greenhalgh et al. | Jul 2018 | B2 |
10016266 | Hauser | Jul 2018 | B2 |
10028759 | Wallace et al. | Jul 2018 | B2 |
10045790 | Cox et al. | Aug 2018 | B2 |
10098651 | Marchand et al. | Oct 2018 | B2 |
10130385 | Farhangnia et al. | Nov 2018 | B2 |
10226263 | Look et al. | Mar 2019 | B2 |
10238406 | Cox et al. | Mar 2019 | B2 |
10271864 | Greenhalgh et al. | Apr 2019 | B2 |
10327883 | Yachia | Jun 2019 | B2 |
10335186 | Rosenbluth et al. | Jul 2019 | B2 |
10342571 | Marchand et al. | Jul 2019 | B2 |
10349960 | Quick | Jul 2019 | B2 |
10383644 | Molaei et al. | Aug 2019 | B2 |
10478535 | Ogle | Nov 2019 | B2 |
10524811 | Marchand et al. | Jan 2020 | B2 |
10588655 | Rosenbluth et al. | Mar 2020 | B2 |
10695159 | Hauser | Jun 2020 | B2 |
10709471 | Rosenbluth et al. | Jul 2020 | B2 |
10799331 | Hauser | Oct 2020 | B2 |
10912577 | Marchand et al. | Feb 2021 | B2 |
11000682 | Merritt et al. | May 2021 | B2 |
11013523 | Arad Hadar | May 2021 | B2 |
11058445 | Cox et al. | Jul 2021 | B2 |
11058451 | Marchand et al. | Jul 2021 | B2 |
11147571 | Cox et al. | Oct 2021 | B2 |
11154314 | Quick | Oct 2021 | B2 |
11259821 | Buck et al. | Mar 2022 | B2 |
11406801 | Fojtik et al. | Aug 2022 | B2 |
11433218 | Quick et al. | Sep 2022 | B2 |
11439799 | Buck et al. | Sep 2022 | B2 |
11457936 | Buck et al. | Oct 2022 | B2 |
11529158 | Hauser | Dec 2022 | B2 |
11554005 | Merritt et al. | Jan 2023 | B2 |
11559382 | Merritt et al. | Jan 2023 | B2 |
20010004699 | Gittings et al. | Jun 2001 | A1 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20010041909 | Tsugita et al. | Nov 2001 | A1 |
20010049486 | Evans et al. | Dec 2001 | A1 |
20010051810 | Dubrul et al. | Dec 2001 | A1 |
20020022858 | Demond et al. | Feb 2002 | A1 |
20020022859 | Hogendijk | Feb 2002 | A1 |
20020026211 | Khosravi et al. | Feb 2002 | A1 |
20020032455 | Boock et al. | Mar 2002 | A1 |
20020049452 | Kurz et al. | Apr 2002 | A1 |
20020095161 | Dhindsa | Jul 2002 | A1 |
20020095171 | Belef | Jul 2002 | A1 |
20020111648 | Kusleika et al. | Aug 2002 | A1 |
20020120277 | Hauschild et al. | Aug 2002 | A1 |
20020147458 | Hiblar et al. | Oct 2002 | A1 |
20020151918 | Lafontaine et al. | Oct 2002 | A1 |
20020156457 | Fisher | Oct 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020169474 | Kusleika | Nov 2002 | A1 |
20020173819 | Leeflang et al. | Nov 2002 | A1 |
20020188276 | Evans et al. | Dec 2002 | A1 |
20030083693 | Daniel et al. | May 2003 | A1 |
20030100919 | Hopkins et al. | May 2003 | A1 |
20030114875 | Sjostrom | Jun 2003 | A1 |
20030116731 | Hartley | Jun 2003 | A1 |
20030125663 | Coleman et al. | Jul 2003 | A1 |
20030135230 | Massey et al. | Jul 2003 | A1 |
20030135258 | Andreas et al. | Jul 2003 | A1 |
20030153873 | Luther et al. | Aug 2003 | A1 |
20030153973 | Soun et al. | Aug 2003 | A1 |
20030168068 | Poole et al. | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030191516 | Weldon et al. | Oct 2003 | A1 |
20030208224 | Broome | Nov 2003 | A1 |
20030216774 | Larson | Nov 2003 | A1 |
20040039412 | Isshiki et al. | Feb 2004 | A1 |
20040068288 | Palmer et al. | Apr 2004 | A1 |
20040073243 | Sepetka et al. | Apr 2004 | A1 |
20040098033 | Leeflang et al. | May 2004 | A1 |
20040102807 | Kusleika et al. | May 2004 | A1 |
20040122359 | Wenz et al. | Jun 2004 | A1 |
20040127936 | Salahieh et al. | Jul 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138692 | Phung et al. | Jul 2004 | A1 |
20040167567 | Cano et al. | Aug 2004 | A1 |
20040199201 | Kellett et al. | Oct 2004 | A1 |
20040199202 | Dubrul et al. | Oct 2004 | A1 |
20040260344 | Lyons et al. | Dec 2004 | A1 |
20040267272 | Henniges et al. | Dec 2004 | A1 |
20050033172 | Dubrul et al. | Feb 2005 | A1 |
20050038468 | Panetta et al. | Feb 2005 | A1 |
20050054995 | Barzell et al. | Mar 2005 | A1 |
20050055047 | Greenhalgh | Mar 2005 | A1 |
20050085769 | MacMahon et al. | Apr 2005 | A1 |
20050085826 | Nair et al. | Apr 2005 | A1 |
20050085846 | Carrison et al. | Apr 2005 | A1 |
20050085849 | Sepetka et al. | Apr 2005 | A1 |
20050119668 | Teague et al. | Jun 2005 | A1 |
20050177132 | Lentz et al. | Aug 2005 | A1 |
20050187570 | Nguyen et al. | Aug 2005 | A1 |
20050283165 | Gadberry | Dec 2005 | A1 |
20050283166 | Greenhalgh et al. | Dec 2005 | A1 |
20050283186 | Berrada et al. | Dec 2005 | A1 |
20060020286 | Niermann | Jan 2006 | A1 |
20060042786 | West | Mar 2006 | A1 |
20060047286 | West | Mar 2006 | A1 |
20060074401 | Ross | Apr 2006 | A1 |
20060089533 | Ziegler et al. | Apr 2006 | A1 |
20060100662 | Daniel et al. | May 2006 | A1 |
20060155305 | Freudenthal et al. | Jul 2006 | A1 |
20060173525 | Behl et al. | Aug 2006 | A1 |
20060195137 | Sepetka et al. | Aug 2006 | A1 |
20060200221 | Malewicz | Sep 2006 | A1 |
20060217664 | Hattier et al. | Sep 2006 | A1 |
20060224177 | Finitsis | Oct 2006 | A1 |
20060229645 | Bonnette et al. | Oct 2006 | A1 |
20060247500 | Voegele et al. | Nov 2006 | A1 |
20060253145 | Lucas | Nov 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20060282111 | Morsi | Dec 2006 | A1 |
20060293696 | Fahey et al. | Dec 2006 | A1 |
20070010787 | Hackett et al. | Jan 2007 | A1 |
20070038225 | Osborne | Feb 2007 | A1 |
20070093744 | Elmaleh | Apr 2007 | A1 |
20070112374 | Paul, Jr. et al. | May 2007 | A1 |
20070118165 | DeMello et al. | May 2007 | A1 |
20070149996 | Coughlin | Jun 2007 | A1 |
20070161963 | Smalling | Jul 2007 | A1 |
20070179513 | Deutsch | Aug 2007 | A1 |
20070191866 | Palmer et al. | Aug 2007 | A1 |
20070198028 | Miloslavski et al. | Aug 2007 | A1 |
20070208361 | Okushi et al. | Sep 2007 | A1 |
20070208367 | Fiorella et al. | Sep 2007 | A1 |
20070213753 | Waller | Sep 2007 | A1 |
20070213765 | Adams et al. | Sep 2007 | A1 |
20070255252 | Mehta | Nov 2007 | A1 |
20070288054 | Tanaka et al. | Dec 2007 | A1 |
20080015541 | Rosenbluth et al. | Jan 2008 | A1 |
20080088055 | Ross | Apr 2008 | A1 |
20080157017 | Macatangay et al. | Jul 2008 | A1 |
20080167678 | Morsi | Jul 2008 | A1 |
20080183136 | Lenker et al. | Jul 2008 | A1 |
20080228209 | DeMello et al. | Sep 2008 | A1 |
20080234715 | Pesce et al. | Sep 2008 | A1 |
20080234722 | Bonnette et al. | Sep 2008 | A1 |
20080262528 | Martin | Oct 2008 | A1 |
20080269798 | Ramzipoor et al. | Oct 2008 | A1 |
20080300466 | Gresham | Dec 2008 | A1 |
20090018566 | Escudero et al. | Jan 2009 | A1 |
20090054918 | Henson | Feb 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090069828 | Martin et al. | Mar 2009 | A1 |
20090076417 | Jones | Mar 2009 | A1 |
20090160112 | Ostrovsky | Jun 2009 | A1 |
20090163846 | Aklog et al. | Jun 2009 | A1 |
20090182362 | Thompson et al. | Jul 2009 | A1 |
20090192495 | Ostrovsky et al. | Jul 2009 | A1 |
20090281525 | Harding et al. | Nov 2009 | A1 |
20090292307 | Razack | Nov 2009 | A1 |
20090299393 | Martin et al. | Dec 2009 | A1 |
20100016837 | Howat | Jan 2010 | A1 |
20100030256 | Dubrul et al. | Feb 2010 | A1 |
20100042136 | Berrada et al. | Feb 2010 | A1 |
20100087844 | Fischer, Jr. | Apr 2010 | A1 |
20100087850 | Razack | Apr 2010 | A1 |
20100114113 | Dubrul et al. | May 2010 | A1 |
20100121312 | Gielenz et al. | May 2010 | A1 |
20100137846 | Desai et al. | Jun 2010 | A1 |
20100190156 | Van Wordragen et al. | Jul 2010 | A1 |
20100204712 | Mallaby | Aug 2010 | A1 |
20100217276 | Garrison et al. | Aug 2010 | A1 |
20100249815 | Jantzen et al. | Sep 2010 | A1 |
20100268264 | Bonnette et al. | Oct 2010 | A1 |
20100318178 | Rapaport et al. | Dec 2010 | A1 |
20110034986 | Chou et al. | Feb 2011 | A1 |
20110034987 | Kennedy | Feb 2011 | A1 |
20110054405 | Whiting et al. | Mar 2011 | A1 |
20110060212 | Slee et al. | Mar 2011 | A1 |
20110118817 | Gunderson et al. | May 2011 | A1 |
20110125181 | Brady et al. | May 2011 | A1 |
20110144592 | Wong | Jun 2011 | A1 |
20110152823 | Mohiuddin et al. | Jun 2011 | A1 |
20110152993 | Marchand et al. | Jun 2011 | A1 |
20110160742 | Ferrera et al. | Jun 2011 | A1 |
20110160763 | Ferrera et al. | Jun 2011 | A1 |
20110190806 | Wittens | Aug 2011 | A1 |
20110196309 | Wells | Aug 2011 | A1 |
20110196414 | Porter et al. | Aug 2011 | A1 |
20110213290 | Chin et al. | Sep 2011 | A1 |
20110213403 | Aboytes | Sep 2011 | A1 |
20110224707 | Miloslavski et al. | Sep 2011 | A1 |
20110245807 | Sakata et al. | Oct 2011 | A1 |
20110251629 | Galdonik et al. | Oct 2011 | A1 |
20110264133 | Hanlon et al. | Oct 2011 | A1 |
20110265681 | Allen et al. | Nov 2011 | A1 |
20110288529 | Fulton | Nov 2011 | A1 |
20110288572 | Martin | Nov 2011 | A1 |
20110319917 | Ferrera et al. | Dec 2011 | A1 |
20120059309 | di Palma et al. | Mar 2012 | A1 |
20120059356 | di Palma et al. | Mar 2012 | A1 |
20120083824 | Berrada et al. | Apr 2012 | A1 |
20120083868 | Shrivastava | Apr 2012 | A1 |
20120089216 | Rapaport et al. | Apr 2012 | A1 |
20120101480 | Ingle et al. | Apr 2012 | A1 |
20120101510 | Lenker et al. | Apr 2012 | A1 |
20120138832 | Townsend | Jun 2012 | A1 |
20120143239 | Aklog et al. | Jun 2012 | A1 |
20120165919 | Cox et al. | Jun 2012 | A1 |
20120172918 | Fifer et al. | Jul 2012 | A1 |
20120179181 | Straub et al. | Jul 2012 | A1 |
20120197277 | Stinis | Aug 2012 | A1 |
20120232655 | Lorrison et al. | Sep 2012 | A1 |
20120271105 | Nakamura et al. | Oct 2012 | A1 |
20120271231 | Agrawal | Oct 2012 | A1 |
20120277788 | Cattaneo | Nov 2012 | A1 |
20120310166 | Huff | Dec 2012 | A1 |
20130030460 | Marks et al. | Jan 2013 | A1 |
20130035628 | Garrison et al. | Feb 2013 | A1 |
20130046332 | Jones et al. | Feb 2013 | A1 |
20130066348 | Fiorella et al. | Mar 2013 | A1 |
20130092012 | Marchand et al. | Apr 2013 | A1 |
20130096571 | Massicotte et al. | Apr 2013 | A1 |
20130102996 | Strauss | Apr 2013 | A1 |
20130116708 | Ziniti et al. | May 2013 | A1 |
20130116721 | Takagi et al. | May 2013 | A1 |
20130126559 | Cowan et al. | May 2013 | A1 |
20130144326 | Brady et al. | Jun 2013 | A1 |
20130165871 | Fiorella et al. | Jun 2013 | A1 |
20130184703 | Shireman et al. | Jul 2013 | A1 |
20130197454 | Shibata et al. | Aug 2013 | A1 |
20130197567 | Brady et al. | Aug 2013 | A1 |
20130226196 | Smith | Aug 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20130289608 | Tanaka et al. | Oct 2013 | A1 |
20130317589 | Martin et al. | Nov 2013 | A1 |
20130345739 | Brady et al. | Dec 2013 | A1 |
20140005712 | Martin | Jan 2014 | A1 |
20140005713 | Bowman | Jan 2014 | A1 |
20140005715 | Castella et al. | Jan 2014 | A1 |
20140005717 | Martin et al. | Jan 2014 | A1 |
20140025048 | Ward | Jan 2014 | A1 |
20140031856 | Martin | Jan 2014 | A1 |
20140046133 | Nakamura et al. | Feb 2014 | A1 |
20140046243 | Ray et al. | Feb 2014 | A1 |
20140052161 | Cully et al. | Feb 2014 | A1 |
20140074144 | Shrivastava et al. | Mar 2014 | A1 |
20140121672 | Folk | May 2014 | A1 |
20140155830 | Bonnette et al. | Jun 2014 | A1 |
20140155980 | Turjman | Jun 2014 | A1 |
20140180397 | Gerberding et al. | Jun 2014 | A1 |
20140155908 | Rosenbluth et al. | Jul 2014 | A1 |
20140188127 | Dubrul et al. | Jul 2014 | A1 |
20140188143 | Martin et al. | Jul 2014 | A1 |
20140236219 | Dubrul et al. | Aug 2014 | A1 |
20140243882 | Ma | Aug 2014 | A1 |
20140257253 | Jemison | Sep 2014 | A1 |
20140257363 | Lippert | Sep 2014 | A1 |
20140276403 | Follmer et al. | Sep 2014 | A1 |
20140296868 | Garrison et al. | Oct 2014 | A1 |
20140303658 | Bonnette et al. | Oct 2014 | A1 |
20140318354 | Thompson et al. | Oct 2014 | A1 |
20140324091 | Rosenbluth | Oct 2014 | A1 |
20140330286 | Wallace et al. | Nov 2014 | A1 |
20140336691 | Jones et al. | Nov 2014 | A1 |
20140343593 | Chin et al. | Nov 2014 | A1 |
20140364896 | Consigny | Dec 2014 | A1 |
20140371779 | Vale et al. | Dec 2014 | A1 |
20150005781 | Lund-Clausen et al. | Jan 2015 | A1 |
20150005792 | Ahn | Jan 2015 | A1 |
20150018859 | Quick | Jan 2015 | A1 |
20150018860 | Quick | Jan 2015 | A1 |
20150018929 | Martin et al. | Jan 2015 | A1 |
20150025555 | Sos | Jan 2015 | A1 |
20150032144 | Holloway | Jan 2015 | A1 |
20150059908 | Mollen | Mar 2015 | A1 |
20150088190 | Jensen | Mar 2015 | A1 |
20150127035 | Trapp et al. | May 2015 | A1 |
20150133990 | Davidson | May 2015 | A1 |
20150150672 | Ma | Jun 2015 | A1 |
20150164523 | Brady et al. | Jun 2015 | A1 |
20150164666 | Johnson et al. | Jun 2015 | A1 |
20150173782 | Garrison et al. | Jun 2015 | A1 |
20150190155 | Ulm, III | Jul 2015 | A1 |
20150190156 | Ulm, III | Jul 2015 | A1 |
20150196380 | Berrada et al. | Jul 2015 | A1 |
20150196744 | Aboytes | Jul 2015 | A1 |
20150209058 | Ferrera et al. | Jul 2015 | A1 |
20150209165 | Grandfield et al. | Jul 2015 | A1 |
20150238207 | Cox et al. | Aug 2015 | A1 |
20150250578 | Cook et al. | Sep 2015 | A1 |
20150265299 | Cooper et al. | Sep 2015 | A1 |
20150305756 | Rosenbluth | Oct 2015 | A1 |
20150305859 | Eller | Oct 2015 | A1 |
20150352325 | Quick | Dec 2015 | A1 |
20150360001 | Quick | Dec 2015 | A1 |
20150374391 | Quick | Dec 2015 | A1 |
20160022293 | Dubrul et al. | Jan 2016 | A1 |
20160058540 | Don Michael | Mar 2016 | A1 |
20160074627 | Cottone | Mar 2016 | A1 |
20160106448 | Brady et al. | Apr 2016 | A1 |
20160106449 | Brady et al. | Apr 2016 | A1 |
20160113663 | Brady et al. | Apr 2016 | A1 |
20160113664 | Brady et al. | Apr 2016 | A1 |
20160113665 | Brady et al. | Apr 2016 | A1 |
20160113666 | Quick | Apr 2016 | A1 |
20160143721 | Rosenbluth | May 2016 | A1 |
20160151605 | Welch et al. | Jun 2016 | A1 |
20160206344 | Bruzzi et al. | Jul 2016 | A1 |
20160008014 | Rosenbluth | Aug 2016 | A1 |
20160220741 | Garrison et al. | Aug 2016 | A1 |
20160228134 | Martin et al. | Aug 2016 | A1 |
20160262774 | Honda | Sep 2016 | A1 |
20160262790 | Rosenbluth et al. | Sep 2016 | A1 |
20160287276 | Cox et al. | Oct 2016 | A1 |
20160367285 | Sos | Dec 2016 | A1 |
20170014560 | Minskoff et al. | Jan 2017 | A1 |
20170037548 | Lee | Feb 2017 | A1 |
20170042571 | Levi | Feb 2017 | A1 |
20170049942 | Conlan et al. | Feb 2017 | A1 |
20170056032 | Look et al. | Mar 2017 | A1 |
20170058623 | Jaffrey et al. | Mar 2017 | A1 |
20170079672 | Quick | Mar 2017 | A1 |
20170086864 | Greenhalgh et al. | Mar 2017 | A1 |
20170100142 | Look et al. | Apr 2017 | A1 |
20170105743 | Vale et al. | Apr 2017 | A1 |
20170105745 | Rosenbluth et al. | Apr 2017 | A1 |
20170112514 | Marchand et al. | Apr 2017 | A1 |
20170112513 | Marchand et al. | Jul 2017 | A1 |
20170189041 | Cox et al. | Jul 2017 | A1 |
20170196576 | Long et al. | Jul 2017 | A1 |
20170233908 | Kroczynski et al. | Aug 2017 | A1 |
20170252057 | Bonnette et al. | Sep 2017 | A1 |
20170265878 | Marchand et al. | Sep 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170319221 | Chu | Nov 2017 | A1 |
20170325839 | Rosenbluth et al. | Nov 2017 | A1 |
20170340867 | Accisano, II | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20180042623 | Batiste | Feb 2018 | A1 |
20180042624 | Greenhalgh et al. | Feb 2018 | A1 |
20180042626 | Greenhalgh et al. | Feb 2018 | A1 |
20180064453 | Garrison et al. | Mar 2018 | A1 |
20180064454 | Losordo et al. | Mar 2018 | A1 |
20180070968 | Wallace et al. | Mar 2018 | A1 |
20180092652 | Marchand et al. | Apr 2018 | A1 |
20180104404 | Ngo-Chu | Apr 2018 | A1 |
20180105963 | Quick | Apr 2018 | A1 |
20180125512 | Nguyen et al. | May 2018 | A1 |
20180184912 | Al-Ali | Jul 2018 | A1 |
20180193043 | Marchand et al. | Jul 2018 | A1 |
20180236205 | Krautkremer et al. | Aug 2018 | A1 |
20180256177 | Cooper et al. | Sep 2018 | A1 |
20180256178 | Cox et al. | Sep 2018 | A1 |
20180296240 | Rosenbluth et al. | Oct 2018 | A1 |
20180344339 | Cox et al. | Dec 2018 | A1 |
20180361116 | Quick et al. | Dec 2018 | A1 |
20190000492 | Casey et al. | Jan 2019 | A1 |
20190046219 | Marchand et al. | Feb 2019 | A1 |
20190070401 | Merritt et al. | Mar 2019 | A1 |
20190117244 | Wallace et al. | Apr 2019 | A1 |
20190133622 | Wallace et al. | May 2019 | A1 |
20190133623 | Wallace et al. | May 2019 | A1 |
20190133624 | Wallace et al. | May 2019 | A1 |
20190133625 | Wallace et al. | May 2019 | A1 |
20190133626 | Wallace et al. | May 2019 | A1 |
20190133627 | Wallace et al. | May 2019 | A1 |
20190150959 | Cox et al. | May 2019 | A1 |
20190231373 | Quick | Aug 2019 | A1 |
20190239910 | Brady et al. | Aug 2019 | A1 |
20190321071 | Marchand et al. | Oct 2019 | A1 |
20190336142 | Torrie et al. | Nov 2019 | A1 |
20190336148 | Greenhalgh et al. | Nov 2019 | A1 |
20200046368 | Merritt et al. | Feb 2020 | A1 |
20200113412 | Jensen | Apr 2020 | A1 |
20210022843 | Hauser | Jan 2021 | A1 |
20210113224 | Dinh | Apr 2021 | A1 |
20210137667 | Sonnette et al. | May 2021 | A1 |
20210186541 | Thress | Jun 2021 | A1 |
20210236148 | Marchand et al. | Aug 2021 | A1 |
20210290925 | Merritt et al. | Sep 2021 | A1 |
20210315598 | Buck et al. | Oct 2021 | A1 |
20210330344 | Rosenbluth et al. | Oct 2021 | A1 |
20210378694 | Thress et al. | Dec 2021 | A1 |
20220000505 | Hauser | Jan 2022 | A1 |
20220000506 | Hauser | Jan 2022 | A1 |
20220000507 | Hauser | Jan 2022 | A1 |
20220015798 | Marchand et al. | Jan 2022 | A1 |
20220022898 | Cox et al. | Jan 2022 | A1 |
20220039815 | Thress et al. | Feb 2022 | A1 |
20220125451 | Hauser | Apr 2022 | A1 |
20220142638 | Enright et al. | May 2022 | A1 |
20220151647 | Dolendo et al. | May 2022 | A1 |
20220152355 | Dolendo et al. | May 2022 | A1 |
20220160381 | Hauser | May 2022 | A1 |
20220160382 | Hauser | May 2022 | A1 |
20220160383 | Hauser | May 2022 | A1 |
20220211400 | Cox et al. | Jul 2022 | A1 |
20220211992 | Merritt et al. | Jul 2022 | A1 |
20220240959 | Quick | Aug 2022 | A1 |
20220346800 | Merritt et al. | Nov 2022 | A1 |
20220346801 | Merritt et al. | Nov 2022 | A1 |
20220346813 | Quick | Nov 2022 | A1 |
20220346814 | Quick | Nov 2022 | A1 |
20220362512 | Quick et al. | Nov 2022 | A1 |
20230046775 | Quick | Feb 2023 | A1 |
20230062809 | Merritt et al. | Mar 2023 | A1 |
20230070120 | Cox et al. | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
2015210338 | Aug 2015 | AU |
102186427 | Sep 2011 | CN |
103764049 | Apr 2014 | CN |
103932756 | Jul 2014 | CN |
104068910 | Oct 2014 | CN |
108348319 | Jul 2018 | CN |
110652645 | Jan 2020 | CN |
111281482 | Jun 2020 | CN |
102017004383 | Jul 2018 | DE |
1254634 | Nov 2002 | EP |
1867290 | Feb 2013 | EP |
1588072 | Apr 1981 | GB |
2498349 | Jul 2013 | GB |
H6190049 | Jul 1994 | JP |
H07323090 | Dec 1995 | JP |
2001522631 | May 1999 | JP |
2004097807 | Apr 2004 | JP |
2005-095242 | Jun 2005 | JP |
2005230132 | Sep 2005 | JP |
2005323702 | Nov 2005 | JP |
2006094876 | Apr 2006 | JP |
2011526820 | Jan 2010 | JP |
WO1997017889 | May 1997 | WO |
WO9833443 | Aug 1998 | WO |
WO9838920 | Sep 1998 | WO |
WO9839053 | Sep 1998 | WO |
WO9851237 | Nov 1998 | WO |
WO1999044542 | Sep 1999 | WO |
WO0032118 | Jun 2000 | WO |
WO2000053120 | Sep 2000 | WO |
WO0202162 | Jan 2002 | WO |
WO03015840 | Feb 2003 | WO |
WO2004018916 | Mar 2004 | WO |
W02004093696 | Nov 2004 | WO |
WO2005046736 | May 2005 | WO |
WO2006110186 | Oct 2006 | WO |
WO2006124307 | Nov 2006 | WO |
WO2007092820 | Aug 2007 | WO |
WO2009082513 | Jul 2009 | WO |
WO2009086482 | Jul 2009 | WO |
WO2009155571 | Dec 2009 | WO |
WO2010002549 | Jan 2010 | WO |
WO2010010545 | Jan 2010 | WO |
WO2010023671 | Mar 2010 | WO |
WO2010049121 | May 2010 | WO |
WO2010102307 | Sep 2010 | WO |
WO2011032712 | Mar 2011 | WO |
WO2011054531 | May 2011 | WO |
WO2011073176 | Jun 2011 | WO |
W02012011097 | Jan 2012 | WO |
WO2012009675 | Jan 2012 | WO |
WO2012049652 | Apr 2012 | WO |
WO2012065748 | May 2012 | WO |
WO2012120490 | Sep 2012 | WO |
WO2012162437 | Nov 2012 | WO |
WO2014047650 | Mar 2014 | WO |
WO2014081892 | May 2014 | WO |
WO2015006782 | Jan 2015 | WO |
WO2015061365 | Apr 2015 | WO |
WO2015121424 | Aug 2015 | WO |
W02015191646 | Dec 2015 | WO |
WO2015189354 | Dec 2015 | WO |
W02017024258 | Feb 2017 | WO |
W02017070702 | Apr 2017 | WO |
WO2017058280 | Apr 2017 | WO |
WO2017106877 | Jun 2017 | WO |
WO2017189535 | Nov 2017 | WO |
WO2017189550 | Nov 2017 | WO |
WO2017189591 | Nov 2017 | WO |
WO2017189615 | Nov 2017 | WO |
WO2017210487 | Dec 2017 | WO |
WO2018049317 | Mar 2018 | WO |
W02018080590 | May 2018 | WO |
WO2018148174 | Aug 2018 | WO |
WO2019010318 | Jan 2019 | WO |
W02019050765 | Mar 2019 | WO |
W02019075444 | Apr 2019 | WO |
WO2019094456 | May 2019 | WO |
WO2019222117 | Nov 2019 | WO |
WO2019246240 | Dec 2019 | WO |
WO2020036809 | Feb 2020 | WO |
WO2021067134 | Apr 2021 | WO |
WO2021076954 | Apr 2021 | WO |
WO2021127202 | Jun 2021 | WO |
WO2021248042 | Dec 2021 | WO |
WO2022032173 | Feb 2022 | WO |
WO2022103848 | May 2022 | WO |
WO2022109021 | May 2022 | WO |
WO2022109034 | May 2022 | WO |
Entry |
---|
European Patent Application No. 13838945.7, Extended European Search Report, 9 pages, dated Apr. 15, 2016. |
Gibbs, et al., “Temporary Stent as a bail-out device during percutaneous transluminal coronary angioplasty: preliminary clinical experience,” British Heart Journal, 1994, 71:372-377, Oct. 12, 1993, 6 pgs. |
Gupta, S. et al., “Acute Pulmonary Embolism Advances in Treatment”, JAPI, Association of Physicians India, Mar. 2008, vol. 56, 185-191. |
International Search Report and Written Opinion for International App. No. PCT/US13/61470, dated Jan. 17, 2014, 7 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2014/046567, dated Nov. 3, 2014, 13 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2014/061645, dated Jan. 23, 2015, 15 pages. |
International Search Report for International App. No. PCT/US13/71101, dated Mar. 31, 2014, 4 pages. |
Konstantinides, S. et al., “Pulmonary embolism hotline 2012—Recent and expected trials”, Thrombosis and Haemostasis, Jan. 9, 2013:33; 43-50. |
Konstantinides, S. et al., “Pulmonary embolism: risk assessment and management”, European Society of Cardiology; European Heart Journal, Sep. 7, 2012:33, 3014-3022. |
Kucher, N. et al., “Percutaneous Catheter Thrombectomy Device for Acute Pulmonary Embolism: In Vitro and in Vivo Testing”, Circulation, Sep. 2005:112:e28-e32. |
Kucher, N., “Catheter Interventions in Massive Pulmonary Embolism”, Cardiology Rounds, Mar. 2006 vol. 10, Issue 3, 6 pages. |
Kucher, N. et al., “Management of Massive Pulmonary Embolism”, Radiology, Sep. 2005:236:3 852-858. |
Kucher, N. et al., “Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism.” Circulation, 2014, 129, pages 9 pages. |
Kuo, W. et al., “Catheter-directed Therapy for the Treatment of Massive Pulmonary Embolism: Systematic Review and Meta-analysis of Modern Techniques”, Journal of Vascular and Interventional Radiology, Nov. 2009:20:1431-1440. |
Kuo, W. et al., “Catheter-Directed Embolectomy, Fragmentation, and Thrombolysis for the Treatment of Massive Pulmonary Embolism After Failure of Systemic Thrombolysis”, American College of CHEST Physicians 2008: 134:250-254. |
Kuo, W. Md, “Endovascular Therapy for Acute Pulmonary Embolism”, Continuing Medical Education Society of Interventional Radiology (“CME”); Journal of Vascular and Interventional Radiology, Feb. 2012: 23:167-179. |
Lee, L. et al, “Massive pulmonary embolism: review of management strategies with a focus on catheter-based techniques”, Expert Rev. Cardiovasc. Ther. 8(6), 863-873 (2010). |
Liu, S. et al, “Massive Pulmonary Embolism: Treatment with the Rotarex Thrombectomy System”, Cardiovascular Interventional Radiology; 2011: 34:106-113. |
Muller-Hulsbeck, S. et al. “Mechanical Thrombectomy of Major and Massive Pulmonary Embolism with Use of the Amplatz Thrombectomy Device”, Investigative Radiology, Jun. 2001:36:6:317-322. |
Reekers, J. et al., “Mechanical Thrombectomy for Early Treatment of Massive Pulmonary Embolism”, CardioVascular and Interventional Radiology, 2003: 26:246-250. |
Schmitz-Rode et al., “New Mesh Basket for Percutaneous Removal of Wall-Adherent Thrombi in Dialysis Shunts,” Cardiovasc Intervent Radiol 16:7-10 1993 4 pgs. |
Schmitz-Rode et al., “Temporary Pulmonary Stent Placement as Emergency Treatment of Pulmonary Embolism,” Journal of the American College of Cardiology, vol. 48, No. 4, 2006 (5 pgs.). |
Schmitz-Rode, T. et al., “Massive Pulmonary Embolism: Percutaneous Emergency Treatment by Pigtail Rotation Catheter”, JACC Journal of the American College of Cardiology, Aug. 2000:36:2:375-380. |
Spiotta, A et al., “Evolution of thrombectomy approaches and devices for acute stroke: a technical review.” J NeuroIntervent Surg 2015, 7, pages 7 pages. |
Svilaas, T. et al., “Thrombus Aspiration During Primary Percutaneous Coronary Intervention.” The New England Journal of Medicine, 2008, vol. 358, No. 6, 11 pages. |
Tapson, V., “Acute Pulmonary Embolism”, The New England Journal of Medicine, Mar. 6, 2008:358:2037-52. |
The Penumbra Pivotal Stroke Trial Investigators, “The Penumbra Pivotal Stroke Trial: Safety and Effectiveness of a New Generation of Mechanical Devices for Clot Removal in Intracranial Large Vessel Occlusive Disease.” Stroke, 2009, 40: page 9 pages. |
Truong et al., “Mechanical Thrombectomy of Iliocaval Thrombosis Using a Protective Expandable Sheath,” Cardiovasc Intervent Radiol27-254-258, 2004, 5 pgs. |
Turk et al., “Adapt Fast study: a direct aspiration first pass technique for acute stroke thrombectomy.” J NeuroIntervent Surg, vol. 6, 2014, 6 pages. |
Uflacker, R., “Interventional Therapy for Pulmonary Embolism”, Journal of Vascular and Interventional Radiology, Feb. 2001: 12:147-164. |
Verma, R., Md et al. “Evaluation of a Newly Developed Percutaneous Thrombectomy Basket Device in Sheep With Central Pulmonary Embolisms”, Investigative Radiology, Oct. 2006, 41, 729-734. |
International Search Report and Written Opinion for International App. No. PCT/US2015/034987 filed Jun. 9, 2015, Applicant: Inceptus Medical, LLC, dated Sep. 17, 2015, 12 pages. |
English translation of Japanese Office Action received for JP Application No. 2016-564210, Applicant: Inceptus Medical, LLC, dated Sep. 4, 2017, 4 pages. |
Australian Exam Report received for AU Application No. 2015274704, Applicant: Inceptus Medical, LLC, dated Sep. 7, 2017, 3 pages. |
European Search Report received for EP Application No. 15805810.7, Applicant: Inceptus Medical, LLC, dated Sep. 4, 2017, 6 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2016/067628 filed Dec. 19, 2016, Applicant: Inari Medical, Inc., dated Apr. 10, 2017, 11 pages. |
Goldhaber, S. et al. “Percutaneous Mechanical Thrombectomy for Acute Pulmonary Embolism—A Double-Edged Sword,” American College of CHEST Physicians, Aug. 2007, 132:2, 363-372. |
Goldhaber, S., “Advanced treatment strategies for acute pulmonary embolism, including thrombolysis and embolectomy,” Journal of Thrombosis and Haemostasis, 2009: 7 (Suppl. 1): 322-327. |
International Search Report and Written Opinion for International App. No. PCT/US2017/029696, Date of Filing: Apr. 26, 2017, Applicant: Inari Medical, Inc., dated Sep. 15, 2017, 19 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2016/058536, Date of Filing: Oct. 24, 2016, Applicant: Inari Medical, Inc., dated Mar. 13, 2017, 14 pages. |
European First Office Action received for EP Application No. 13838945.7, Applicant: Inari Medical, Inc., dated Oct. 26, 2018, 7 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2018/048786, Date of Filing: Aug. 30, 2018, Applicant: Inari Medical, Inc., dated Dec. 13, 2018, 12 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2018/055780, Date of Filing: Oct. 13, 2018, Applicant: Inceptus Medical LLC., dated Jan. 22, 2019, 8 pages. |
European Search Report for European Application No. 16876941.2, Date of Filing: Dec. 19, 2016, Applicant: Inari Medical, Inc., dated Jul. 18, 2019, 7 pages. |
Extended European Search Report for European Application No. 16858462.1, Date of Filing: Oct. 24, 2016, Applicant: Inari Medical, Inc., dated Jun. 3, 2019, 10 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2019/045794, Date of Filing: Aug. 8, 2019, Applicant: Inari Medical, Inc., dated Nov. 1, 2019, 17 pages. |
Partial Supplementary European Search Report for European Application No. 17864818.4, Date of Filing: May 21, 2019, Applicant: Inari Medical, Inc., dated Apr. 24, 2020, 11 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2020/056067, Date of Filing: Oct. 16, 2020; Applicant: Inari Medical, Inc., dated Jan. 22, 2021, 8 pages. |
Extended European Search Report for European Application No. 20191581.6, Applicant: Inari Medical, Inc., dated Mar. 31, 2021, 11 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2020/055645, Date of Filing: Dec. 17, 2020; Applicant: Inari Medical, Inc., dated Apr. 14, 2021, 12 pages. |
Extended European Search Report for European Application No. 18853465.5, Applicant: Inari Medical, Inc., Date of Mailing: May 7, 2021, 2021, 7 pages. |
Vorwerk, D. Md, et al., “Use of a Temporary Caval Filter to Assist Percutaneous Iliocaval Thrombectomy: Experimental Results.” SCVIR, 1995, 4 pages. |
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2020/014854, dated Oct. 5, 2020 (13 pages). |
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2020/018655, dated Dec. 16, 2020 (22 pages). |
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2020/017684, dated Nov. 30, 2020 (19 pages). |
Extended European Search Report for EP Patent Appln. No. 20185092.2 dated Sep. 11, 2020, 6 pages. |
EP Examination Report for EP Patent Appln. No. 18745794.0 dated Jul. 20, 2020, 4 pages. |
Wikipedia; Embolectomy; retrieved from the internet: https://en.wikipedia.org/wiki/Embolectomy; 4 pgs.; retrieved/printed: Mar. 24, 2016. |
O'Sullivan; Thrombolysis versus thrombectomy in acute deep vein thrombosis; Interventional Cardiology 3(5); pp. 589-596; Oct. 2011. |
Capture Vascular Systems; (company website); retrieved from the internet: http://www.capturevascular.com; 3 pgs.; retrieved/printed: Mar. 24, 2016. |
Edwards Lifesciences; Fogarty® Occlusion Catheters (product brochure); retrieved from the internet: http://web.archive.org/web/20150228193218/http://www.edwards.com/products/vascular/atraumaticocclusion/pages/occlusioncatheter.aspx; ©2011; 2 pgs.; retrieved/printed: Mar. 24, 2011. |
Boston Scientific; Fetch(TM) 2 Aspiration Catheter (product information);retrieved from the internet: http://www.bostonscientific.com/en-US/products/thrombectomy-systems/fetch2-aspiration-catheter.html; 2 pgs.; retrieved/printed: Mar. 24, 2016. |
Penumbra, Inc.; Indigo® System (product information); retrieved from the internet: http://www.penumbrainc.com/peripherallpercutaneous-thromboembolectomy/indigo-system; 7 pgs.; retrieved/printed: Mar. 24, 2016. |
Youtube; Merci Retrieval System X Series Animation; uploaded Mar. 16, 2009 (product information); posted on May 7, 2009 by SSMDePAUL, time 1:09, retrieved from the internet: https://www.youtube.com/watch?v=MGX7deuFkhc; 3 pgs.; retrieved/printed: Mar. 24, 2016. |
COVIDIEN; Solitaire(TM) AS Neurovascular Remodeling Device (product information); retrieved from the internet: http://www.ev3.net/neuro/intl/remodeling-devices/solitaire-ab. htm; © 2015; 2 pgs.; retrieved/printed: Mar. 24, 2016. |
PCT International Search Report and Written Opinion for International Patent Appln. No. PCT/US2019/050467, Applicant Stryker Corporation, dated Dec. 18, 2019 (17 pages). |
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2017/029440, Applicant Stryker Corporation, dated Jul. 7, 2017. |
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2017/029472, Applicant Stryker Corporation, dated Jul. 7, 2017. |
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2017/035543, Applicant Stryker Corporation, dated Aug. 14, 2017. |
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2017/029366, Applicant Stryker Corporation, dated Aug. 29, 2017. |
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2017/050933, Applicant Stryker Corporation, forms PCT/ISA/210, 220, and 237, dated Nov. 10, 2017 (16 pages). |
International search report and written opinion dated Feb. 28, 2018 for PCT/US2017/029345, Applicant Stryker Corporation 26 pages. |
Extended European Search Report dated Aug. 22, 2018 for European patent appln No. 16852212.6, 6 pages. |
Extended European Search Report dated Oct. 5, 2018 for European patent appln No. 18174891.4, 6 pages. |
International search report and written opinion dated Nov. 14, 2018 for PCT/US2018/040937, Applicant Stryker Corporation 16 pages. |
International Search Report and Written Opinion dated Mar. 28, 2019 for International Appln. No. PCT/US2018/059607. |
International Search Report and Written Opinion dated May 6, 2016 for PCT/US2016/017982. |
PCT International Search Report and Written Opinion for International Patent Appln. No. PCT/US2019/032601, Applicant Stryker Corporation, dated Jul. 23, 2019 (12 pages). |
Extended European Search Report dated Oct. 8, 2019 for European Patent Application No. 19191925.7. |
International Search Report and Written Opinion for International Patent Appln. No. PCT/US2019/050410 dated Oct. 25, 2019. |
International Search Report and Written Opinion for International App. No. PCT/US21/35965, Date of Filing: Jun. 4, 2021, Applicant: Inari Medical, Inc., dated Sep. 28, 2021, 12 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/45072 Date of Filing: Aug. 6, 2021, Applicant: Inari Medical, Inc., dated Jan. 20, 2022, 10 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/58793; Date of Filing: Nov. 10, 2021, Applicant: Inari Medical, Inc., dated Mar. 16, 2022, 13 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/59718; Date of Filing: Nov. 17, 2021, Applicant: Inari Medical, Inc., dated Mar. 22, 2022, 13 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/59735; Date of Filing: Nov. 17, 2021, Applicant: Inari Medical, Inc., Date of Mailing: Mar. 22, 2022, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20220347455 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
62554931 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17705189 | Mar 2022 | US |
Child | 17865266 | US | |
Parent | 17226318 | Apr 2021 | US |
Child | 17705189 | US | |
Parent | 16117519 | Aug 2018 | US |
Child | 17226318 | US |